PROCEEDINGS OF THE 9TH SSTA CONFERENCE, GDANSK-JURATA, POLAND,
14—16 OCTOBER 2009

Shell Structures:
Theory and Applications

VOLUME 2

Editors

Wojclech Pietraszkiewicz

The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences,
Gdansk, Poland

Ireneusz Kreja

Faculty of Civil and Environmental Engineering, Gdasisk University of Technology,
Gdansk, Poland

C) CRC Press
Taylor & Francis Group

Boca Raton  London New York Leiden

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

A BALKEMA BOOK



Shell Structures: Theory and Applications, Vol. 2 — Pietraszkiowicz & Krefa {eds)
@ 2010 Taylor & Francis Group, London, ISBN 378-0-415-54883-0

Investigation of nonlinear dissipative chaotic dynamics of plates and shells

V.A. Krysko, M. Zhigalov, V. Soldatov, S. Mitskevitch, E.S. Kuznetsova & K.E Shagivaleev
Department of Mathematics and Modeling, Saratov State Technical University, Russia

I Awrejeewicz & J. Mrozowski

Department Automatics and Biomechanics, Technical Universily of £édz, Poland

ABSTRACT: A general theory of chaotic nonlinear dissipative dynamics of shallow shells and plates is

developed and validated via a computational example

1 INTRODUCTION

Some important aspects of nonlinear dynamics of con-
tinuai mechanical objects as well as their modeling,
governing equations and computational approaches
are addressed in references Awrejcewicz & Krysko
{2003), Awreicewicz ef al. (2007), Awrejcewicz &
Kryske (2008), Awrgjcewicz etal. (2008), Sun & Zhang
{2001). In our work the governing partial differential
equations, either in hybrid form or regarding displace-
ments, modeling of the studied shells and plates dynam-
ics are derived through application of the Hamilton
psinciple and applying the hypotheses of Kirchhoff,
Timoshenko and Sheremetev-Pelekh. In other words
the following assumptions are made: (i) a normal to
a middle surface remains normal after deformation
process; (ii) a normal rotates during deformation pro-
cess; (iii) a normal being perpendicular to a middle
shell surface is rotated and curved during deformation
process.

Geometrical nonlinearities are included into our
theory using assumptions introduced by T. von
Karméan. Material of a shell-type construction can be
isotrapic, transversally isotropic and orthotropic, and
anobject analyzed is considered elastic. The developed
theories include axially (non-axially) symmetric cir-
cled shelis, rectangular and sector-type shells as well as
closed cylindrical shells. In order to reduce the evolu-
tionary PDEs (governing dynamics of flexible shells)
to a system of ODEs, the Ritz and Bubnov-Galerkin
methods in higher approximations are applied, as well
as the methods of finite differences of orders 42, /i,
and finite element method (FEM) in the Bubnov-
Galerkin form. The obtained ODEs are solved via
various variants of the Runge-Kutta methods. The
Convergence of the mentioned numerical algorithms
i rigorously discussed and a priori estimations as
well as computation validations are given. Nonlin-
car vibrations of the mentioned continuous objects are
Studied via qualitative theory of differential equations
using the following classical analysis of: time histories,
FFT (Fast Fourier Transform), wavelet transforms,
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Poincaré sections, autocorrelation functions, as well
as Lyapunov largest exponent computation. The infi-
nite dimensional original problems are treated as those
with many degrees-of-freedom. The same problem is
solved via a few different approaches in order to get
reliable results.

2 THEORY AND COMPUTATIONAL EXAMPLE

As an example we study chaotic vibrations of a cylin-
drical panel with a rectangular projection plane and
subjected to transversal sign-changeable load action
and satisfying the assumption (i). Non-dimensional
equations of motion and deformation compatibility
equations are as follows:
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and L(w, w), L, F) — are the well-known nomlinear
operators. Non-dimensional quantities are introduced
in the following way:
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where a, b denote shell dimensions regarding x and y,
respectively; ¢ denotes time; ¢ — linear damping coef-
ficient; F — stress (Airy’s) function; w — deflection
function; 4 —shell thickness; v = 0.3 - Poisson’s coef-
Ticient; g — gravity acceleration; £ — Young's modulus;
ey ) = plsin (wpt), py(x, 1) = p sin (w,t) - longi-
tudinal loads; %, and k, — shell curvature regarding x
and y, respectively; g(x, y, £) = gy sin (@,{) — transver-
sal load sign-changeable (bars over non-dimensional
quantities are omitted in equations (13). The governing
equations are supplemented by initial and boundary
conditions. In the latter case we apply simple supports
on flexible non-stretched ribs in a tangential plane.

In order to solve the obtained govering equations
the Bubnov-Galerkin method in higher approxima-
tions is applied, i.e. we assume that
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In order to define approximated values of w
and F, the following co-ordinate system of func-
tions {gy(x,y), ¥y, )} (7,/i=0,1,2...) is substi-
tuted into {1). They should be linearly independent,
continuous together with their derivatives up to the
fourthorderindomain Q{0 < x < a, 0 <y < &},
and they must satisfy the boundary conditions.

After application of the Bubnov-Galerkin procedure
in higher approximations, the following second order
systems of ODEs and algebraic equations are obtained:

G{A+eA}+SA+C B+ DAB=Qg+H,, 4
C,A+PB+D,AA = H,, @
where: G = |Guull, 8 = ISpsnlt, C = ICuuill,
Cy = |Comell, T = [D1sttlls Dz = 1Dyl P =
Il Pjjasll, — square matrices of dimension 2- N - N2 x 2
Ny No, A = |45, B = 1Byl Q = | Qy]| — matrices
of dimension 2 - Ny - Na. x 1.

The second equation of system (4} is solved regard-
ing matrix B via an inversed matrix method on each
time step:

B= [MP"DZA—P"CZ]A +P'H,. (5)

Multiplying the first equation of (4) by G™!, the
foliowing Cauchy problem for first order ODEs is
obtained:

R=—R+G'DAB-G 84~
-G B+¢GTQ+G'H,, (6)
A=R.
The obtained differential equations are solved using
the fourth order Runge-Kutta method.

As a computational example we study the square
panel with the fixed parameters (A = 1,Ky = 36,

Ky == 0) and with the following boundary conditions:

W= Mx = N\_ =£, = (3, (X «r };)

for x=01, y=0l, (7)
and the following initial conditions
“1::0 il 0’ “‘L:O =0, (8)

The following loading parameters acting on the
panel are applied: compressing forces p, = Ip, p, =
0.5, and the transversal load g = go sin w,t (@, = 17),
For the studied case we have gy(x,y) = ¥y(x,») =
sin {(imx) sin (jmy).

InTable 1 the following indicators are reported: time
history {signal), the largest Lyapunov exponent, FFT
and 2D Morlet’s wavelet spectra (larger values of the
wavelet coefficients correspond to more bright colors)
for the middle panel point (0,5;0,5). First row corre-
sponds to one term approximation (in this case we deal
with a Duffing-type approximation), whereas second
row corresponds to 235 approximating series terms for
the same amplitude of transversal load. One may see
from the Table 1 that the obtained resulis depend essen-
tially on the used approximation terms. For instance,
in the case of one term approximation a transition info
chaotic state is realized via classical Feigenbaum sce-
nario through a period doubling sequence, contrary to
the results associated with 25 terms approximation.

3 RESULTS

Let us briefly emphasize some interesting nonlinear
behavior of the studied object. For the load amplitude
G = 3530 and taking 25 terms the largest Lyapunov
exponent is negative. Hence, we deal with regular
dynamics. However, the FFT spectrum as well as
the wavelet-spectram are similar to that of chaotic
dynamics. Observe that energy associated with a
driven frequency is essentially higher than energies
sum of the remaining frequencies (it is validated by
wavelet-spectrum), therefore we have rather regular
but complex vibrations instead of chaotic ones.

For g¢ == 3976,5 and for one term approxima-
tion, one observes two period doubling bifurcation
points and the largest Lyapunov exponent is negative.
However, taking into account 25 approximating terms
vibrations are chaotic, which is proved by the Fourier
spectrum, the wavelet spectrum and the Lyapunov
exponent value, For gg == 5000 for both approxima-
tions we have chaotic vibrations (in the case of one
term approximation chaos is associated with two fre-
quencies e = 5,5 and @, whereas in the case of 25
terms approximation chaos is associated with external
{frequency wp).

4 CONCLUSIONS

The following main conclusion results from our
analysis: reduction of a continuous system into one
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Time evolution of signals (time histories), Lyapunov exponents, Fourier spectra and wavelet specira for different

values of excitation amplitude gq.
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Duffing-type equation yiclds improper results regard-
ing its chaotic dynamics. In addition, our computa-
tional results showed that the system transition into
chaos s realized via various scenarios (one term
approximation corresponds to the Feigenbaum sce-
nario, whereas higher order approximation allows
to detect the modified Ruelle-Takens-Newhouse
scenario).
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