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Abstract Triple physical pendulum in a form of three connected rods with the
first link subjected to an action of constant torque and with a horizontal barrier
is used as an example of plane mechanical system with rigid limiters of motion.
Special transition rules for solutions of linearized equations at impact instances
(Aizerman-Gantmakher theory) are used in order to apply classical tools for
Lyapunov exponents computation as well as for stability analysis of periodic orbits
(used in seeking for stable and unstable periodic orbits and bifurcations of periodic
solutions analysis). Few examples of extremely rich bifurcational dynamics of triple
pendulum are presented.

Keywords Pendulum e Impact * Bifurcation ¢ Periodic orbit = Quasi-periodic
orbit ¢ Chaotic attractor * Lyapunov exponents ¢ Non-smooth dynamics

1 Introduction

A single or a multiple pendulum (in their different forms) are very often studied
theoretically or experimentally [1-3]. A single pendulum plays an important role in
mechanics since many interesting non-linear dynamical behavior can be illustrated
and analyzed using this simple system. But a single degree-of-freecdom models are
only the first step to understand a real behavior of either natural or engineering
systems. Many physical objects are modeled by a few degrees of freedom and an
attempt to investigate coupled pendulums is recently observed.
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On the other hand, it is well known that impact and friction accompanies almost
all real behavior, leading to non-smooth dynamics. The example of modeling of the
piston — connecting rod — crankshaft system by the use of triple physical pendulum
with rigid limiters of motion is presented in the work [4].

The non-smooth dynamical systems can be modeled as the so-called piece-wise
smooth systems (PWS) and they are also interesting from a point of view of their
bifurcational behavior, since they can exhibit certain non-classical phenomena of
non-linear dynamics [5, 6]. One of the important tools of non-linear dynamics is the
linear stability theory, useful among others in the analysis of bifurcations of periodic
solutions and in the identification of attractors through Lyapunov exponents. These
tools are well-developed and known in the case of smooth systems. However the
same tools with small modifications [6, 7] can be also used for the PWS systems.
The modifications consist in the suitable transformation of the perturbation in
the point of discontinuity, accordingly to the so called Aizerman-Gantmakher
theory [8, 9].

In the present paper some examples of identification of attractors in the system
of triple physical pendulum with the horizontal barrier are given. The system used
is a special case of the more general model of triple pendulum investigated in earlier
works of the authors.

2 Event Driven Model of Mechanical System with Limiters
of Motion

Let us assume firstly more general case of mechanical system of n-degrees-
of-freedom with vector of generalized coordinates q(t) = [g1(f)..... a7,
symmetric 7 xn mass matrix M (q, 7) and n x 1 force vector f(q, q, 7). The system is
subjected to m rigid unilateral constraints h (q,7) = [A1 (q, 1), ..., hw (g, i) =0.
We define aset I = {l, 2, ..., m} of indices of all defined unilateral constraints
h; and the set I, = {i1.ia,....is} of indices of s constraints permanently active
on a certain time interval [f;, f;4+1]. Physically it means that the system slides along
obstacles with indices from the set {,.;.

In the case of frictionless constraints, the system on time interval [t;, £ 1] is
governed by the following set of differential and algebraic equations (DAEs)

s i Ohge (a,1)\"
M(q.1) q=1f4(q.4.0) + (“a;q—’r)) Macrs
2 dhye (q.1) . ohg., (q.1)
0 = hg ), O=hg )= 1
(q,1) = (1)

with the following event functions determining the time instances #;

Xu('l — [)\'51 ’ )‘fzv VY )"f.r]T >0,
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Fig. 1 Scheme for the numerical simulation of the system

hiuaci‘ (‘-1~ t) = [h'ﬂ (q’ f) s h_,"z (q! t) 3 n vhjm__.- (fl' [)]T = 0: (2)

where hy., (q.1) = [h;, (q,1)  hi, (q. 1), ... By, (q,t)]T is the vector of s con-
straints permanently active on [¢;, £;+1]. Ay 18 the vector of non-negative Lagrange
multipliers and hy,, is the vector of 71 —s inactive constraints, i.e. constraints which
indices belong to the set I\ {,er = {j1, j2. ... jm—s}. The event t; ;; is determined
by the use detection of zero-crossing of any component of A, or hy. At time
instance f;1; the suitable changes in initial conditions (due to the impact) and in
the set /.. take place and the next piece of solution [¢; 41, i +2] is governed by the
new DAEs. In this way the system has been modeled as a piece-wise smooth (PWS)
DAE:S.



6 1. Awrejcewicz and G. Kudra

The algorithm for the execution of changes in the system state and changes in
the set /., at each event time f;, used in our numerical simulation, is presented
in Fig. 1. Because of the limited space, we restrict this scheme to the simplified
case, where only one constraint /; (q,t) is defined (/ = {1}). In the Fig. 1 the
following notations are used: q; = q(t;), 4; = q(t;). t;7 = t; + Ato and the
function g (q. ¢. t) represents the impact law with the restitution coefficient e while
the function g (q. q. ) represents impact with the restitution coefficient equal to
zero independently from the system parameters.

The applied impact model is the generalized Newton’s (restitution coefficient)
impact law based on the reference [5]. and has the following final form for the
impact with the obstacle defined by 4; (q.1) = 0:

(Vghi ((l‘f))T - —e (th,- (q. t))T
glaaqn=|[ % ; t
.. | -M(q.0) oo | *M(q.1)
t;:—l t,::_[
oh; (q,1)
e+ L=
+ 0 . (3
0

where t; are the base vectors of the subspace of the configuration space ¢, tangent
to the impact surface h; (q, 1) at the impact point. For more details on the impact
model see works [3, 4, 7].

3 Linear Stability Model

For the dynamical system in the form
2= I(x1), 4)

where x = [q”,q"]", the small perturbation of the solution is governed by the
following linear equations

af(x,1)

5
* oxT

§x(1), (5

where we have assumed 8¢ = 0 since the perturbation in time is independent from
the perturbation §x (8/ = 0). The Eq. 5 are useful among others in the stability
and bifurcation analysis of periodic solutions, as well as in the Lyapunov exponents
calculation.
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In the case of non-smooth dynamical system we cannot apply directly the linear
stability theory since the Jacobian in (5) is not determined. But in the case of
the PWS system the function f(x) = f; (x) is sufficiently smooth on each time
interval [¢;, £; -] between two successive discontinuity points and the linear stability
can applied using variational Eq. 5 on intervals [t;, £ 1], and applying at each
discontinuity point ¢ special transformation rules accordingly to the Aizerman-
Gantmakher theory (for 8 = 0):

dg; (x:, g (X7, 4 ogi (x4
gt = B0 g o [i(__’_) b ) + B0 ,.H(xf_ﬁ)}m

t ox’ oxT ot
(6)

where

devent )

"

e e devent; (x, 1)
') f,' (Xl- .[,i) —dt(“i"—'ﬁ)*

8¢, =

devent, (
ox’

and where X = lim,,—x(¢), x; = fim, _,,+x(1), Sxt =lim,_,, +8x (1), 8x; =
lim,—,,~8x(¢), g (x) is the function representing jump in the system state xt =
g (xi’) in the discontinuity point and event; (x,¢) is the scalar function used for
detection of the discontinuity instance at ; (event; (x; ;) = 0).

The linearized differential-algebraic equations of the system (1) are

. of(q,q.1) H(qa.t),. 0 [ M @)
M(q,t) 8q: BqT 8q+ HqT 8q+W % )Lac.' Sq

aq

e (@ M (q.7) . \ .. Iy (g, 1)
e e Sla(- o —8 ,0:+
+( a7 oy’ ")“ !

Bzhat ; 81](1{‘ ol
qu-,r r(qt)ﬁq—l— (g, 1)

dqaq” dq”

8q. (7)

where

G o act (4, 1)
4 =M(q.1) (f(q q.1) + (—_aqf ) km)

and where we have also assumed 8¢ = (.
We have applied Eq. 7 together with the transformation rules (6) in the Lyapunov
exponents calculation for the mechanical system presented in the Sect. 2. Note that
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Eq. 6 with the impact law g; (x.7) = g (x,1) with the restitution coefficient
equal to zero applied in the case where the sliding motions starts (see Fig. 1),
gives the perturbation (8¢, 8q) consistent with the algebraic equations in (7) and
the perturbation vector 8x™ lies in the (2n-2)-dimensional subspace (in the case of
only one constraint permanently active).

In the well-known algorithm of Lyapunov exponents computation the Gram-
Schmidt reorthonormalization procedure is applied after some time of integration
of variational equations. After use of this procedure to the vector of perturbations
§x fulfilling 25 algebraic equations in (7) (in the case of s constraints permanently
active), we obtain the new set of perturbation vectors, from which 2n-2s satisfy the
algebraic equations and 2s of them do not. Then in our procedure we simply set
that 2s vectors to zero vectors, obtaining the new “degenerated” set of orthonormal
vectors, satisfying algebraic equations.

4 Triple Pendulum Model

Three joined stiff links coupled with viscous damping and moving on the plane are
presented in Fig. 2. The system position is defined by three angles ¥; (i = 12,35,
and each of the first body is under action of constant torque ¢;. The set of possible

{ 0,
¥ 2 Medianfoabsymens T
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configurations of the system is bounded by the horizontally situated rigid and
frictionless barrier.A vector of generalized coordinates is the vector of three angles
q =¥ = [{,. Vy. J5]". The mass matrix, force vector and the set of algebraic
equations defining rigid obstacle are as follows

1 vipcos (U —n) vizcos (Y — )
Mi(q.t) =M(@b) = | vizcos (Y} — ) B, v23 €08 (Yry — Ur3)
vizeos (U —3) vazcos (Wy —3) Bs

F(q.a0=F(W.¥.0)=-N@) ¥ ~C¥h—p) +L (¥ 9.1). @

2 3
by (§) =1 —lcosy, ha (W) =n—Y licosy;, hs () =n— Y cos

i=l i=l

where
i 0 vizsin (Y —v¥2)  viasin (Y — ¥3)
N(¥) = | —viasin (Y1 — ) 0 Va3 8in (Y2 — ¥3)
| —V38in (¥ —r3) —va3sin (Yo — yr3) 0
Cer+ca  — 0 sin ¥ q
C= —C2 ca+es —cy |, pl) =4 pasinygy o, fo=40
L 0 —C3 c3 JL3 sin irs 0

and where ¥~ = [2, v3. 1,1‘f32]T where /; is non-dimensional length of i-th link, ¢;
is non-dimensional damping coefficient in the i-th joint while v;; and p; are other
non-dimensional parameters of the system.

The system response is obtained numerically by the use of the Runge-Kutta
integration method of the differential equations between each two successive
discontinuity points (where the activity of the obstacles changes: the impact takes
place or the time interval of sliding begins or ends). These points are detected by
halving integration step until obtaining assumed precision. After the simulation
of the system, the next step was the stability analysis of the solution in the
investigated model, which in fact is piece-wise smooth (PWS) one. The classical
methods and algorithms basing on the linear perturbation equations are used with
the modifications taking into account the perturbations jump in the discontinuity
points [9]. The numerical software for Lyapunov exponents calculation and periodic
orbit stability analysis (seeking for periodic orbits and their bifurcations analysis)
was developed.

For more details on modeling, relations between real and non-dimensional
parameters, numerical algorithms, etc., see works [3, 4, 7].



10 J. Awrejcewicz and G. Kudra

b s o

1!

—

=

@
=0

Ll

=
(Lo
05

1650 1055 T060 1065 1070
q1 q
Fig. 3 Bifurcational diagrams

b -o90

il
P |

!

\

.
3o N\ [

XK
i L
W

LI
= - 1.16 if AL ¥
o ‘N‘J
oL 3
-1.18 -L10
-1.19 -1
~120 NN -1.20
-0.05 .00 0.05 0.10 0.15 -06 =04 =02 00 02 0.4 06
X04 Xo4

Fig. 4 Projections of periodic (a. g, = 1.063; b, ¢, = 1.59), quasi-periodic (¢, ¢, = 1.63) and
chaotic (d, g, = 2) attractors

5 Numerical Examples

The examples of extremely rich bifurcational dynamics of the modeled system
is presented for the following non-dimensional parameters: [} =0, O, =0.05,
L=0y 03=002, =03 Oy=1,n=1.2 and ¢| = ¢z = ¢3 = 0.8. The restitution
coefficient is ¢ =0.8 and contact between links and obstacles is assumed to be
frictionless. The externally applied torque g, is used as bifurcational parameter.

In Fig. 3 one can find two bifurcational diagrams where the parameter g, is
increasing quasi-statically. In Fig. 3a the relative change of the torque is very small
(about 2%) but the richness and number of bifurcational phenomena observed is
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Fig. 5 Projections of Poincaré sections of quasi-periodic (a, ¢; = 1.063) and chaotic (b, ¢, =2)
attractors
Table 1 Lyapunov exponents
Figure A A2 A3 y As Xe Attractor
3a 000 —-002 -—-003 -—-024 —-035 —5.98  Periodic
3b 0.00 —0.02 —0.02 -—-022 —047 —8.44  Periodic

3cand4a  0.00 0.00 —0.01 —0.08 —0.54 —10.28 Quasi-periodic
3dand4b  0.05 0.00 —003 —0.19 —052 —10.03 Chaotic

extremely large. Both bifurcational diagrams start just after disappearing of stable
equilibrium position for ¢, equal about 1.01. The next Figures exhibit exemplary
periodic, quasiperiodic and chaotic attractors observed on bifurcational diagrams.
Fig. 4 presents trajectory projections while Fig. 5 shows corresponding Poincaré
sections (performed by the use of plane ¥/; = 0). The verification of a kind of each
the attractor is performed by the use of Lyapunov exponents presented in Table 1.

6 Conclusions

This paper briefly reports the larger project of investigations of the flat triple physical
pendulum with arbitrary situated barriers imposed on the position of the system.
The Aizerman-Gantmakher theory, handling with perturbed solution in points of
discontinuity, is used to extend classical method for computing Lyapunov exponents
for the multi-degree of freedom mechanical system with rigid barriers imposed on
its position. Some examples of identification of attractors in the system of triple
pendulum with horizontal barrier are presented, including periodic, quasi-periodic
and chaotic attractors. We have focused on the calculation of Lyapunov exponents,
however the same methods can be used in the stability and bifurcation analysis
of periodic solutions. Let us also note, that the mentioned above methods are
suitable for analysis of classical bifurcations occurring in non-smooth systems. For
non-classical bifurcations (like grazing bifurcation as an example) the developed
methods may not be sufficient.
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