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8.1. Introduction

One of the challenging directions of the continual system chaotic dynamics
investigations is that of plates and shells dissipative dynamics, and in particular
detection of the scenarios leading to chaos in those systems plays a crucial role
both in theory and applications. Almost in all studied so far cases, the infinite
dimensional objects (plates and shells) are modelled as one- and/or two-degrees-
of-freedom systems. In contrary, here we deal with the infinitely dimensional
problem, which is solved by qualitatively different numerical approaches
including the Bubnov-Galerkin method (BGM) and the Ritz method (RM) in
higher approximations, as well as the Finite Difference Method (FDM) with
various space coordinates partition. This approach will validate both suitability
of the numerical algorithms as well allows to trace scenarios leading to chaos in
continual mechanical systems, cf. Awrejcewicz, Krysko V.A. and Valakis
(2004), Awrejcewicz, Krysko V.A. and Krysko A.V. (2007), Awrejcewicz and
Krysko V.A. (2008), Volmir (1967), Kantor (1971).

8.2. Mathematical models of continual mechanical
systems

We study a shallow shell occupied a subspace of the 3D space in R’ with the
curvature system of coordinates x, y, z introduced in the following way. In the
shell body (for z=0) the middle shell surface is fixed. Axes Ox and Oy are
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directed along main curvatures of that surface, whereas axis Oz goes into the
curvature centre. In the so far described coordinates our shell as the 3D object Q
is defined as follows (see Smale (1962))

Q={x,y,z/(x,y,z) €[0,a] x[0,]x[-~/2,h/2]} .

We apply the Kirchhoff-Love hypothesis regarding straight normal and the
governing equations have the following form

LEwSQ) 3o 0w8Q) oy w0, ([Bwd0) 2w d()|
Az Ox2 Ox? oy? oy? Oxy Oxy ox? oyt Oy? ow?
ow
—ViF+p.(t + p,(t —L(w,F)+ Mqg(t)—| 22+ | =0,
POT2 s p,0Z 2~ L00F)+ My(0)-( 22422 -
R &E_ BF20 162F_ &F\30) 204 )aFa()
o2 a2 (waxr o2 )ox &y bxy
+Viw+LL(w, F)=0,
where
LonF)=BWOE PFOw EwFF gy O, 0
oxr oyt Ox? gyt axy oxy ox? oy?

We have introduced the following non-dimensional quantities: w=hAw,
F=ERF, t=tf, e=%/t. For the case of the rectangular spherical panel and

the cylindrical panel we have: x=ax, y=ay; k., =kh/b?, ky=i?yh/a2,
q=gEh*/(a®b?), p,=p.ER/V2, p,=p,EW/a®, t=abh-\Jp(Eg)", M=1,
A=alb, where a, b are the shell dimensions regarding x and y, refpectively; for
the case of the closed cylindrical shell: x=Ix, y=Ry, k,=kh/R* (k~0),
q=gEh*/(’R?), p,=p.ER?/R?, 1=LRh"'\Jp(Eg)" , M=k, A=L/R, where
L and R=R, are length and radius of the shell; ¢ denotes time; € is the damping
coefficient, p=0.3; p.(7), p,(¢) are longitudinal loads; g(x,y,f) is the transversal
load. Farther, bars over non-dimensional quantities are omitted. One of the

following boundary conditions is attached to equations (8.1).
1. Free clamping of shell edges:

w=ly ey peg Pyp for x=0l, (82)
Ox Ox
w=g(x,y,1); %—p(x »t); F=u(x,,0); a]; =v(x,y,f) for y=0%&
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2. Free support on shell edges:

w2l Beh, 2w for x=01, (83)
Ox ox?
. ow OF _
w=g(x,y,0); —=pxp0); F=u(xy0; —=vxy1) for y=0§
o oy
3. Free clamping of shell edges with ribs:
w=0, 2%_o F=q F_g far x=01, (8.4)
Ox? Ox
ow oF
wzg(x:yst) —P(x ysr) F u(x yat) —v(x y:t) fOI' y=05§‘
dy oy
4. Free clamping of shell edges with flexible ribs:
w=l, 2. g Dop for x=0l, (85)
Ox? ox?
02 0°F
w=g(x,y,0); —53:) =yt Feu(npi; 2o=zeyn  for y=0%

Here and further we take £=2x for the closed cylindrical shell, and &=1 for
the rectangular panel. Observe that non-homogeneous boundary conditions (for
y=0,&) indicate the initial imperfections and stresses occurred in the shell.
Finally, the following initial conditions are attached to equations (8.1):

W == W, Wl=o=0. (8.6)

A solution governing dynamics of the closed cylindrical shell has been
found using the Bubnov-Galerkin approach in higher approximations, whereas
for the case of rectangular spherical shell a solution is sought through two
methods independently, i.e. using BGM and FDM.

In order to find solutions to equation (8.1) using BGM the functions w and
F are approximated by analytical expression consisting of a finite number of
arbitrary parameters, being the solution composed as a product of the functions
depending on time and space of the form

w= 303 4,00,

i=0 j=0

F= ZZB,-j(t)w(x,y)-

i=0 j=0

(8.7)
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The coefficients A4;(f) and Bj(r) are being sought time functions.
Application of the BGM yields:

Z‘:Z A'J' ZHU"CI"S +Z lyrs + sznfyfs + MgQrs +

rs | i

+ZAU'ZB.HD1 ijkirs +Z|: Ay +& ‘i!,' :IGjrs:|=Os (88)

Z|:ZA"]C?-,U'!'S + Z Z ifklrs + ZAUZAMD" yi!rs}
if

In the above Z[*] means that instead of each one of equations of (8.8)

rs

we take rs such equations, and the associated integrals of the BGM follow:

j'j' 1 62% az¢kf 42 azgpy. az¢’k1 +282¢fj az@d o, dxdy
yk!rs 0 12(1 ﬂ ) 2 rs 2

AT ot oax? &’ oy’ Ox0Oy Ox0Ox

1€ 6 . 1E 5 Fao.
Jrs J-J-|: ky axZ' by ayy;y } 2 Jijirs _[J‘|: Qj S %}/ma’x@,
00 00

1 & 1€
1

‘Dl,zjk.’r: = Ij[_L(gDy’WH)]qusdxdy’ 2.ijkirs IJ‘EL(qoy5¢M )Wrsdxdy’

00 00

1¢ 62 A2 82 a2 a 82
P, :-”‘ Lz qu 0 'ﬂ;kr + 42 V/zz; 7} WZH W, 0w, w_dxdy,
/ A AP oy° oy Ox0y Oxox

Gy = [ [[~0s0 sy, Q, = [ | My(x, 000, dxdy, (8.9)

N
2

o, o',
! ¥ dxd
k% ) —+p.(y )ay ]¢ fy .

1 3

Integrals (8.9) (possibly in spite of Q,, if the transversal load will be
applied to a part of the shell) are computed regarding the whole middle shell
surface. After application of the BGM procedure the following matrix system of
ODEs is obtained regarding 4;(7) and B(?):
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G(A +&A)+HA + WA +C,B+D,AB = Qq(?),

C2A+PB+D2AA=0, (8.10)
where H_”Hyrsl ’ ||sz 1 :||Chjr.s' » G, =||Clijr: » D :||D1ijkirs , D, =
:"DZWH , W= ” irsll> P =[B| — squared matrices of dimensions 2- N, - N, x
x2:N,-N,, A=|iAI;,. 3 =||By.’ ! Q=||Qg.|| — matrices of 2 N, - N, x1.

Further, second equation of (8.10) is solved with respect to B via the
inverse of a matrix on each computational step:

B= [—P‘]DQA—P"CZJA. (8.11)

Multiplying by G the first equation of (8.10) and denoting A =R, the
following Cauchy problem is formulated:

R=-FR-[G'C,+G"'D,A]-B-G'HA -G WA +G™'Qq(7),

A=R. (8.12)

Note that inversed matrices G™' and P exist if the coordinate functions
are linearly independent.

One of the boundary conditions (8.2)—(8.5) and the initial conditions (8.6)
are attached to equations (8.12). The obtained first order ODEs are solved using
the 4-th order Runge-Kutta method, whereas the computational step is chosen
applying the Runge’s rule.

8.3. Spherical and conical shallow shells

We study a shallow shell, which can be treated as the plate with initial
imperfections occupying a closed part of R° with the introduced curvilinear
system of coordinates «, B,y, cf. Li and Yorke (1975). We assume that the
Lamé parameters 4, B and the radii R,, R,, R, of the middle shell surface as
well as their first derivatives are continuous functions of «,f . In the given
system of coordinates the shell treated as a 3D object Q is defined by:

Q={apr /| (wp)el0aloblx [ 14}
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The corresponding variation equation is cast to the form

5[[{ (&) =(1=v) L, (w,w) |- [ ¢+L2Gw+w0,¢]]w—

‘ﬁ[(A(p)z —(1+v)L (e, Q’):}ds - J;J[q —ﬁgi(ﬁw W)]c?wds =0,
(8.13)

6 1Bo0 & 1 0

0 Bo 0409 A
+ A, = + +
0a R Adax 0OaR,of

6a Aéa O0BB3B) ' 4B

AB

TR 6 ,061438 ( )_Bw‘azga_'_zalw_a(p ’'w g

'6ﬁ R,0a 08B R BoB) ’ da’ 8o’ ~Oadp badp 8p* 8B’
3

=~1~Z?h—2) — cylindrical stiffness; @ — stress function. The following
-V

non-dimensional ~ parameters are introduced: r=fr, e=e/r, where
v=a(l)y'Jay(Eg)™",  q()=q(a(El')?, W=wihy, @=0Ek)",
Xi=x/hy, y,=y,(Eh’)", wy - initial imperfection (bars over non-dimensional
quantities are further omitted).

In order to solve equations (8.13), where deflection w and the Airy’s
function ¢ are independently variated sought functions, we can not apply
directly the Ritz procedure. In order to find the approximate values of w° and ¢°,
we take the coordinate series w,(e,) and ¢@.(a,f) (i=1,2,3..). The
approximate solution has the following form

=S5 Ow (@), =3 500 @ ) (8.14)

The coefficients x,(f) and y,(f) are the being sought functions of time.
After first variation procedure the following system of ODEs is obtained

A(X+¢X)+BX +CY +DXY =Qq,, CX+EY+%D}Q(=O, (8.15)

wheree  A=Y'Y4, B=YY35, c=X¥c,., D=33D,

i=1 j=1 i=l j=1 i=l j=1 i=l j=1

E=YYE, X= Zx,, Vs Zy,,Q ZQ

i=l j=1
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In what follows we study axially symmetric problem of closed (in their
tops) shallow rotational shells and circled plates subjected to a surface
distributed normal load. In polar coordinates and taking into account the axial
symmetry we have w=w(p), ¢=¢(p), a=r, =60, ds=2zrdr, and the
shell thickness 7=h(p)/hy, h(p)=h,(1+cp), and the used operators have the

following form
o 19 62w16¢+16w63¢

A=—t——, Lmp)= .
dp pop op* pop popdp’

Then deflection w and the stress function ¢ have the following form

w= Zx(t)W(p) p= Zy,(t)qv(p), (8.16)

i=1

and the coefficients of system (8.15) are as fallows

A, =|(1+cp)ww,pdp,

Qn__1~

B, =

ﬁj(l + cp)3 [ijAwk —-(1-v)L,(w,, w, )]pdp,

C, ==[[ A0, + L, (w00,) [wiodp,

0

1
0, =[wpdp, (8.17)
0

Dy, = _I w,L,(w,,w,)pdp,
0

E, -_!; - Cp[AqojAgop ~-(1+v)L, (qu,qop)]pdp.

Solving (8.15) regarding y, yields

i, L
Y=[E C+—2—(E DX)]X. (8.18)

Multiplying by A™" first equation of (8.15) and denoting by X=R, we
obtain the following nonlinear Cauchy problem

R=—eR+ [A-‘c 4 (A“IDX)] Y-A"BX+g,(NDATQ, X=R.  (8.19)
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Observe that the so far applied transformation is allowed, because the
matrices A™' and E do exist if the coordinate functions are linearly
independent. Equations (8.19) with the initial conditions

x,=0, X,=0 for =0

have been solved by the 4-th order Runge-Kutta method.

The system of the used approximating functions for four applied boundary
conditions is reported in Tab. 8.1.

Tab. 8.1. Approximating functions

w,(p)
(1-p)" (- %)

Fixed clamping Fixed free support

?,(p)

2j

Y2l

(1-p* )" Movable clamping Movable free support

We study vibrations of a conical shallow shell as a plate with initial
deformation wy=-k(1—p), k=H/ hy and the system equations for the
mentioned four boundary conditions follow:

1. Non-movable clamping

) 1 (4+2i+2k)1
4y’ = - +tc ; ’
6+2i+2k  (7T+2i+2k)!

g 4G +DGE+D [ 1 L I
302 |itk+L|G+0G+k+])

s [ ik J“’}. oA 2 “4)!![15ik—(1+v)(i+k)(z'+k—1)]},
2i+k+2)| (+b)i+k-1) 2 (2i+2k+3)N
1 1 .
Ci;l) =_2(p+l)%[Hj(l_p2)1+;?+ldp+2p.{.p2 (l_pz)”p d'p), (820)
0 0

1 c e
ED =dip|(j+p-1)(1+v -2jp - e .
ip [( )( ) :I j+p-1 j+P—% Jj4+p
p! 1

0 3 =
Q@"4@+”“+Upu+k+nmy+k+p+u’ TS
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2. Movable clamping

A;‘(Jf) = Ar‘(kl)ﬂ Bj{:cz} = Bj(,:),
1
' = 2;,2'13(2;9-1) [ 1= py"dp., or=0",
0 0
. 2
)2 c
@ _ _16( ; 1 s : x
By =-16(j +1)(p+ ){(j+p+1)(j+p)(j+p—1) 2(j+p+1)(j+p+2)
6,p 1—1 (2j+2p=e —_— }
= = jp=(1=v)(j+p)j+p-1)]t,
><[(J‘+p)(Jr'+p—1) 2 C(2j+2p+3)!![ (1=v)(7+ ) ]
o ___ A+ (E+1)(p+1) ‘ 8.21)
o (i+k+p+))(i+k+p+2)
3. Non-movable free support
A0 =40,
2ac(de3e) L .
6(1-v)
o __c(4+5c) i=1, k=2 i=2, k=1,
S T e (8.22)
B0
L
Pl DR ~Dlpoge OF -0, H =,
4. Movable free support
As(fj] = As{i{,k—v BJ'S:) = Bi(ks)’ CIS) = Cz‘(—zl),p’ (8.23)

4) _ ni2) 4 _ @) _ (2
Dy, = D5k ps 0" =0, E, Ej]u .

)

During investigation of the spherical shell we treat it as a plate with initial
deflection w, =—k(1— p*) . For all four types of boundary conditions shown in

Tab. 8.1 the coefficients of system (8.19) differ from the case of conical shell
only regarding the coefficients C, , which follow:

ip?
H (1+d)!p!

L 1 K C(]) — —4 ]
1. Non-movable clamping i h' G+ p+D)!
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] !
2. Movable clamping: cg)=4h£(i+1)(p+1) (i+p)
0

(i+p+2)

3. Non-movable free support: CP=Cl 1

4. Movable free support: cF =

i-l,p*
The defined so far Cauchy problem will be solved using the Runge-Kutta

method of fourth order and the following harmonic excitation g=qosinwy,t is
applied.

8.4. Shells of infinite length

In this Section we study elastic isotropic infinite shells, having the material
obeying the Hooke’s law by taking into account their geometrical nonlinearity,

i.c. the relation between deformations and displacements is of the following
form:

2
£, =a—u—k1w+-1—[a—w-) . (8.24)
2\ ox

Full deformations of an arbitrary shell point regarding shell thickness &,

is composed of deformations of the middle surface &, and bending deformations
(&; =¢&, +&,, ), which according the Kirchhoff-Love hypothesis read

£, =—zo2. (8.25)

Consider the shell motion in time interval of #, and #,. In what follows we
compare for this time interval various trajectories of the shell points between
initial and end points position. Real trajectories are distinguished from other
ones by the following relation to be satisfied:

6K -s1+8W)di=0. (8.26)
fy

Here by K we mean kinetic system energy, by IT we denote its potential
energy, whereas &'/ is the sum of elementary works of external forces.
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In this case and assuming that all forces acting on the system have a
potential, the relation (8.26) yields:

58 = c‘)‘]‘ (K —I)dt =0, (8.27)

fo

L}
where S=I(K —INot is the Hamilton action. After the standard
fo
transformations, the following non-dimensional equations regarding
displacements are obtained

62u_k@ @azw __Efg_

ol e exor Dok
Lo (B, o, Ty,
120x* ox{ox* “ox ox ox’

: (8.28)
g Ew)foue_pow 1 @) pgo LW ow
o e Cax 2\ax) | I 2er Cat

Transformation to non-dimensional form is realized using the following
relations:

r=dd e E
TR PTIL -~

— 2
l=a a=vy. V)yt_, u=uA*, x=ax,
Eg

where bars correspond to non-dimensional quantities, and in equations (8.28)
they have been already omitted. In relations (8.29) E denotes the elasticity
modulus, v is Poisson’s coefficient, y denotes volume unit material weight, g is
the Earth acceleration, g is the transversal load being the function of x and ¢, %
and a — are thickness and linear shell dimension respectively, w and u are
deflection and displacement of the shell middle surface, and k,=1/R, is the shell
curvature.

The following boundary and initial conditions are supplemented to
equations (8.28):

)fﬁx, q= A'g. /1=fl~,
1 a

(8.29)
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Boundary conditions:
1. Free non-movable support:
2
u=w=a‘;"=0,forx=0;1. (8.30)
Ox
2. Stiff support:
u:w:—a—vﬂ=0,forx:0;1. (8.31)
Ox
3. Hybrid support:
o’w :
forx=0 U=w= P =0 - free-non-movable support;
x
ow . .
forx=1 U=w= ™ =0 - stiff clamping. (8.32)
X
The initial conditions for t = 0 read:
u=fi(x), a=fx), w=fx), w=f(x) (8.33)

We approximate the partial derivative regarding x in equations (8.28) by
difference relations with error O(h') using for this purpose the Taylor series in
a neighborhood of the point x; with steps %;, where h; is the partition step and
xe[0,1]:

G, ={0<x, <lx, =ih,i=0,N,h =%} :

In this case the partial differential equations (8.29) are transformed to
ordinary differential second order equations in time for the i—th point of the
interval [0, 1].

The boundary and initial conditions are as follows:

(i) Boundary conditions:

1. Free non-movable support:

u=w=A,(w)=0, i=0;N. (8.34)

2. Stiff clamping of the shall boundaries:
u,=w,=A_(w)=0, i=0;N. (8.35)
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(ii)Initial conditions:
w = fi(ih), = fo(h), w,=f(h), W = f,(ih). (8.36)

The obtained system of second order ODEs we transform to first order
ones, and then we solve it by the 4-th order Runge-Kutta method.

8.5. Transitions from regularity to chaos

A transition of a continual mechanical system from periodic to chaotic vibrations
via the Feigenbaum scenario has been detected during investigations of
vibrations of axially symmetric, cylindrical and conical shells.

In order to investigate shells periodically driven a special numerical
algorithm has been proposed for constructing of the so called vibration-type
charts in the control parameters plane {go, @,}. The vibration type identification

of the cylindrical shell during construction of the chart {go, ®} for each signal
w(?) has been carried out using analysis of the frequency power spectrum

S(w) and the Lyapunov exponents. Those charts allow to investigate the whole

dynamics in plane {go, @,}. The used approach can clearly separate the
Feigenbaum scenarios, the modified Ruelle-Takens-Newhouse scenarios, and
the subspaces of the Ruelle-Takens-Newhouse-Feigenbaum scenario.

Initially we study a problem of convergence of a solution during increase
of a number of partition of the control parameter plane {go, ®,}. In order to
construct such charts we put on the plane {go, ,} a grid, nodes of which have
been used for the vibration type identification, i.e. one needs to solve the
corresponding dynamical problem, construct and analyze the frequency spectra
and the Lyapunov exponents for each of the grid points (nodes). The
computations have shown that for NxN >350x350 the choice of nodes
number is optimal one for the periodic and chaotic subspaces of the vibration
charts versus the control parameters {qo, ,}. The charts allow to study all
dynamic properties of the construction and choose the most suitable excitation
parameters. Investigating a chart, one may know which frequencies of
excitations correspond to periodic vibrations, i.e. vibrations being not dangerous
for the construction. On the other hand the Andronov-Hopf bifurcations and 2D
quasi-periodic orbits correspond to transitional zones. In addition, one may
separate zones of chaotic vibrations, most important for application. Besides the
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charts of the vibration-type character versus control parameters {go, ®,}, the
charts of a “stiff“ stability loss regarding the same parameters have been
constructed.

8.6. Concluding remarks

In Fig. 8.1 two overlapped charts for the case of conical movably clamped shell
with £=5 are reported. A solution has been obtained by the Ritz method in higher

approximations (white points of the chart correspond to the system stability
loss).

Periodic vibrations

Feigenbaum scenario

Modified
RTN scenario

Chaos

Fig. 8.1. Charts of the vibration-type character versus control parameters {go, ®,}
(stiff stability loss)

One may conclude from Fig. 8.1, that stiff stability loss occurs during the
change of vibration character. However, there exist points within a zone of
periodic vibrations, where a stiff stability loss is observed. More detailed
numerical analysis has shown that in those points instead of the first order
discontinuities (Fig. 8.2a), we have a deflection point (Fig. 8.2b) of the function
Winax(g).-

We investigate the problem on the modes number in the Ritz procedure
using example of vibrations of conical shallow geometrically nonlinear shells of
constant thickness, movably clamped on their contours. The load is uniformly
distributed on the shell surface in the following harmonic way g=gosinw,z.
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Winax T T T T Wypay T T T T

,v""" 0r- __,_,.-——-'-'—f__

0 10 20 30 40 qu 0 10 20 30 40 'Q'D
a) w,=4 b) ©,=5
Fig. 8.2. Dependence wy,u(q)

@y

Harmonic vibrations with frequency w, B Bifurcations

Fig. 8.3. Charts of the vibration-type characters in the control parameters plane {gy, @,}
(movably clamped conical shell for £=3)

Harmonic vibrations with frequency 0.5a, D Chaos

Let us construct charts of the shell with height arrow /=3 and i=5
(Fig. 8.3) depending on the magnitudes of the control parameters {go, ®,} for
various numbers of the series terms »=1,...,6 in (8.14). Further increase of » in
(8.14) does not caused a qualitative change of the charts {go, ®,}. Notation of
the vibration type zones are given in the figures, and zones of the modified



132 J. Awrejcewicz, V.A. Krysko, LV. Papkova, A.V. Krysko, J. Mrozowski

Ruelle-Takens-Newhouse scenario are not reported here. The choice of a
magnitude of the loading parameter g, is limited by a shell deflection in frame of
the given applied theory. Parameter @, is changed from wy/2 to 3we/2, where wy
is free vibration frequency. Chart »=1 presented in Fig. 8.3 differs from other
ones mainly by a lack of chaotic zones and exhibits only zones of bifurcations
and periodic vibrations with frequencies w, and 0.5w,. Increase of n yields
occurrence of new bifurcations and chaotic zones, parts of which do not undergo
any changes beginning from »=3 (for instance, zones of bifurcation and periodic
vibrations with fundamental frequency 0.5m, in higher frequency zones). Chart
for n=1 strongly differs from other ones, and increasing » outlines that various
zones are similar, i.e. a convergent series of vibration sequence is observed. .
Sub-harmonic vibrations zone with 0.5w, is the same for all »>2, however for
n=2 it is shifted into the right. Chaotic zones with increase of » become smaller,
but the separated parts beginning from »=4 do not change. In general,
convergence on high frequencies is better in comparison to that of low
frequencies and being close to eigenfrequency.
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