
Abstract: In this work a theory of nonlinear chaotic dynamics of multi-layer beams
consisting of equally distance located layers coupled only via the boundary conditions
is proposed. Wavelet analysis is applied to study a chaotic phase synchronization of
vibrating multi-layer beams. Two-layer beam package serves as an example of
application of the given theoretical background, where three types of the
nonlinearities (geometric, physical and design) are used.

1. Introduction

Investigation of chaotic dynamics of one-layer structures, as well as control of various regimes of

such structures is reported in numerous papers and monographs including works of the authors of this

paper [1-9]. However, chaotic dynamics of mechanical structures consisting of multi-layer beams

coupled only via the boundary conditions and problems related to the phase synchronization and its

control has not been reported in the existing literature.

In addition, we apply here to the so far stated problems Winkler’s hypothesis regarding a

transversal contact of thin walled structures. In the case of static problems we acknowledge important

results reported by Kantor [10], which are further used in this paper.

2. Problem formulation

Consider a package composed of multi-layer beams shown in Figure 1. In the general case, beams

may have arbitrary thickness as well as arbitrary material properties, but in order to simplify the

considerations we consider beams of equal thickness, width and length (h, a, b), as well as with the

same physical parameters: Young modulus E(x, z, 0, ie ), Poisson’s coefficient , shear modulus

0G (x, z, 0, ie ), and the specific material density .
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Figure 1. A multi-layer beam. 

The following notation is introduced: ( , )lw x t  - beam deflection; ( , )lu x t - middle beam surface 

displacement; t - time; lε - damping coefficient; ile , il�  and sle , sl� - intensity of deformations, 

stresses and plastic flow, respectively; K - Winkler’s coefficient; δ  - clearance between beam layers. 

Hencky’s theory of small elastic-plastic deformations [11] is applied while estimating 

0( , , , )iE E x z ε e� . The following non-dimensional parameters are introduced: 
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Taking into account the hypotheses of Euler-Bernoulli, Kàrmàn as well as applying the method of 

variable parameters of stiffness [12], equations of motion of the beam in non-dimensional form 

follow (bars over non-dimensional parameters are already omitted)  
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the external periodic load 0 sin( )lpq q t �  acting on the upper beam and contact stresses .klq  Jump 

phenomena are included in the beam interaction phenomena. Contact problems are defined via 

formula 1 2( 1) ( ) , ( 1,2),l
kl

Eq K w w l
h

� !� � � � �  where K is the proportional factor between the 

contact pressure and the clamp, 1 2
1[1 ( )].
2

sign w w! �� � � � Observe that an occurrence of the 

multiplier ! in equations of beam motion implies evidence of the new nonlinearity type, i.e. design 

nonlinearity, and hence in the deformation process the computational scheme is changed. Zero value 

initial conditions are introduced. Although the boundary conditions can be arbitrarily taken, but we 

limit the considerations to the following ones:

(0, ) (1, ) (0, ) (1, ) (0, ) (1, ) 0; 1,2.l l l l l lu t u t w t w t w t w t l�� ��� � � � � � �  (2.3)

Diagram of the beam material deformation ( )li ile�  can be taken arbitrarily. In this work the 

following one is applied: 
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3. Methods of analysis

Integration of equations of motion and taking into account geometric and physical nonlinearities is 

carried out with a help of the Finite Difference Method (FDM). In order to apply the method of 

variable stiffness parameters [12], the beam is divided into zn  layers regarding beam thickness. In 

addition, on each time step the method of variable stiffness has been applied for each node to define 

all necessary relations. 

The so far described algorithm aimed on finding of solutions modeling the beam vibrations has 

been validated regarding convergence of the spatial and time meshes by considering  a stationary 

problem and using a relaxation method [13], and the obtained optimal parameters follow: 30xn � ,

52 10 ,t �� " 12zn � . 

Solutions to problem (2.2) yield the values ( , ),lw x t ( , ),lu x t  which are analyzed via qualitative 

theory of differential equations and dynamical systems. In particular, phase portraits, Poincaré maps, 

FTT (Fast Fourier Transform), the largest Lyapunov exponent, the contact pressure, time and space 

histories, energetic spectra of the wavelet transform, and the phase differences are reported in the case 

of phase synchronization regimes.  

Wavelet analysis [14] allows investigating of frequency characteristics of a signal versus time, 

because the signal character can be essentially changed within time, and hence a direct application of 
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the FFT can yield erroneous conclusions. In references [6]-[8] it has been shown that among various 

wavelets the Morlet wavelets are most suitable for investigation of the studied mechanical systems. 

Wavelet transformation allows for computation of the phase ( ) arg ( , ),s t W s t# �  where 

( )( , ) | ( , ) | si tW s t W s t e $�  for each of the time interval s, i.e. each of the time intervals can be described 

via an associated phase.  

It should be emphasized that during the phase synchronization a locking of chaotic signals 

occurs, whereas the amplitudes of the signals remain independent from each other. Phase locking 

yields frequency locking, and the frequency of a chaotic signal is defined as the averaged velocity of 

the phase changes ( ) .t#  All time intervals associated with the energy transmission are associated 

with synchronization. Phase synchronization occurs on the time intervals s: 1| | ,l l const# # �� %  where 

l#  are continuous beam phases, corresponding to the time intervals s. In the further reported 

numerical examples the so far mentioned zones are marked in black (drawing e).  

4. Analysis of results and examples 

We consider two beams coupled via boundary conditions of the following form: 
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Transversal load is governed by formula  

� �0 sin .l l lpq q t � (4.1) 

The load (4.1) is acting only on one upper side of the beam, whereas the bottom located beam 

moves only through interaction with the upper beam. Excitation frequency 1 6.28,p �  the constraint 

between beams 0.05,� �  whereas the damping coefficient of the surrounding medium 1.4.� �

Depending on the beam deflection magnitude and beam material type one may distinguish two groups 

of the problems regarding two beams: А – both beams are elastic (beam material is linear), B – both 

beams are made from a non-linear material. 

Below are reported results obtained while investigating problems А and B.  In Tables 1-4

vibrations of the beam middle surface point (x=0.5) of the first and second beam are shown and the 

following notation is applied: a,c – vibration time history of each beam; b,d – time-frequency wavelet 

spectrum; e – time-frequency phase difference beams localization to follow phase synchronization;     

286



f – space-time contact pressure distribution; g – simultaneous vibrations of the middle surface point of 

the first and second beam in the given time intervals.  

Problems of type А. Load amplitude action 01 2.25q �  on the upper beam results in a small deflection 

( hw 25.0% , and hence it means that the geometric non-linearity does not play here a crucial role). 

Owing to the reported wavelet-spectra b), d) vibrations are manifested only by one frequency (equal 

to the excitation load frequency), and phase synchronization e) is not observed. Comparison of

deflection magnitudes imply a regular dynamics (g).  

Table 1. Dynamical characteristics for 01 2.25q �  (see text for more details). 
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For 01 7.5q �  (Table 2) the wavelet spectra present a two-frequency quasi-periodic vibrations of 

both beams, but phase synchronization takes place in the vicinity of the external load frequency.  
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Table 2. Dynamical characteristics for 01 7.5q �  (see text for more details). 
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Analysis of the contact pressure shows that it exhibits a slight chaotic behavior. The contact zones 

boundaries with sharp peaks are visible, which are characteristic for the kinematic Euler-Bernoulli 

model of the contact interactions between two beams. Time histories of vibrations of two beams (g) 

imply the synchronization phenomenon and signal amplitudes are coupled with each other, i.e. we can 

speak about a full synchronization (phase and amplitude locking).  

Increase of the external load amplitude up to 01 23.0q �  (Table 3) forces the system to exhibit a 

chaotic dynamics of both beams and the phase synchronization appears not in the vicinity of the 

excitation frequency as we demonstrated earlier, but on the whole frequencies interval. The related 

drawing of the phase synchronization (e) exhibits different evaluation in time of the synchronization 

process. Frequencies matched with synchronization essentially change keeping constant values in the 

neighborhood of the excitation frequency. Contact pressure (f) possesses clearly exhibited chaotic 
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behavior. Deflections of both beams (g) are close to each other on the whole time interval, i.e. there is 

a full synchronization either regarding the phases on signals. 

Table 3. Dynamical characteristics for 01 23.0q �  (see text for more details).
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Problems of type B. Results reported in Table 4 illustrate a transition of vibrations from asynchronous 

to synchronous, whereas the chart of the phases difference implies that the synchronization takes 

place not on the excitation frequency, but in the frequencies interval [6; 2.5]. In Table 4 (f) – (h) one 

may follow how the synchronization develops in time through the deflection changes. The phase 

synchronization begins at t >40, and it takes place on the frequency 4.0. �  For t >46 a full 

synchronization takes place in the wide interval of the analyzed frequencies.  

In the problems with inclusion of the physical material non-linearity a dynamical stability loss of 

the first beam occurs, and the beam starts to vibrate in the neighborhood of a new equilibrium 
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configuration without an interaction with the second beam. For the damping coefficient 1.4� �  the 

second beam vibrations are eventually damped. In result of those investigation one may expect, that 

there is a possibility to control chaotic vibrations of the beams via either the constraint between beams 

or the beam material choice. In Table 5 it is shown how vibrations of one beam are damped. 

Table 4. Dynamical characteristics  for 01 2.5q �  (see text for more details). 
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Table 5. Time histories and wavelet evolutions of the beams for 01 20.75q �

20 40 60 80 100
-2

-1

0

1

2

t

w

w_Q01_20.75_Output1_

а) b)

20 40 60 80 100
-2

-1

0

1

2

t

w

w_Q01_20.75_Output2_

c) d)

5. Conclusions 

In this work first a theory of non-linear vibrations and chaotic synchronization of the contact 

interaction of multi-layer beams has been developed. The buckling phenomenon (dynamic stability 

loss) has been detected, which can be understood as splitting of the multi-layer beams package. In 

technology and engineering field this phenomenon can be found in design of rails. The proposed 

algorithm can be applied for investigation of different type of problems including non-linear 

dynamics of plates, shells and structural members. Application of the wavelet analysis allows to 

understand and study the phase synchronization of chaotic vibrations, as well as to analyze other 

types of synchronization. Based on the obtained results it is recommended controlling chaotic 

vibrations with a help of the beams constraint variation and the proper choice of the beam material. 

The proposed theory and computational method can be extended to a study of coupled multi-layer 

beams.  
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