
Abstract: In this work a hysteretic dissipation in the ultrasonic motor is simulated by
means of additional state variables (internal variables). The hysteretic model
constructed has Masing-Bouc-Wen structure. It was demonstrated that hysteresis can
lead to change for the worse of rotor speed characteristics.

1. Introduction

Piezoelectric materials due to their high efficiency are widely used in many branches of engineering

as the radio engineering for stabilization of radio frequencies, the ultrasonics (underwater signalling),

resonators in generators and stabilizers, ultrasonic holography, ultrasonic flaw detection, echosondes,

sonars etc. Ultrasonic motors (USM) are applied in robotics, in production of autofocus-cameras etc.

In many cases linear models of piezoelectric structures do not describe some processes properly.

Large deflection effects are described by mechanical nonlinearities, nonlinear strain-stress

characteristics are related to material nonlinearities. Hysteretic nonlinearities are peculiar to

piezoelectric materials. It should be pointed, that presence of hysteretic behaviour in piezoelectric

devices is related to their “bad” characteristics. Due to hysteresis the piezoelectric samples

polarization values are different at the same electric field intensity. It depends on the preliminary

sample polarization. Periodic polarization changes lead to energy dissipation which is spent to heating

of piezoelectric elements. In [1] Prandtl-Ishlinskii model is used to model the hysteretic nonlinearities

in a piezoelectric-actuated system to avoid undesirable oscillations or instability. The constructed

model was associated with experimental results. In [2] a measured hysteresis, a fit to Maxwell Slip

hysteretic model and also work loops for various applied static loads are presented in the

displacement vs field plane for high energy density piezoelectric actuators. The specific of the loops

presented is absence of saturation, however, a slight inverse effect is observed.

Publications about USM [3] mainly point to two sources of nonlinearities: nonlinear stator-rotor

contact interactions and relationship between piezo and stator. In this work the USM hysteretic
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characteristics are simulated by means of additional state variables (internal variables). The hysteretic 

models with internal variables have Masing-Bouc-Wen structure. It was demonstrated [4] that this 

modelling mechanism for energy dissipation was sufficiently accurate to model loops of various 

shapes in accordance with a real experiment, reflecting the behavior of hysteretic systems from very 

different fields.  

2. Description of the USM model with hysteresis 

Piezoelectric actuators are the systems composed of the ultrasonic motors, power electronics and the 

closed loop control [3]. The ultrasonic motor scheme is shown in figure 1. It produces a rotation by 

utilizing the high-frequency vibrations of the stator which are transferred to the steady motion of the 

rotor in a frictional contact with the stator. The motor model consists of two flat cylinders, one 

representing the rotor, and the other the stator. Both are modelled as rigid bodies. The rotor is axially 

elastically supported with a rotational spring-damper element about the rotational axis of the rotor to 

allow the motion about this axis. The cylindrical stator is excited by means of a multilayered 

piezoceramic actuator generating a rotating torque vector orthogonal to the geometrical axis of the 

stator. 

Figure1. Rigid body model of the ultrasonic motor.  
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One torque is generated by a sinusoidal high frequency signal, while the other follows from a cosine 

signal. Both signals are standing waves and mutually orthogonal. The resulting steady state vibration 

of the stator yields a wobbling motion of the stator disk.  

Figure 2. Euler’s angles.
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The state vector is � �z,,,,,,,,q RRzyx ωφωωωψθφ
�

. Euler’s dynamical and kinematical equations 

(1)-(6) are equations of motion of the stator. They are formulated in the body fixed coordinate system 

Oxyz (figure 2). OXYZ  is the inertial coordinate system. Ox1y1z1 and Ox2y2z2 are two intermediate 

coordinate systems. The first Ox1y1z1 intermediate coordinate system is obtained from the inertial 

system OXYZ after rotation in the positive direction by an angle φ about Oz axis. Axis Ox1 coincides 

with nodal line N, axis Oz1 coincides with Oz . The second intermediate coordinate system Ox2y2z2 is 

obtained from the first coordinate system Ox1y1z1 after rotation in the positive direction by an angle θ 

about Ox1 axis. Axis Ox1 coincides with Ox2, axis Oz1 coincides with Oz2 . Coordinate system Oxyz is 

obtained from the second coordinate system Ox2y2z2 after rotation in the positive direction by an angle 

ψ about Oz axis.  

The torque vector acting upon the stator is  

DRcontactcE MMFrMM �����0 .                                                                                            (11) 

,f,f,f crn  are normal, radial, circumferential components of the force vector contactF :  

11 xcyrZncontact fff eeeF ���� .                                                                                                 (12) 

EM , RM , DM  are the excitation torque generated by piezoceramic (the piezoelectric excitation is 

described by two given excitation torques), the restoring torque, the damping torque correspondingly:  

YYXXE mm eeM ��  with tcosmmX Ω0� , tsinmmY Ω0� ,                                                  (13) 
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In the body-fixed coordinate system Oxyz torques EM , RM , DM , CM  ( contactM ) are expressed 
as  
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Here A  is the transformation matrix from the inertial coordinate system with basis ZYX ,, eee to 

the body-fixed coordinate system with basis zyx ,, eee :
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Equations of motion of the stator (1)-(6) and rotor (7)-(9) are coupled through the dynamics at 

this point. The rotor disc is specified by two coordinates: rotational angle φR and translational 

coordinate zR . Equations (7)-(8) describe the rotational motion of the rotor as well as equation (9) 

describes the rotor motion in the axial direction.  

In hysteresis simulation a system is frequently viewed as a black box and the system’s output (or 

response) is modelled with the use of analytical expressions or differential equations supposing that 

the input of the system is known. It is suggested to apply methodology that described in [4] where 

hysteresis is simulated by means of additional state variables:  

� �Ny,...,y,y,xpz 21� ,                                                                                                                 (18) 
� �ny,x,xqy �� � ,      n=1, 2,…,N.                                                                                                  (19) 

Here x is an input (input signal) and z is an output (response) of the hysteretic system, p and q are 

nonlinear functions of its arguments, yi (i=1, 2,…, N) are internal variables. Functions p and q are 

chosen depending on a loop form. The parameters of these functions are determined via a procedure 

minimizing the criterion function  
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which characterizes an error between the experimental curve and the calculated one. To this effect the 

gradient fall method is used.  

The polarization axis and direction of the electric field of the piezoceramic in the USM is Z.

Equations (10) simulate the hysteretic dissipation in the USM (k0(x), Ai(x)�0, Fi(x)>0, the input signal 

belongs to the admissible codomain x�[xmin, xmax], �i, �i��). They are chosen for the USM in the 

form  
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Values of the parameters of equations (21) are c1 = 0.1; c1 = 3.5; c1 = 0.01; m= 1. 
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3. Numerical results  

Results of integrating of equations (1)-(10) are presented in figures 3-10. Figure 3 presents the 

hysteretic loop that reflects the hysteretic dissipation in the USM. In figures 4-5 the time history of 

Euler’s angles φ, θ, ψ are depicted. Figures 6-8 present the components of angular velocities of the 

stator. In figure 9 the time history of the rotor angle φR is shown. Figure 10 presents the time history 

of the angular velocity of the rotor ωR obtained in the frames of the model with hysteresis and without 

hysteresis.  
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Figure 3. Hysteretic dissipation in the USM. Figure 4. Time history of Euler’s angles φ and ψ.
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Figure 5. Time history of Euler’s angle θ 
(the nutation angle).

Figure 6. Time history of angular velocity 
components ωx, ωy .
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Figure 7. Time history of angular velocity 
components ωx, ωy in scale up.

Figure 8. Time history of angular velocity 
component ωz .
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Figure 9. Time history of rotor angle φR . Figure 10. Time history of rotor angular velocity ωR .

Values of accepted parameters  

model parameter value unit
rotor disc radius R=0.005 m
rotor disc height H=0.003 m
rotor mass mR =6.4·10-4 kg
rotor moment of inertia IR =8·10-9 kgm2

stator moment of inertia: body-fixed x-axis Ixx=1.3·10-8 kgm2

stator moment of inertia: body-fixed y-axis Iyy=1.3·10-8 kgm2

stator moment of inertia: body-fixed z-axis Izz=2.3·10-8 kgm2

Damping coefficient: axial dR =0.16 Ns/m
Damping coefficient: rotational (Z-axis) dt =9.1·10-4 Nms/rad
damping coefficient: rotational (X,Y-axes) dr =1.8·10-4 Nms/rad
stiffness coefficient: axial spring cR =4000 N/m
rotational stiffness coefficient (Z-axis) ct =10000 Nm/rad
rotational stiffness coefficient (X,Y-axes) cr =700 Nm/rad
external loading torque Tload=0.0006 Nmm
precompression force f0=0.4 N
Amplitude of high frequency excitation signal m0 =0.02 Nm
high frequency excitation signal Ω=37000 Hz
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4. Conclusions 

It was shown that at definite parameters a hysteretic dissipation in the USM can decrease the rotor 

speed as well as expand the rotor transition to a steady state motion. The constructed model with 

additional state variables (internal variables), that has Masing-Bouc-Wen structure, is appropriate to 

simulate hysteresis in USM. Taking into account of hysteretic dissipation based on parameter 

identification with a real experimental data can be useful for development and optimization of motor 

design and electronic drive circuit units.  

The next step of the study could be an analysis of possible influence of hysteretic dissipation and 

a transient chaotic behaviour on the USM characteristics in various control parameter planes. The 

effective algorithm based on analysis of the wandering trajectories [4, 7] would be applied to 

investigate stability of piezoelectric devices in control parameter planes/spaces. This methodology 

had been successfully applied both to smooth and non-smooth dynamical systems.  
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