
Abstract: The dynamical response of a nonlinear 3 degrees-of-freedom (DOF) system
subjected to non-ideal excitation is investigated in the paper. The excitation is said to
be a non-ideal when the forces depend on the motion of the system. Such a source is
described by its own differential equations and therefore, total number of DOF
increases by one. In the considered system the role of non-ideal source is played by a
DC motor with eccentrically suspended mass which generates a torque the magnitude
of which depends on the angular velocity. During operation of the system, the general
coordinate assigned to the non-ideal source is growing rapidly as a result of rotation.
The main idea of the paper is to carry out the decomposition of the equations of
motion in a way to extract the solution directly related to rotation of the unbalanced
rotor. The remaining part of the solution describes pure oscillations depending on the
dynamical behavior of the whole system. The equations of motion, decomposed in
this way, have been solved numerically. The influence of selected system parameters
on its dynamic behavior has been studied. The analyzed system may be considered as
a good example for several engineering applications.

1. Introduction

The behavior of the mechanical systems subjected to the external periodically changing excitation

belongs to the classical problems of multi-body dynamics. When the excitation is not in�uenced by

the response, it is said to be an ideal loading. The problems similar to that are widely discussed in the

literature. In the real problems the motion of the system, less or more, affects the source of energy,

especially in the neighborhood of resonance. It is caused by the limited power supply to the external

loading. Such source of energy is called non-ideal. The problem of non-ideal vibrations of multi-body

systems leads to the sophisticated mathematical description, especially when nonlinearities appear. In

that case the equation, which describes how the energy source supplies energy to the system, should

be added. It causes increase of the system dimension. Therefore the non-ideal system has one more

DOF than the adequate ideal one.
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There are few papers concerning that phenomena.  The first remarks about non-ideal vibrations was 

published by Sommerfeld [1], and the first book entirely devoted to that problem by Kononienko [2]. 

The overview of the investigations in that field is described by Balthazar et all in [3]. In that paper 

authors reviewed main properties of non-ideal vibrating systems. Among other the so-called 

Sommerfeld effect ([3,4]) connected with jump phenomena near the resonance is discussed,. That 

phenomenon suggests that the vibrational response provides an energy sink. The parametric 

resonance in the non-ideal system with DC motor was analyzed in [4,5]. Authors of the paper [4] used 

an asymptotic approach to investigate the behavior of the system near internal resonance. 

The system investigated in the paper is presented in Figure 1. The electric DC motor with  

eccentrically mounted rotor is assumed to be a non-ideal source of vibrations. In that case the 

additional DOF responsible to its rotations occurs. The generalized co-ordinate describing motion of 

the rotor grows in time, and hence the whole process cannot be considered as vibrational. The new 

idea proposed in the paper consists in decomposition of the equation related to the rotor, and 

separation of the rotations and vibrations. After that operation the new set of equations of motion is 

derived, where all the generalized co-ordinates describe the vibrations. 

2. Formulation of the problem 

Let us consider the planar motion of the system consisting of DC motor of mass m3 with unbalanced 

rotor of mass m0 being supported on the rigid body of mass m2. The eccentricity of the rotor is re. The 

support is, in turn, connected to the basis via visco-elastic bonds of the elastic and viscotic constants k

and c, respectively. Length of the non-stretched spring is L0. In addition, the mathematical pendulum 

of mass m1 and length l is suspended to that rigid body. The studied system with the dimensions, co-

ordinate axes and some other notation is shown in Figure 1. 

The generalized co-ordinates of the system are Z(t), )(tΦ  and )(tΛ .  The kinetic and potential 

energy written in the Cartesian stationary co-ordinate system are as follows 
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where: ( ) ( )( )202 htZLtx ++= , 02 =y are co-ordinates of the movable support, Hxx −= 23 , 

03 =y  are co-ordinates of the engine mass center, ( )( )tLxx Φ+= cos21 , ( )( )tLy Φ= sin1  are co-

ordinates of the suspended pendulum mass and ( )( )trHxx e Λ+−= cos20 , ( )( )try e Λ= sin0  are co-

ordinates of the mass center of the eccentrically mounted rotor. 
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Figure 1.  The investigated system. 

The goal of the analysis is to study the vibrations of the system around the equilibrium position.  

The values of the generalized co-ordinates follow 

( ) 0,0,3210 =Λ=Φ+++= rrr k
mmmmgZ . (3)

The equations of motion have been obtained using Lagrange equations of the second type. Their 

non-dimensional form is: 
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time 1ωτ t= . Now z~ , ϕ~  and α~  are functions of τ . 

The equations (4) – (6) are supplemented by the initial conditions: 

( ) ( ) ( ) ( ) ( ) ( ) 000000 0~,0~,0~,0~,0~,0~ βαλαψϕϕϕ ====== ��� vzzz . 
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According to commonly used linear model of a D.C. motor torque/speed characteristics, the 

torque depends linearly on the angular speed α�~  and is equal to α�~21 uu − , where 1u  is related to the 

voltage and 2u  is a constant for each model of motor considered [4]. 

3. Decomposition of the governing equations 

The co-ordinate ( )τα~  increases boundlessly in time, what is clearly shown in Figure. 2  for the 

chosen data included in the set SET1={f1�0.1, f2�0.1, p1�1.5, p2�0.6, c1�0.001, c2�0.001, �e�0.001, 

�1�0.7, �0�0.1, u1�0.05,u2�0.05,w2�3,w3�0.2}, so it does not describe any vibrational process.  

Figure 2.  Time history of α~  for SET1. 

Thus it is desirable to separate the function ( )τα~  into the component describing unlimited increase 

and the second one corresponding to pure vibrations. We propose decomposition of that function in 

the following manner: 
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where ( )τα 0  satisfies the problem 
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Substituting (7) – (8) into (4) - (6) we obtain 
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The initial conditions for this set of equations are: 

( ) ( ) ( ) ( ) ( ) ( ) 000000 0,0,0,0,0,0 βαλαψϕϕϕ ====== ��� vzzz . 

The problem (8) describes pure rotation and can be solved analytically. The solution of it has the 

form: 
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In the solution (12) 0α  includes transient component 2
21 /2 ueu u τ− , which disappears in time. 

Therefore it can be omitted, apart from the initial stage of motion, because 00 α̂α → , where 
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 This convergence is illustrated in Figure 3. 

Figure 3.  Asymptotic convergence 0α  to 0α̂  for SET1. 

The equations obtained by introducing (12) into equations (9), (10) and (11), describe vibrations 

of our investigated system. Time histories of  z, ϕ  and 1α  are reported in Figures 4 – 6. 
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Figure 4.  Time history of z for SET1. 

  

Figure 5.  Time history of ϕ  for SET1. 

Figure 6.  Time history of 1α  for SET1. 

Coincidence of the solutions of the initial problems (4) – (6) and (9) – (11) (with appropriate 

initial conditions) is confirmed in Figure 7, where )(~,~,~
10 αααϕϕ αϕ +−=Δ−=Δ−=Δ zzz .  
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Figure 7.  The identity of the solutions: z~  vs z, ϕ~  vs ϕ  and α~  vs ( )10 αα + . 

The conformity of the obtained solutions of the initial problems (4) – (6) and (9) – (11) is 

confirmed numerically for various parameters, despite the fact that the postulated form of the solution 

(7) is not the general solution of  the problem (4) – (6). 

4. Properties of the function 1α

The function 1α  describes, in principle, oscillations of the non-ideal source (beyond the 

transitional period), and they represent oscillations of the rotational motion.  That effect is more clear 

for the generalized velocities. The time histories of 0α�  and ( )10 αα �� +  are shown in Figure 8. 

Figure 8.  The time histories of 0α� (dashed line) and ( )10 αα �� + (continuous line) for SET1. 

The character of the vibrations governed by 1α  strongly depends on the values of mechanical 

parameters. For various parameters, the oscillations can be quasi-periodic as well as chaotic. For the 

values of parameters collected in SET1 they are quasi-periodic. In order to detect the frequencies of 

1α , the Fourier analysis is performed. Sampling covered the time interval (0, 1500) with the step 

equal to 0.005. In Figure 9 we can observe the mild peak referred to frequency ~1, that is a value of 

the linear function slope (13) of 0α̂ .  
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Figure 9.  Discrete Fourier transform of 1α for SET1. 

Figure 10.  Time interval between two adjacent maxima of  function 1α  for SET1 

In Figure 10 the time interval between two neighboring maxima of function 1α  for the 

parameters collected in SET1 is shown. Four regular series (represented by different colors) of 

evaluating “period” can be observed, which corresponds to the time history presented in Figure 6. 

Those oscillations (in Figure 10) occur around the value equal to the slope of the linear function (13). 

The analysis similar to the above, has been carried out also for the another set of parameters 

SET2={f1�0.1, f2�0.05, p1�1.5, p2�0.8, c1�0.001, c2�0.001, �e�0.001, �1�0.7, �0�0.1, u1�0.6, 

u2�0.3, w2�1.27, w3�0.3}. The part of the time history of the 1α  is displayed in Figure 11. The 

Fourier transform for that data indicates few dominating frequencies. The greatest peak refers to the 

frequency ~1/2, which corresponds to the period of oscilation equal to � (see Figure 12).  
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Figure 11.  Time history of 1α for SET2. 

Figure 12.  Discrete Fourier transform of 1α for SET2 

Figure 13.  Time interval between two adjacent maxima of  function 1α  for SET2 
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The curves depicting time intervals between adjacent maxima, shown in Picture 13, continuously 

evolve around this value. For that case eight series of evaluating “period” can be observed, which 

corresponds to the time history presented in Figure 11. 

5. Conclusions 

The nonlinear system having three degrees of freedom and excited by DC motor with unbalanced 

rotor, has been examined. The general coordinate assigned to the non-ideal source is growing rapidly 

as a result of rotation. The oscillation caused by interaction with the excited mechanical system, is 

imperceptible in that scale. A decomposition of the system of equations of motion has been proposed 

in order to separate the infinitely growing component. The proposed decomposition procedure carried 

means an identity in mathematical sense. Although it is not completely effective in each case, it 

allows to examine the oscillation of the rotor. The equations of motion, decomposed in this way, have 

been numerically solved. Properties of the solution describing the pure oscillation of the unbalanced 

rotor have been analyzed. Character of this oscillation depends strongly on the values of parameters 

of the system.  In some cases they are quasi-periodic and their main frequency oscillates around the 

value equal to the slope of the asymptote of the function 0α  representing pure rotation. 
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