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1 Introduction 

Owing to remarkable development of aeronautics, astronautics and ship-building 
industry, the problem of an accurate and engineering-accepted beam dynamics (tak­
ing into account various boundary conditions and sign changeable loads) is of high 
importance. It is well known that the problems yielded by mechanical engineer­
ing require construction and analysis of their mathematical models. Modeling of 
flexible beam vibrations subjected to transversal and longitudinal sign-changeable 
loads belongs to one of the hottest problems of today's mechanics. Key targets of 
modeling and analysis of beams, plates and shells include studies of transition from 
regular to chaotic dynamics and vice versa, and the methods of dynamics control 
via external load action (see, for instance, references [1-5]). 

Our aim in this work was to compare results of two different methods of math­
ematical modeling, i.e. FDM and FEM, using the example of Euler-Bernoulli type 
flexible beams. 

2 Problem Formulation 

A mathematical model of transversal Euler-Bernoulli beam vibrations with various 
boundary conditions is derived in this work. The Cartesian coordinates system XOZ 
is introduced, and then in the space Q = {x E [0, a] ;-h ~ z ~ h; - ~ ~ y ~ ~} a thin 
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elastic beam with its middle surface deformation £x = *+ ! (~)2 is studied, 

where w(x,t) denotes beam deflection, and u(x,t) is the middle surface displace­
ment along the Ox axis. It is assumed that owing to the Euler-Bernoulli hypothesis 
a normal to the beam middle surface is still normal after the beam deformation: 

It 
£xx = £x - z~, where £x is the middle surface deformation, Nx = J Gxxdz is the 

-It 

It (21t)3 2 
longitudinal force, and Mx = J Gxx zdz = - 12 E ~ denotes the bending moment. 

-It 
Dynamics governing equations have the following form [6]: 

E(2h) {~+L3(W, w)} - (2h) ~~ - £2 (2h) ~~ = 0, 

{ E (2h) {LI (u, w) +L2(W, w) - (2:~f ~;} +q - (2h) ~~ - £1 (2h) ~~ = 0, 
(I) 

(J2 u (Jw (Ju (J2 w 3 (J2 w (Jw) 2 (J2 w (Jw
where L,(u,w) = J"l!dX + di7fX'T' L2(W,W) = '27fX'T dX ,L3(W,W) = 7fX'TdX' 
£l, £2 - dissipation coefficients; q = q(x,t) - transversal load, E - Young modu­
lus, p, r - density and weight density, respectively, and g - acceleration of gravity. 
The following non-dimensional variables are introduced 

w ua x a a4 

W= (2h) , U= (2h)2,i=~, A= (2h) , Q=q(2h)4E' 

_ t a [iii _ a. 
(2) 

t = -:r' 1" = ~' c = Yr' £i = £i ~,l = 1,2. 

Taking into account (2), system (1) takes the form 

where in the above bars over non-dimensional quantities are omitted. 
The following boundary conditions at the beam ends are attached to Eqs. (3): 

Problem 1. "Clamping - clamping": 

dw(O,t) dw(a,t)
w(O,t) = w(a,t) = u(O,t) = u(a,t) = dx = dx = 0. (4) 

Problem 2. "Hinge - hinge": 

w(O,t) = w(a,t) = u(O,t) = u(a,t) = 0; Mx(O,t) = Mx(a,t) = 0. (5) 

Problem 3. "Hinge - clamping": 
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w(O,t) = w(a,t) = ul 

Problem 4. "Hinge - free": 

w(O,t) = Mx(O,t) = 

Additionally, the following ir 

ow 
w(x,t)lt=o = -, 

( 
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dw(a,t)
w(O,t) = w(a,t) = u(O,t) = u(a,t) = O;Mx(O,t) = 0; dX = O. (6) 

Problem 4. "Hinge - free": 

w(O,t) = Mx(O,t) = u(O,t) = 0; Mx(a,t) = Nx(a,t) = Qx(a,t) = o. (7) 

Additionally, the following initial conditions are attached to Eqs. (3) through (7): 

dW(X,t) I du(x,t) I 
w(x,t)ll=o = dt 1=0 = u(x,t)ll=o = ~ 1=0 = O. (8) 

3 On the Numerical Solution to Vibration and Stability Beam 
Problems 

Investigation of nonlinear vibrations of constructions with various dynamic states 
(regular and/or chaotic) requires highly accurate computational algorithms and 
implementation of numerical methods. Since analytical methods devoted to the 
analysis of non-linear models can be rarely applied, the only way is to apply var­
ious numerical approaches to verification of reliability of the obtained results. In 
this work, various numerical approaches are applied, namely direct one (FDM) 
and variational one (FEM) in the Bubnov-Galerkin form. A comparison is made for 
various boundary conditions and for various dynamic regimes. In all investigated 
cases the beam geometric and physical parameters are taken as the same. 

3.1 FDM with Approximation O(c2 ) 

The infinite dimensional problem (3)-(8) can be reduced to the finite dimen­
sional one via the finite difference method (FDM) with approximation O(c2 ). 

Namely, at each mesh node the following system of ordinary differential equations 
is obtained: 

Ll,c(wj,Uj) = E1Wj+Wj, 

L2,c(Wj,Ui) = E2Uj+Uj, (9) 

(i=O, ... ,n), 

where n denotes the partition numbers regarding spatial coordinates, and 
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For i =1, i = n - lone has to take into consideration the so-called out of con­
tour points, which are defined by the following boundary conditions: for problem 
1 W~i = Wi, whereas for problem 2 W~i = -Wi. The following additional equations 
are supplemented to Eqs. (9) for 

Problems 1-3: 
WO = 0; Wn = 0; Uo = 0; Un = 0, (10) 

and for Problem 4 

WO = 0; Uo = 0; Mx = 0; Nx = 0; Qx = o. (11) 

The initial conditions (8) for the considered cases have the following difference 
form 

W(Xi)II=O = 0; u(xi)ll=o = 0; w(xi)ll=o = 0; u(xi)ll=o = 0, i = 0, ... ,no (12) 

3.2 FEM with the Bubnov-Galerkin Approximation 

The so far defined problem (3)-(8) is solved now via FEM. Owing to the FEM the­
ory, in order to construct a beam element we need to introduce the testing functions. 
The following four degrees of freedom (WI, W2, 81, fh) are associated with the 
element and the following approximation polynomial is applied: 

After defining the constant values, an approximation function has the following 
form: 

W= lNwj{W} 

where [NwJ = (1-3~2+2~3;_1~(~_1)2;3~2_2~3;_1~(~2_~)) - form 

matrix; {W} = (WI, 8" W2, fh) T - node displacement matrix; ~ = xl I - non­
dimensional quantity (local coordinate). 
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Displacement approximation u(x) 

U= 

where lNuJ = (1 - ~;~){U} = (Ul 

Applying the Bubnov-Galerkin pTi 
approximations, the following equati 

Ml [W] +CI [~ 
{ M1 [0] +Cl [0 

where Mi' Ci, Ki are the matrices ofn 
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q= 
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Displacement approximation u(x) has the following form: 

u = lNuJ{U}, 

where lNuJ = (1 - ~;~){U} = (uJ U2)T. 

Applying the Bubnov-Galerkin procedure and taking into account the introduced 
approximations, the following equations of FEM are obtained 

Ml [W] +CI [W] +KI [W] = FI (q, U), 
(13)

{ M2 [0] + C2 [0] + K2 [U] = F2 (p, W), 

where Mj, Cj, Kj are the matrices of mass, damping and stiffness, respectively. 

4 Numerical Results Obtained via FDM and FEM 

The considered beam is subjected to the action of the following transversal load 

(14) 

where wp is the excitation frequency, and qo is its amplitude. The studied system is 
dissipative, and the damping coefficients denoted by lOl, lO2 correspond to deflection 
wand displacement u, respectively. 

Next, we study numerically the beam dynamics and stability. Any method of 
beam partition allows us to approximate PDEs by ODEs. Integration of the latter 
ones can be divided into two groups, i.e. explicit and implicit methods. The explicit 
methods are mainly realized via the Runge-Kutta schemes, and they are sufficient to 
solve our beam problem. It is mainly motivated by an observation that the consid­
ered Cauchy problem does not belong to stiff one, since in the frequency spectrum of 
eigen values of the Bernoulli-Euler type equations there are no frequencies differing 
in the order of magnitude (see, for instance, considerations in reference [7]). 

In order to verify the validity and accuracy of beam vibration simulations, both 
mentioned methods (FEM and FDM) are applied in problem 4, and the following 
fixed damping coefficients lOt = 1, lO2 = 0, where wp = 5.1 is the excitation fre­
quency, and A = a/2h = 50 denotes the relative beam length. The beam is subjected 
to the harmonic load action with the amplitude qo. The computation step regard­
ing spatial coordinate equals c and time step is M. Both of them are yielded by the 
Runge principle. The stated problem is solved for beam partitions n = 40, c = 1/40, 
and with the time step M = 0.9052.10-3. In order to compare the numerical results, 
power spectra and time histories (signals) w(t)are reported in Table 1 for qO = 100 
(it corresponds to regular dynamics), and for qo = 3,200 (it corresponds to chaotic 
dynamics). 

From Table lone may conclude that signals obtained via FEM and FDM practi­
cally coincide for the case of regular dynamics. In the case of chaotic dynamics, a 
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signal produced by FDM is slightly delayed in comparison to that produced by FEM 
and possesses smaller amplitude. Frequency power spectra of vibrations practically 
either coincide in the case of regular dynamics or are close to each other in the case 
of chaotic dynamics. Hence, owing to the results included in Table I, the results 
obtained via the FEM and FDM methods are reliable for either regular or chaotic 
beam dynamics analysis. 

In order to investigate beams dynamics driven by harmonic loads a special pro­
gram package has been developed enabling construction of vibration type charts vs. 
control parameters {qO' OJp }. For instance, in order to construct a chart with the res­
olution of 200 x 200 points, one needs to solve a problem of dynamics, to analyze 
frequency power spectrum and finally to compute the Lyapunov exponents for each 
choice of the control parameters. The developed algorithm enables also separation 
of the periodic dynamic zones, the Hopf bifurcation zones, quasi-periodic zones, as 
well as chaotic zones. 

Table 1 Power spectra and time histories w(t) for qo = 100 and for qo = 3,200 
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Table 2 Vibration type charts vs. Control parameters {qO, (lJp} for problem 4 

In Table 2, the vibration type charts vs. the control parameters {qO' wp } for prob­
lem 4 are reported. Charts are constructed either with the application of FEM or 
FDM with the following fixed parameters lO. = 0.1, lO2 = 0 for the beam length 
partition n = 40, and for the beam relative length A= a/2h = 50. The excitation fre­
quency changes from roo/2 (chart I) to 3roo/2 (chart III), where roo (chart II) denotes 
free frequency of the associated linear system (for problem 4 we have roo = 5.l). A 
maximal excitation amplitude corresponds to the beam deflection of 5(2h), and the 
charts are built with resolution 300 x 300. 

Analysis of the obtained vibration type charts also supports reliability of the 
results obtained for various vibration regimes. Observe that the zones of chaotic 
vibrations vs. frequency obtained via FEM are wider than those obtained via FDM, 
whereas they coincide regarding the amplitude of vibrations. In order to get a vibra­
tion character chart vs. control parameters with resolution 300 x 300 one has to 
carry out 9·104 computational variants. In the case of FEM, the computational time 
increases about 1.5 times comparing to the FDM application (for n = 40). The 
notation introduced in Table 2, regarding vibration type, is also used further. Com­
putation of such a chart with the use of a Celeron 1700 processor takes 400 days. 
However, the knowledge of such charts enables a fulI system control. 

In order to confirm reliability of the results obtained for other types of boundary 
conditions, in Table 3 scales of vibration type beam character depending on the 
excitation amplitude qo E lO.6 X 104J and for one value of wp are reported, and also 
dependences wmax(qo) are shown. 

The problems are solved for the following parameters: lO, = I, lO2 = 0, A = 
a/2h = 50, wp = 6.9, and beam partition regarding spatial coordinate n = 40. 

We show how the boundary conditions essentially influence the system dynam­
ics. For Problem 1, the beam exhibits periodic and bifurcation type dynamics (either 
for FDM or for FEM). In this case there is no transition to chaotic dynamics. 
In graph wmax(qo) sudden jumps do not occur, and the function is smooth. In 
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Problem 2, one may observe chaotic zones matched with bifurcation zones, but 
periodic dynamics is not exhibited. A function presenting maximal deflection vs. 
excitation amplitude is smooth only at the beginning (for qo = 0.1.104), where 
sudden jumps of W max are not observed. Transition of the system from periodic to 
chaotic vibrations and vice versa, is characterized by sudden changes of Wmax even 
for a small change of the excitation amplitude, and this is understood as stability 
loss of the system dynamics. 

In the case of non-symmetric boundary conditions (Problem 3) one may observe 
that the system transition into chaotic state occurs for qo > 2.5.104 . For the given 
boundary conditions periodic dynamics occurs for qo E (1.1,2.5) .104• It is remark­
able that within beam chaotic regime in the graph wmax(qo) not only sudden jumps 
appear but also the functions are discontinuous. 
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5 Transition Scenarios into Chaos 

As the earlier results of local chaos investigations show, there are a few typical 
transition scenarios leading a dynamic system from periodicity into chaos, which 
sometimes are also combined, On the other hand, as it will be shown further, 
such transitions, however, understood globally, may differ for the same system 
(here beam) for various boundary conditions. Mainly four typical transitions are 
well understood, namely the Landau-Hopf scenario, the Ruelle-Takens-Newhouse 
scenario, the Feigenbaum scenario and the Pomeau-Manneville scenario. 

Below, we investigate and define a beam scenario of transition into chaos for 
Problem 2. The numerical investigation is carried out by two methods: FEM and 
FDM. Table 4 shows the fundamental steps helping in the scenario detection. 

Observe that for qo = 100, in a frequency power spectrum, only frequency of 
excitation wp = 6.9 is exhibited. 

An increasing amplitude of excitation causes the occurrence of two indepen­
dent frequencies (quasi-periodicity), which are evidenced by FEM and FDM, and 
their estimated values are the same. A further increase of the excitation amplitude 
causes the occurrence of linear combinations of the earlier mentioned frequencies 
wp , WI, (Oz. 

For example, let us study the system behavior for qo = 11,000 applying FDM. 
It is remarkable that the system dynamics is governed by a linear combination of 
frequencies wp , (Oz, W4. The following three frequency groups are distinguished: 
W4, OJ-J, ill) - the first group, where frequency values differ by the amount of fre­
quency W4; WI, (Oz, WIQ, WI I - the second group, where the frequencies differ from 
each other either by W4, or by W4' 2; wp , COJ, COs, COg - the third group, where the 
linear combination of frequencies is preserved. Observe that an analogous system 
behavior is also monitored for qo = 8,700 in the case of FEM application. 

A further increase of qo yields more evident changes of the earlier mentioned 
frequencies, and finally all of the frequencies become linearly dependent. For qo = 
20,000 (FDM) and for qo = 19,900 (FEM) all frequency distances are almost equal, 
and the difference between them achieves 1.062. 

6 Conclusions 

An increase of the amplitude of external excitation causes variation of frequencies. 
The mentioned frequencies again appear and disappear. As a result, in the frequency 
spectra, either for FDM or for FEM, one may distinguish six linearly independent 
groups of frequencies, each group containing linearly dependent frequencies which 
differ by the amount of 0.29. Then, when all of the born frequencies become linearly 
dependent, the system dynamics is transited into chaotic state, which is clearly man­
ifested by the system frequency spectra for qo = 4· ]04 (FDM) and qo = 4.9· ]04 

(FEM). 
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Table 4 Some fundamental steps helping in the scenario detection 
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Analysis of Regular and Chaotic Dynamics of the Euler-Bernoulli Beams 

Finally, taking into account the previous description and comments regarding the 
scenario of transition of our beam into chaotic dynamics monitored via FEM and 
FDM, the detected scenario fits to the well-known Ruelle-Takens-Newhouse sce­
nario, where in the latter classical case the transition is realized via two independent 
frequencies and their linear combinations. 
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