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Abstract: In this work a hysteretic dissipation in the ultrasonic motor is simulated by
means of additional state variables (internal variables). The hysteretic model
constructed has Masing-Bouc-Wen structure. It was demonstrated that hysteresis can
lead to change for the worse of rotor speed characteristics.

1. Introduction

Piezoelectric materials due to their high efficiency are widely used in many branches of engineering
as the radio engineering for stabilization of radio frequencies, the ultrasonics (underwater signalling),
resonators in generators and stabilizers, ultrasonic holography, ultrasonic flaw detection, echosondes,
sonars etc. Ultrasonic motors (USM) are applied in robotics, in production of autofocus-cameras etc.

In many cases linear models of piezoelectric structures do not describe some processes properly.
Large deflection effects are described by mechanical nonlinearities, nonlinear strain-stress
characteristics are related to material nonlinearities. Hysteretic nonlinearities are peculiar to
piezoelectric materials. It should be pointed, that presence of hysteretic behaviour in piezoelectric
devices is related to their “bad” characteristics. Due to hysteresis the piezoelectric samples
polarization values are different at the same electric field intensity. It depends on the preliminary
sample polarization. Periodic polarization changes lead to energy dissipation which is spent to heating
of piezoelectric elements. In [1] Prandtl-Ishlinskii model is used to model the hysteretic nonlinearities
in a piezoelectric-actuated system to avoid undesirable oscillations or instability. The constructed
model was associated with experimental results. In [2] a measured hysteresis, a fit to Maxwell Slip
hysteretic model and also work loops for various applied static loads are presented in the
displacement vs field plane for high energy density piezoelectric actuators. The specific of the loops
presented is absence of saturation, however, a slight inverse effect is observed.

Publications about USM [3] mainly point to two sources of nonlinearities: nonlinear stator-rotor

contact interactions and relationship between piezo and stator. In this work the USM hysteretic
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characteristics are simulated by means of additional state variables (internal variables). The hysteretic
models with internal variables have Masing-Bouc-Wen structure. It was demonstrated [4] that this
modelling mechanism for energy dissipation was sufficiently accurate to model loops of various
shapes in accordance with a real experiment, reflecting the behavior of hysteretic systems from very

different fields.

2. Description of the USM model with hysteresis

Piezoelectric actuators are the systems composed of the ultrasonic motors, power electronics and the
closed loop control [3]. The ultrasonic motor scheme is shown in figure 1. It produces a rotation by
utilizing the high-frequency vibrations of the stator which are transferred to the steady motion of the
rotor in a frictional contact with the stator. The motor model consists of two flat cylinders, one
representing the rotor, and the other the stator. Both are modelled as rigid bodies. The rotor is axially
elastically supported with a rotational spring-damper element about the rotational axis of the rotor to
allow the motion about this axis. The cylindrical stator is excited by means of a multilayered
piezoceramic actuator generating a rotating torque vector orthogonal to the geometrical axis of the

stator.

rotor

stator

multi-layered
My piezoceramic actuator

Figurel. Rigid body model of the ultrasonic motor.
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One torque is generated by a sinusoidal high frequency signal, while the other follows from a cosine
signal. Both signals are standing waves and mutually orthogonal. The resulting steady state vibration

of the stator yields a wobbling motion of the stator disk.

Figure 2. Euler’s angles.

The governing equations of the USM with hysteretic dissipation are
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The state vector is f]((p,e,w,wx,u)y,wz P ,mR,z). Euler’s dynamical and kinematical equations

(1)-(6) are equations of motion of the stator. They are formulated in the body fixed coordinate system
Oxyz (figure 2). OXYZ is the inertial coordinate system. OX;y;z; and OX,Y,z, are two intermediate
coordinate systems. The first Ox,y,z; intermediate coordinate system is obtained from the inertial
system OXYZ after rotation in the positive direction by an angle ¢ about Oz axis. Axis OX; coincides
with nodal line N, axis Oz, coincides with Oz . The second intermediate coordinate system OX,Y,»Z, is
obtained from the first coordinate system OX,Y,z, after rotation in the positive direction by an angle 6
about Ox; axis. Axis OX; coincides with OX,, axis Oz; coincides with Oz, . Coordinate system OXyz is
obtained from the second coordinate system OX,Y,Z, after rotation in the positive direction by an angle
y about Oz axis.

The torque vector acting upon the stator is

M, =M; +r,xFE

contact

-M,-M, . (11)

f,, f,, f,, are normal, radial, circumferential components of the force vector F, .. :

Foomact:_fn eZ_fr eyl_fc exl' (12)

M., M, M, are the excitation torque generated by piezoceramic (the piezoelectric excitation is

described by two given excitation torques), the restoring torque, the damping torque correspondingly:

M. =m, e, +m, e, with my =m,cosQt, m, =m,sinQt, (13)
M, =c0e, +C(p+ycosb)e,, (14)
M, =d,o, e, +d,0, e, +do, e,. (15)

In the body-fixed coordinate system OXyz torques M., M,, M, M. (M_..) are expressed

as
Mg, m, cosQt M crecosw+ct(<p+\|/cose)sinesin\y
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Here A is the transformation matrix from the inertial coordinate system with basis e, ,e,,e, to

the body-fixed coordinate system with basis e, e e, :
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COS(QCOSy —Singcoshsing  singcosy +cosecosOsiny  sindsiny
A =| —cos@siny —singcosdcosy —singsiny+cosecosbcosy sinbcosy |,
singsind —Ccos@sind cosH

r, = (rcx e, T, ) is the radius-vector of contact point C:

r, =—(Rcosd —H sind)sing e, +(Rcosd —H sind)cosg e, +(Rsind+H cosb)e, .

Equations of motion of the stator (1)-(6) and rotor (7)-(9) are coupled through the dynamics at
this point. The rotor disc is specified by two coordinates: rotational angle ¢r and translational
coordinate zg . Equations (7)-(8) describe the rotational motion of the rotor as well as equation (9)
describes the rotor motion in the axial direction.

In hysteresis simulation a system is frequently viewed as a black box and the system’s output (or
response) is modelled with the use of analytical expressions or differential equations supposing that
the input of the system is known. It is suggested to apply methodology that described in [4] where

hysteresis is simulated by means of additional state variables:

2=p(X,Y,.Y50 V) (18)
y=q(x.xy,), n=1,2,..N. (19)

Here X is an input (input signal) and z is an output (response) of the hysteretic system, p and q are
nonlinear functions of its arguments, y; (i=1, 2,..., N) are internal variables. Functions p and q are
chosen depending on a loop form. The parameters of these functions are determined via a procedure
minimizing the criterion function
(I)(c] €O el e B e By ): Z(p(x(c] -yt ),yI (01 o0ty & Doy Vi (B oo B o1 ))— zi)z (20)
which characterizes an error between the experimental curve and the calculated one. To this effect the
gradient fall method is used.
The polarization axis and direction of the electric field of the piezoceramic in the USM is Z.
Equations (10) simulate the hysteretic dissipation in the USM (Kq(X), Ai(X)=0, Fi(x)>0, the input signal
belongs to the admissible codomain X&[Xmin, Xmaxl> &, Bi€ J). They are chosen for the USM in the

form

h(t)=y, ()
¥, =(c, - (c, +c, sgn(z)sgn(y, )] y,|)z‘

Values of the parameters of equations (21) are ¢, =0.1; ¢, =3.5; ¢, =0.01; m= 1.
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3. Numerical results

Results of integrating of equations (1)-(10) are presented in figures 3-10. Figure 3 presents the
hysteretic loop that reflects the hysteretic dissipation in the USM. In figures 4-5 the time history of
Euler’s angles ¢, 0, y are depicted. Figures 6-8 present the components of angular velocities of the
stator. In figure 9 the time history of the rotor angle ¢g is shown. Figure 10 presents the time history

of the angular velocity of the rotor wg obtained in the frames of the model with hysteresis and without

hysteresis.
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Figure 3. Hysteretic dissipation in the USM. Figure 4. Time history of Euler’s angles ¢ and .
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Figure 5. Time history of Euler’s angle 6 Figure 6. Time history of angular velocity
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Figure 9. Time history of rotor angle ¢g . Figure 10. Time history of rotor angular velocity g .
Values of accepted parameters
model parameter value unit
rotor disc radius R=0.005 m
rotor disc height H=0.003 m
rotor mass mg =6.4'10" kg
rotor moment of inertia lr=8'10" kgm®
stator moment of inertia: body-fixed X-axis l,=1.3'10" kgm’
stator moment of inertia: body-fixed y-axis l,~1.3:107 kgm’
stator moment of inertia: body-fixed z-axis 1,=2.3-10" kgm®
Damping coefficient: axial dr =0.16 Ns/m
Damping coefficient: rotational (Z-axis) d;=9.1-10" Nms/rad
damping coefficient: rotational (X,Y-axes) d, =1.8-10" Nms/rad
stiffness coefficient: axial spring cg =4000 N/m
rotational stiffness coefficient (Z-axis) ¢;=10000 Nm/rad
rotational stiffness coefficient (X,Y-axes) ¢, =700 Nm/rad
external loading torque T10ag=0.0006 Nmm
precompression force fo=0.4 N
Amplitude of high frequency excitation signal mg =0.02 Nm
high frequency excitation signal 02=37000 Hz
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4. Conclusions

It was shown that at definite parameters a hysteretic dissipation in the USM can decrease the rotor
speed as well as expand the rotor transition to a steady state motion. The constructed model with
additional state variables (internal variables), that has Masing-Bouc-Wen structure, is appropriate to
simulate hysteresis in USM. Taking into account of hysteretic dissipation based on parameter
identification with a real experimental data can be useful for development and optimization of motor
design and electronic drive circuit units.

The next step of the study could be an analysis of possible influence of hysteretic dissipation and
a transient chaotic behaviour on the USM characteristics in various control parameter planes. The
effective algorithm based on analysis of the wandering trajectories [4, 7] would be applied to
investigate stability of piezoelectric devices in control parameter planes/spaces. This methodology

had been successfully applied both to smooth and non-smooth dynamical systems.
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