
Abstract: A periodically excited spatial double physical pendulum being coupled by
two universal joints is studied. Damping forces and torques inside joints as well as an
influence of the gravitational field are taken into account while deriving the governing
ODEs of the pendulum dynamics. The work consists of modelling, simulation and
experimental measurements to validate the numerical simulation of the earlier
introduced mathematical model. In the experiment, kinetic excitation is realised by an
non-constant periodic torque yielded by the computer-controlled servomotor. Angles
of rotation of the pendulum links are measured by four encoders mounted on each of
the universal joints and analysed by an originally developed acquisition software.
Plans for future extensions of the mathematical model simulation and the
experimental setup are discussed. Exemplary simulation as well as simulation of built
pendulum behaviour showed several types of non-linear effects, including chaos,
quasi-periodic and periodic dynamics.

1. Introduction

There are many examples of simple mechanical systems that exhibits complex behavior under certain

conditions. Common mathematical or physical pendulum, e.g. a clock by C. Huygens [1],

under typical situations, are not enough interesting in term of nonlinear dynamics. It appears here that

the conditions are more important than the mechanisms itself. The pendulum became highly

fascinating under specific circumstances, e.g. influence of excitation and damping.

This work shows similar approach. We consider the mathematical model of a simple three-

dimensional double physical pendulums system, under specific conditions. The mechanism

is physically excited by periodic torque in axial direction and linearly damped by each joint.

The results of numerical computations are presented, as well as possible applications

of the original simulation program are discussed. A rich spectrum of regular and chaotic dynamics

of the system is detected. In addition, some results of simulations for the ready built experimental

setup are presented.
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The evolution of pendulum analysis started from the measurement and experiment, 

e.g. Foucault’s pendulum, 1851 [2], [3] or Kater’s reversible pendulum [4]. Nowadays pendulum 

mechanisms are more often used in theoretical or practical mathematical modeling process. 

For example, to develop more effective vibrations absorption methods [5], [6]. There are also 

advanced research about the pendulum itself, including its experimental identification [7], [8] 

or control algorithms [9]. 

Multiple pendulum systems are mostly simplified either to planar vibrations [10], [11] 

or they concerning only mathematical pendulums [12]. Physical pendulums are examined in their 

multiple configuration, e.g. [13], [14] but also in some simplified forms. 

1.1. The Pendulum Model 

The  system  to  be  considered  here  is  depicted  in Figure 1. It is build of two cylindrical-shaped 

rigid bodies combined by universal joint O2 and hung on a second universal joint O1. This joint 

is externally driven and it actuates the entire mechanical system axially with either constant or non-

constant angular velocity. Influence of the gravitational force is also included. The only damping 

force that the model contains is inside joints and it is characterized by a simple viscous damping 

function. Air resistance is neglected due to low velocities of vibrations and relatively large moments 

of inertia. 

 

Figure 1. Coupled pendulums. 

Angular positions of each universal joint’s shaft have been described by three Euler angles  

φi, θi and ψi, where i corresponds to an index of each joint. The rotation matrices are found, 
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as well as positions of each body centers. Also its linear and angular velocities and energy 

are defined.  

Analytically determined set of nonlinear ODEs governing the pendulum dynamics follows 
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and M, A, B, C, rg, rω devote matrices and vectors (here not defined explicitly). 

Analytical Wolfram Mathematica® computer package has been carried out, during process 

of derivation of equation (1). Full form results are too large and couldn’t be simplified enough 

to show in this paper. 

In the study, simple model of viscous damping of joints is assumed in form of: 
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where Mi are corresponding damping torques proportional to the angular velocities. 

Angular velocity of the axial excitation of first joint is as follows: 
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where ω0 is a constant part of velocity [rad/s], q is the amplitude [N∙m] and Ω states for frequency 

[rad/s]. 

Unlike experimental setup, the mathematical model does not take into account impacts caused 

by the mechanical limits of real double spatial pendulum rotation yet. That is why the full comparison 

of the theoretical model and experimental measurements can be performed for low amplitudes only, 

smaller than about 90 degrees. However, this does not prevent to achieve some really interesting 

simulations results based on the experimental setup parameters (not measurement), without angle 

limits. Measurement data will be analysed after including impacts model to the equations 

of the motion, increase damping in the experiment to prevent impact and/or prepare the setup to hold 

out frequent impacts. 

2. Numerical computations 

Results presented in this paper concerns the following fixed parameters (see Figure 1) presented 

in Table 1. Values on the left are theoretical ones, chosen for the purpose of exemplary simulations. 

Two columns on the right presents simulation parameters that corresponds to the measured values 

of built experimental setup. 
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Table 1. Numerical computation parameters. 

 simulation example experiment 

 first joint second joint first joint second joint 

weight of the pendulums [kg] m1 = 0.5 m2 = 0.5 m1 = 3.87 m2 = 2.12 

Length [m] L1 = 0.2 L2 = 0.2 L1 = 0.22 L2 = 0.2 

position of the mass center [m] e1 = 0.1 e2 = 0.1 e1 = 0.11 e2 = 0.039 

moments of inertia  
[kg·m] 

Ix1 = 0.002 Ix2 = 0.002 Ix1 = 0.032 Ix2 = 0.004 
Iy1 = 0.002 Iy2 = 0.002 Iy1 = 0.025 Iy2 = 0.007 

Iz1 = 0.0001 Iz2 = 0.0001 Iz1 = 0.009 Iz2 = 0.005 

viscous damping coefficient 
 [N·s/m] c1 = 0.1 c2 = 0.1 c1 = 0.1 c2 = 0.1 

 

According to the User manual of Wolfram Mathematica® package, the ODEs solving algorithm 

is based on higher order Runge-Kutta methods with automatic step control. Results, as well 

as the plots, are automatically interpolated to any chosen time steps. 

Every first 500 time steps of all numerical computations were ignored as transient motion 

and next 500 or more if needed were qualified as significant for the analysis. 

2.1. Results and analysis 

To find globally how much these two systems (example and experiment, see Table 1) are different, 

two-dimensional maps of maximum numbers of full 360º rotations were computed (Figure 2)  

for the same range of  control parameters q and Ω, while ω0 equals 0 rad/s. 

 

Figure 2. Number of full 360º rotations map for angle φ1 and ω0 = 0;  

a) exemplary simulation, b) simulation of built experimental setup. 
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On these maps one can see that there are some similarities between them, especially in the shape 

of the regions where the number of full rotations are low. 

For more detail analysis of pendulums dynamics the bifurcation diagrams, Poincare maps 

and phase plots were produced. In Figure 3, three nonlinear phenomena are presented. Amplitude 

of excitation q was set to 12 N∙m to cover all three regions of different value of full rotations  

(see Figure 2). 

 

Figure 3. Bifurcational diagram regarding angle φ1 in range Ω��5.42, 5.72� rad/s 

with step 0.0006 rad/s for ω0 = 0 rad/s and q = 12 N∙m and three sets of phase trajectories 

and Poincare maps corresponding three different nonlinear phenomena  

(for exemplary system parameters). 

While changing value of the control parameter Ω, several types of nonlinear behaviour 

can be observed. Simple periodic vibrations, e.g. for Ω = 5.7 rad/s (see Figure 3C), quasi-periodic 

vibrations, e.g. Ω = 5.5 rad/s (see Figure 3A) or wide window of chaotic movement for Ω around 

5.5 rad/s (see Figure 3B). 

Similar analysis were performed for the parameters that corresponds to built experimental setup. 

This time, the system also showed a number of interesting nonlinearities, depicted in Figure 4. 
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During the simulation process, it appeared that the system is less sensitive to exhibit nonlinear 

behaviours than the exemplary one. 

 

Figure 4. Bifurcational diagram regarding angle φ1 in range Ω��7, 8.5� rad/s 

with step 0.05 rad/s for ω0 = 0 rad/s and q = 12 N∙m and three sets of phase trajectories 

and Poincare maps corresponding three different nonlinear phenomena  

(for experimental setup system parameters). 

3. The experimental setup  

In Figure 5 one can see the photo and construction details of ready built experimental setup. 

To perform parallel measurements of values of all four angles of rotation the original control 

and acquisition software has been developed, in Java programming language. The program 

can control the parameters of the external excitation and simultaneously record each pendulums link 

position in real time. 
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Figure 5. A part of the designed experimental stand. 

The orientation of each pendulum link is measured by four precise incremental encoders 

and the dedicated PC acquisition card. To transmit signals between rotating pendulums equipped with 

the encoders and mounting frame, without the risk of the wiring damage, special slip ring is used. 

The external angular velocity excitation is provided by the PC-controlled servomotor. 

Some preliminary measurements have been performed. Figure 6 depicts a time series 

measurement under constant angular velocity of excitation equals 3.7 rad/s. 

 

Figure 6. Time series of angular positions of all two links measured under constant angular velocity 

of excitation ω0 = 3.7 rad/s, before impacts. 
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Presented plot of angular positions of each link shows that it takes some time before the higher 

frequency vibrations fades out. Afterwards, because of the constant excitation, the amplitude 

of vibration increases gradually to finally begin to reach its limits and note an impact. This scenario 

is depicted on Figure 7. Build experimental setup is not prepared for frequent collisions of its links 

and has to be modified to prevent its damage. 

 

Figure 7. Time series of angular positions of all two links measured under constant angular velocity 

of excitation ω0 = 3.7 rad/s, ended with impacts. 

4. Conclusions 

As it was presented before, pendulum either in exemplary and experimental configuration exhibits 

a wide spectrum of nonlinear effects. Periodic, quasi-periodic and chaotic orbits have been detected 

and discussed, among others. Computed full 360° rotations maps of the pendulum links shows 

that both configurations reveals some similarity, despite of the fact that its geometrical 

and mechanical parameters differs significantly.  

Presented figures and its analysis confirms that performed numerical calculations can be used 

to simulate multiple pendulum systems. 

The next step of the project is to extend the mathematical model to include impacts. 

Additionally, the experimental setup has to be upgrades, to modify the damping coefficient 

of all pendulums links and to automatically detect all impacts occurrence. That will make possibility 

to perform full identification of built system with no mechanical limitations. 
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