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Abstract Spring pendulum is a widely discussed two degree-of-freedom (DOF)
mechanical systems in numerous references. In this paper the asymptotic approach
and limiting phase trajectories (LPT) have been applied to analyze the two DOF
mathematical model of a spring pendulum. The LPT and multiple timescale
(MTS) methods are effective tools of the investigation of non-linear systems. Some
interesting and important aspects of dynamics of the system are discussed. The
main attention is focused on the non-steady-state vibrations when the energy is
intensively exchanged. Then with increasing values of the selected parameters, a
sudden change in the character of vibrations is observed. These phenomena are
very well described by the LPT. The method allows to determine the critical values
of the parameters responsible for the mentioned transitions. Our analytical studies
are verified by numerical calculations.

1 Introduction

The steady-state vibrations are, in general, mainly observed in engineering practice.
However, in some cases of sharp resonance, the transient stage of the oscillatory
process and its relaxation can last a long time. Energy exchange and non-stationary
processes appear in many dynamical systems and they are of great interest of many
researchers. This problem has been widely discussed in [2, 6]. It is usually studied
numerically due to occurred essential mathematical difficulties [2]. However, in
recent years, one may observe a great interest in successful application of modern
asymptotic methods to engineering-oriented problems [1, 4]. In particular, a novel
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idea for an effective study of non-linear dynamical systems is linked with a concept
of the so-called limiting phase trajectories (LPT) (see [3]).

The analysis of the non-linear spring pendulum is carried out in the paper.
The unsteady-state oscillations near resonance are discussed. The pendulum-type
mechanical systems with non-linear and parametric interactions exhibit a rich
behaviour, and hence their understanding and prediction are important both from
a point of view of the theory and application. Pendulums are relatively simple
systems; neverthelessthey can be used to simulate the dynamics of a wide variety of
engineering devices and machine parts. The coupling of the equations of motion
causes possibility of autoparametric excitation and is connected to the energy
exchange between modes of vibrations [8]. The energy transfer is well known in
dynamics of multi-degree-of-freedom systems and is widely discussed by many
authors [5, 7]. A key role either for theoretical- or application-oriented analysis is
played by prediction and determination of thresholds (critical set of parameters),
where transitions of system dynamics take place from a periodic quasi-linear
to strongly non-linear behaviour. It can be observed in the neighbourhood of a
resonance. Such critical value of non-linear parameter of the spring pendulum is
determined in the paper.

2 Formulation of the Problem

Let us consider the planar motion of a mass attached to the massless non-linear
spring. The examined system is shown in Fig. 1.

The Lagrangian of the system is given by

L D mg cos� .L0 CZ/ � 1

2
k1Z

2 � 1

4
k2Z

4 C 1

2
m

� PZ2 C .L0 CZ/2 P�2
�

(1)

where m is the mass of the pendulum, L0 is the length of the nonstretched spring, k1

and k2 are the stiffness coefficients, g is the Earth’s acceleration and Z(t) and �(t) are
generalized coordinates (see Fig. 1). The magnitudes of the forces F1 and F2 acting
on the mass along and transversally to the pendulum are F1(t) D F1 cos(�1 t) and
F2(t) D F2 cos(�2t). Forces of linear viscous damping are considered to be present
in both longitudinal and swing motions of the pendulum (C1 and C2 are viscous
coefficients).

The equations of motion have been obtained using Lagrange equations of the
second type. Their non-dimensional form follows

RzCc1PzCzC˛ z3 C 3˛ z2rz C 3˛zrz
2 C w2 .1 � cos'/ � .z C 1/ P'2Df1 cos .p1�/

(2)
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Fig. 1 The spring pendulum

.z C 1/
�
.z C 1/ R' C w2 sin' C P' .c2 C 2Pz/� D .z C 1/ f2 cos .p2�/ (3)

where z D Z/L, L D L0 C Zr, c1 D C1/m!1, c2 D C2/L2m!1, w D!2/!1, !2 Dp
g=L, !1 D p

k1=m; p1 D�1/!1, p2 D�2/!1, f1 D F1/Lm!2
1, f2 D F2/Lm!2

1 and
dimensionless time � D t!1. Now z and � are functions of � , whereas zr denotes the
elongation of the spring at the static equilibrium position and fulfils the equation

˛ z3r C zr D w2 (4)

The second equation of motion (3) gives, among others, a trivial solution z D � 1
which has no physical meaning and should be rejected.

Vibrations of the system are investigated in the neighbourhood of the equilibrium
position; hence, the trigonometric functions can be substituted by their power series
approximations

sin' � ' � '3=6; cos' � 1 � '2=2 (5)

which limit the angle about to  /6 with precision of four significant digits.
The above remarks lead to a new form of the equations of motion
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Rz C c1Pz C z C ˛ z3 C 3˛ z2rz C 3˛ zrz
2 C 1

2
w2'2 � .z C 1/ P'2 D f1 cos .p1�/

(6)

.z C 1/ R' C w2
�
' � '3

6

�
C P' .c2 C 2Pz/ D f2 cos .p2�/ (7)

Let us assume the homogeneous initial conditions

z.0/ D 0; Pz.0/ D 0; '.0/ D 0; P'.0/ D 0 (8)

The above initial problem described by the coupled and non-linear equations is
investigated.

2.1 Complex Representation of the Problem

Let us introduce the phase space coordinates Pz .�/ D v .�/ and P' .�/ D ˇ .�/ into
(6)–(8) and then rewrite the problem in the form

Pv C c1v C z C ˛ z3 C 3˛ z2rz C 3˛zrz
2 C 1

2
w2'2 � .z C 1/ ˇ2 D f1 cos .p1�/ ;

(9)

.z C 1/ P̌ C w2
�
' � '3

6

�
C ˇ .c2 C 2$/ D f2 cos .p2�/ ; (10)

z.0/ D 0; v.0/ D 0; '.0/ D 0; ˇ.0/ D 0: (11)

Then, the approach proposed in the paper [3] is applied. Introduction of the
complex-valued functions

‰z D v C i z; ‰' D ˇ C i w '; ‰z D v � i z; ‰' D ˇ � i w ' (12)

converts the problems (9)–(11) to the complex form

1
2

� P‰z C P‰z

�
C c1

2

�
‰z C‰z

� � 1
2
i
�
‰z �‰z

� C 1
8
i ˛

�
‰z �‰z

�3
� 3

2
˛ z2r

�
‰z �‰z

� � 3
4
˛ zr

�
‰z �‰z

�2 � 1
8

�
‰' �‰'

�2
C 1

4

�
‰' C‰'

�2 � 1
2
i
�
‰z �‰z

� � 1� D f1 cos .p1�/ ;

(13)
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1
2

�
1 � 1

2
i
�
‰z �‰z

�� � P‰' C P‰'

�
C 1

2

�
‰' C‰'

� �
c2 C �

‰z C‰z
��

C w2
�

� i.‰'�‰'/3
48w3

� i.‰'�‰'/
2w

�
D f2 cos .p2�/ ;

(14)

‰z.0/ D 0; ‰'.0/ D 0;‰z.0/ D 0; ‰'.0/ D 0 (15)

The complex conjugate equations similar to (13) and (14) are also derived. They
and all the consequent formulas are not written for greater clarity.

Afterwards the exponential form of the functions � z(� ) D z(� )ei� and
�®(� ) D w ®(� )eiw� is postulated which leads to the new form of the governing
equations

P z C 1
8
i e�4i�˛

�
e2i� z �  z

�3 C 1
2
c1

�
 z C  ze

�2i� � � 3
2
i˛ z2r

�
 z �  ze

2i�
�

� 3
4
˛ zr e�3i� � z � e2i� z

�2 � 3
8
w2e�i�.1C2w/

�
 
2

' C  2
'e
4i�w

�
C 1

4
ie2i�w2 ' '

�
e2i� z �  z C ei�

�
C 1

8
ie�2i�.1Cw/w2

�
e2i� z �  z

� �
e4iw� 2

' C  
2

'

�
D f1e

�i� cos .p1�/ ;

(16)

w P 'C 1
2
ie�i�w P '

�
 z � e2i� z

�� 1
2
c2w

�
 ' � e�2iw� '

�C 1
4
ei�w .w C 2/ ' z

� 1
4
ei�.1�2w/w .w � 2/ ' z� 1

4
e�i�w .w � 2/ ' zC 1

4
e�i�.1C2w/w .wC2/ ' z

� 1
48
iw2e�4i�w

�
 'e

2i�w� '

�3Df2e�i�w cos .p2�/ ;
(17)

with the initial conditions

 z.0/ D 0;  '.0/ D 0;  z.0/ D 0;  '.0/ D 0 (18)

3 Asymptotic Solution

The problems (16)–(18) can be efficiently solved by the asymptotic multiple scale
method. The assumptions of smallness of the parameters are proposed in the form

c1 D Qc1"2; c2 D Qc2"2; zr D Qzr "; f1 D Qf1"3 f2 D Qf2"3; (19)

where " is the so-called small parameter.
Adopting three timescales in the analysis the solutions are searched in the

following form of series with respect to the small parameter:
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 z .� I "/ D
kD3X
kD1

"k�zk .�0; �1; �2/CO
�
"4

�
;

 ' .� I "/ D
kD3X
kD1

"k�'k .�0; �1; �2/CO
�
"4

�
;

(20)

and the differential operator has the form

d

d�
D @

@�0
C "

@

@�1
C "2

@

@�2
C :::: (21)

3.1 Motion Near Resonance

Let us focus attention on the case of main resonance p2 � w and p1 � 1. In order to
deal this case the following substitutions have been done

p1 D 1C �1 and p2 D w C �2; (22)

where �1 D Q�1"2 and �2 D Q�2"2 are detuning parameters.
Introducing now (19), (20) and (22) into (16) and (17) and replacing the ordinary

derivatives by the differential operator (21) we obtain two equations in which the
small parameter " appears. These equations should be satisfied for any value of the
small parameter, so after sorting them with respect to the powers of " we get

(i) the equations of order "1

@�z1

@�0
D 0; (23)

@�'1

@�0
D 0; (24)

(ii) the equations of order "2

@�z2

@�0
C @�z1

@�1
� 1

4
w2e�i�0�'1�'1 � 3

8
w2e�i�0.1C2w/

�
e4i�0w�2'1 � �2'1

�
D 0; (25)

w @�'2
@�0

� 1
2
iei�0w @�'1

@�0
�z1 C 1

2
ie�i�0w @�'1

@�0
�z1 C w @�'1

@�1
C 1

4
ei�0w�'1�z1 .w C 2/

� 1
4
ei�0.1�2w/w2�'1�z1 � 1

4
e�i�0w�'1�z1 .w � 2/C 1

4
e�i�0.1C2w/w2�'1�z1

C 1
2
ei�0.1�2w/w�'1�z1 C 1

2
e�i�0.1C2w/w�'1�z1 D 0;

(26)
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(iii) the equations of order "3

@�z3
@�0

C @�z2
@�1

C @�z1
@�2

� 3
2
i Q̨ z2r

�
�z1 � �z1e

�2i�0
�

� 3
4

Q̨ zr e�3i�0
�
�z1 � �z1e

2i�0

�2

C 1
8
i Q̨e�4i�0 z2r

�
�z1e

2i�0 � �z1

�3 C Qc1
2

�
�z1e

�2i�0 C �z1

�
� 1

2
Qf1ei Q�1�2

� 1
4
w2e�i�0

�
�'2�'1 C �'2�'1

�
� 1

4
w2

ˇ̌
�'1

ˇ̌2 �
�z1 � �z1e

�2i�0
�

� 3
4
w2

�
�'1�'2e

i�0.2w�1/ C �'2�'1e
�i�0.2wC1/

�
� 1

2
Qf1e�i Q�1�0�i Q�1�2

C 1
8
iw2

�
�2'1�z1e

2i�0w C �
2

'1�z1e
C2i�0w C �2'1�z1e

2i�0.w�1/ C �
2

'1�z1e
2i�0.wC1/

�
D 0;

(27)

@�'3
@�0

� 1
2
iwe�i�0

h�
�z1e

2i�0 � �z1

� �
@�'2
@�0

� @�'1
@�1

�
�

�
�z2e

2i�0 � �z2

�
@�'1
@�0

i

C w @�'2
@�1

C w @�'1
@�2

C Qc2
2

w
�
�'1 C �'1e

�2iw�0
�

� 1
2

Qf2ei Q�2�2 � 1
2

Qf2e�i.2w�0CQ�2�2/

C 1
4
ei�0w .2C w/

�
�z2�'1 C �z1�'2

� � 1
4
e�i�0w .w � 2/

�
�z2�'1 C �z1�'2

�

� 1
48
iw2e�4iw�0

�
�'1e

2iw�0 � �'1
�3 � 1

4
w .w � 2/ ei�0.1�2w/�z2�'1

C 1
4
w .w C 2/ e�i�0.1C2w/�z2�'1 C 1

2
wei�0.1�2w/�z1�'2

�
1 � w

2

�
C 1

2
we�i�0.1C2w/�z1�'2

�
1C w

2

� D 0:

(28)

The requirement of zeroing of secular terms in (23)–(26) causes the functions
�z1 .�2/ ; �z1 .�2/ ; �'1 .�2/ ; �'1 .�2/ to depend only on the slowest timescale �2.

Solutions of the second-order equations (25) and (26)

�z2 D G1 .�1; �2/C 3iw2

8 .1 � 2w/

�
ei�0.2w�1/�2'1 C e�i�0.2wC1/�2'1

�
C 1

4
iw2e�i�0 �'1�'1;

(29)

�'2 D G2 .�1; �2/C 1
4
iei�0 .2C w/ �z1�'1 C 1

4
ie�i�0 .w � 2/ �z1�'1

C i .w � 2/ ei�0.1�2w/�z1�'1

8w � 4 � i .w C 2/ e�i�0.1C2w/�z1�'1

8w C 4
;

(30)

are then introduced into equations of the third order (27) and (28). According to the
initial conditions (18), G1 D 0 and G2 D 0.

Assuming that the system vibrates far from the internal resonance 2w � 1 D 0,
the requirement that the solutions should be limited in time leads to the equations

@�z1

@�2
C Qc1
2
�z1�3

2
i Q̨ Qz2r �z1p�3

8
i Q̨ j�z1j �z1 C 3i w2

�
w2 � 1�

4 � 16w2
ˇ̌
�'1

ˇ̌
�z1D1

2
Qf1ei�2 Q�1 ;

(31)
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w @�'1
@�2

C Qc2
2

w�'1 � 1
4
i w2 j�z1j �'1 C i w2.w2C2/

16w2�4 j�z1j �'1
C i w2.8w4�7w2�1/

64w2�16
ˇ̌
�'1

ˇ̌
�'1 D 1

2
Qf2ei�2 Q�2 :

(32)

Now real representation of the functions �z1 and �'1 of the following form

�z1 .�2/ D Qa1 .�2/ eiı1.�2/; �'1 .�2/ D Qa2 .�2/ eiı2.�2/; Qai D ai" for i D 1; 2

(33)

is introduced to the above secular terms (31) and (32).
Then we go back to the original denotations according to (19) and take advantage

of the definition (21). Comparison of the real and imaginary parts of both sides of
(31) and (32) leads to four modulation equations with respect to amplitudes a1, a2

and modified phases 	1, 	2:

da1

d�
D �1

2
c1a1 C 1

2
f1 cos 	1; (34)

a1
d	1

d�
D �3

2
z2r˛ a1 C �1a1 � 3

8
˛ a31 C 3w2

�
w2 � 1�

4 � 16w2
a1a

2
2 � 1

2
f1 sin 	1; (35)

da2

d�
D �1

2
c2a2 C 1

2w
f2 cos 	2; (36)

a2
d	2

d�
D �2a2 C 3w

�
w2 � 1�

4 � 16w2
a2a

2
1 C w

�
8w4 � 7w2 � 1�
64w2 � 16 a32 � 1

2w
f2 sin 	2; (37)

where modified phases 	1, 	2 are defined as follows:

ı1 .�2/ D �2�1 � 	1 .�2/ ; ı2 .�2/ D �2�2 � 	2 .�2/ : (38)

The above definitions cause the systems (34)–(37) to become an autonomous one.
It describes the dynamics of the non-linear spring pendulum near simultaneously
occurring main resonances.

4 Examples

The LPT concept allows to describe the intensive energy exchange between the
degrees of freedom and external sources. The system examined in the paper is
especially sensitive to changes of the value of the parameter ˛ responsible for non-
linear characteristics of the spring. One can observe a critical value ˛D˛LPT for
which the character of the vibrations dramatically changes. The value of ˛LPT
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Fig. 2 Limiting phase trajectories for longitudinal and swing vibrations; ˛D 0.3<˛LPT

Fig. 3 Amplitudes modulations; ˛D 0.3<˛LPT

Fig. 4 Time histories obtained numerically; ˛D 0.3<˛LPT

depends on all the parameters of the system. In the case of certain one degree-of-
freedom (DOF) systems ˛LPT can be obtained analytically [2, 3]. When the number
of DOF is higher than one and couplings appear in the equations of modulation,
˛LPT can be obtained approximately.

The results of calculations for the chosen values of parameters �1 D 0.01,
�2 D 0.01, f1 D 0.0008, f2 D 0.00008 , c1 D 0, c2 D 0, w D 0.21 are presented below.
For these parameters ˛LPT � 0.654. Figures 2, 3 and 4 show some graphs concerning
the case when ˛D 0.3<˛LPT .

awrejcew@p.lodz.pl



170 J. Awrejcewicz et al.

Fig. 5 Limiting phase trajectories for spring and swing vibrations; ˛D 0.7>˛LPT

Fig. 6 Amplitudes modulations; ˛D 0.7>˛LPT

Fig. 7 Time histories obtained numerically; ˛D 0.7>˛LPT

In Figs. 2, 3 and 4 the intensive energy exchange between the system and its
surrounding can be observed. The amplitudes are relatively small and the vibrations
are quasi-linear. The time histories presented in Fig. 4 have been received by
numerical solution to the problem (6)–(8). The amplitude modulations and time
histories (compare Figs. 3 and 4) are highly compatible.

For ˛ >˛LPT some non-linear effects occur. In Figs. 5, 6 and 7 amplitudes are
much larger than in the case when ˛ <˛LPT and the vibrations become strongly
non-linear.
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Fig. 8 Limiting phase trajectories for spring and swing vibrations; ˛D 2.0>>˛LPT

Fig. 9 Amplitudes modulations; ˛D 2.0>>˛LPT

Fig. 10 Amplitudes modulations; ˛D 2.0>>˛LPT

In the case ˛ >>˛LPT modulations of amplitudes of both coordinates become
again more regular, as is shown in Figs. 9 and 10. However, their shape indicates
the non-linear effects. The longitudinal vibration tends to sawtooth form with
the increase of non-linearity parameter. A synchronization between the amplitude
modulations of both general coordinates in the slow timescale is observable (Fig. 9).
The oscillations of the system tend to steady state what is seen not only in the time
history but also in the phase – amplitude plane (Fig. 8).
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5 Conclusions

Analytical study of the non-linear spring pendulum in planar motion has been
carried out. After transformation of the governing equations of motion to the
complex representation, the asymptotic analysis with the help of multiple timescale
(MTS) method has been applied. That approach leads to obtain a set of differential
equations of simpler form than the original ones. It is worth to note that, thanks to the
application of the MTS variant with three timescales, the non-linear terms as well
as the most important coupled terms between the generalized coordinates have been
preserved in the equations of the simplified mathematical model. The performed
investigations have been focused on the nonsteady vibrations of the forced system
near the simultaneously occurring external resonances. The modulation equations
concerning this case have been derived from the equations of first order as well as
from the requirement of vanishing the secular terms of the equations of higher order.
The solutions obtained analytically from the equations of modulation of amplitudes
and phases have been verified by comparing them with the solutions which are
received numerically from the original equations of motion. Their high accuracy
has been confirmed in all performed numerical simulations.

The main advantage of the asymptotic solutions consists in achieving qualitative
information about the dynamics of the considered system.

Analysis of the curves which represent the dynamical behaviour of the system in
the plane phase-amplitude gives evidence of very interesting features of dynamics of
the system. The shape of these curves depends strongly on the values of parameter ˛,
which is connected with the spring non-linearity. The most intensive energy
transfer between the system and its surroundings is governed by the so-called LPT.
Important non-linear dynamical transition-type phenomena are detected, monitored
and discussed, amongst others. For ˛ >˛LPT amplitudes are much greater than for
˛ <˛LPT . Moreover, it has been shown that the shape of the amplitude modulation
curves changes with the value of ˛.
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