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Many papers are also devoted to the problem of load-transfer from a single fibre 
to the half-space. Keer and Luk [7] formulated a problem of load-transfer by means 
of Hankel transforms and reduced it to a system of coupled singular integral equa
tions, where the unknown quantities are the normal and the shear stresses acting on 
the entire surface of the fibre. 

In paper by McCartney [9] the equilibrium equations, the interface conditions and 
other boundary conditions involving stresses are exactly satisfied. Furthermore, two 
of the four stress-strain relations are satisfied exactly, whereas the remaining two are 
satisfied in an average sense. Displacement boundary conditions are also satisfied 
in an average sense. The approach proposed by Rajapakse and Wang [10] is based 
on the study of interaction between the I D elastic fibre and the 3D elastic half
space with a cylindrical cavity. The displacement compatibility is achieved along 
the contact surface between the fibre and the half-space. A variational technique 
coupled with a boundary integral equation scheme base on a set of exact Green's 
functions is used in the analysis. The boundary conditions on the top end of the 
fibre are incorporated into the variational formulation through a set of Lagrange 
multipliers. Lee and Mura [II] obtained the numerical solution in the case of finite 
length fibre embedded in elastic space and in elastic half-space. 

Movchan and Willis [12] analyzed case when the fibres are held in place by 
Coulomb friction. The stress and displacement field in the composite and the length 
of the slipping region are obtained by solving a model problem for a fibre in an 
elastic half-space in an ambient stress field generated by all other fibres and the 
applied loading. 

Antipov et al. [13] consider a boundary layer problem for an elastic space con
taining an infinite cylindrical fibre with a frictional interface. In the region where 
frictional sliding occurs, the transfer of load across the interface is governed by a 
Coulomb friction law. Outside the slipping region the fibre and the matrix are per
fectly bonded. The problem is reduced to a singular integral equation. Lenci and 
Menditto [14] obtained solution for dilute and highly concentrated fibre composite 
with a weak interface in the form of improper integrals. 

In this paper we analyse load-transfer from single fibre to half-space through 
interface, when boundary of half-space is rigidly joined with thin elastic coating. 

2 Governing Equations 

In this section, we will consider the case of a single fibre weakly bonded to a sur
rounding half-space (Fig. 1). Fibre is loaded by uniformly distributed across its 
cross-section load P. We do not take into account body forces; due to the linearity 
of the problem it can be done using described approach. 

We will consider the fibre as 1D continuum without transversal deformation and 
we will suppose perfect adherence in the direction orthogonal to the fibre-matrix 
interface. First approximation is based on the inequality A2 << 1. The matrix mate
rial is assumed to be isotropic and linear elastic, with elastic constants E and v. The 
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Fig. 1 The dilute concentration problem: a single fibre embedded in an elastic half-space 

axial Young modulus of the circular fibre with radius R and the interface stiffness 
are denoted by E, and k, respectively. We will use circular cylindrical coordinate 
system (r, 8,z); axis of the fibre coincides with the z-axis. The problem is axi
ally symmetric; the axial displacement of the fibre is denoted by Uf(Z) and the 
radial and longitudinal displacement of the matrix by U,(r,z) and Uz(r,z), respec
tively. We also denote the interfacial stress by 't"(z) and stresses in the matrix by 
O',(r,Z),O'z(r,z),O'e(r,z),'t",z(r,z); in our case 't"(z) = 't"'z(R,z). 

The interface between fibre and matrix can play an important role in determining 
the properties of the composite material. Usually, stresses are continuous across 
the interface, while the displacements may be continuous or discontinuous. In the 
former case, the interface is called "strong", whereas in the latter case, it is called 
"weak". We deal with a weak interface described by the spring-layer model which 
assumes that the interfacial stress is a function of the gap in the displacements. 
Asymptotic justifications of spring-layer model were obtained by many authors; 
for example, see [15] and references cited therein. We suppose the material of the 
interface to be incompressible so Poisson's coefficient of interface is equal to 1/2. 
In this case the interface guarantees perfect bonding in normal direction and only 
tangential sliding is possible [14, 15]: 

't"(z) = k(Ur(z) - Uz(R,z)). (I) 

The parameter k summarizes the mechanical characteristics of the interface and can 
be computed from the elastic moduli of the interface [15]. For the case of an incom
pressible interface one has k = Ed (3d), where Ei is the Yung modus of the interface 
and d is the thickness of the interface. 

We also suppose that fibre is absolutely rigid in radial direction [14]: 

U,(r,z) = o. (2) 
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Displacements and stresses in the matrix can be expressed in terms of the Love 
potential <I>(r,z) as follows: 

(3) 

(4) 

(5) 

• 2 _ (J2 I (J (J2 _ E
where. V - B;t + rdT + JZ!,G - 2(I+v)" 

In the absence of body force, the function <I>(r,z) is biharmonic: 

(6) 

Now let us suppose that matrix is coated by thin elastic layer with the small thickness 
H, rigidly bonded to the elastic half-space. This model is valid for polymer material 
with a metal coating [16]. The coating material is assumed to be isotropic and linear 
elastic, with elastic constants £2 and VI. 

Due to the small thickness of coating we can treat it as a plate. Then boundary 
conditions for z = 0 can be written as follows: 

(8) 

and 
(9) 

3 Asymptotic Simplification of Boundary Conditions 

Let us introduce nondimensional variables r1 = r/ R, ~ = z/R. Then boundary 
conditions (7), (8) for ~ = 0 can be rewritten as follows: 

(10) 
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(II) 

(12) 

where: 

Thin coating cannot influence sufficiently the normal stresses. On the other hand 
coating layer has a large rigidity in the tangential direction that is why one can sup
pose radial displacements on the boundaries equal zero [5]. Taking into account 
these assumptions, one can simplify boundary conditions (10), (12). In the first 
approximation one has (for ~ = 0): 

(13) 

(14):~ [(2 - v)Vi<l> - ~~;] = O. 

From the physical standpoint one has in this case an inextensible membrane ideally 
bonded to the matrix at the half-space boundary. 

In the original variables boundary conditions (13), (14) can be written as follows 
(for z = 0): 

d<l> = 0 (15)
dZ ' 

d3<1> 
(16)dz3 = O. 

4 A Single Fibre Embedded in the Half-Space 

Let us use for solving boundary value problem (6), (15), (16) the cosine Fourier 
transform 

<I>(r,s) = J<I>(r,z)cos(sz)dz. (17) 

o 
Partial differential equation (6) is transformed to the ordinary differential equation 

(18) 

where' V2 = d 
2 + 1..4.. _s2 . 2 J,J: r dr . 
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A general solution to the ordinary differential equation (2) is as follows 

<I>(r,s) = AKo(sr) +BsrKI (sr) +Clo(sr) +Dsrll (sr), (19) 

where Ko, K1 ,10 and /1 are the modified Bessel functions [8]. 
From conditions (9) one obtains C = D = 0, while condition (2) yields 

sRKo(sR)
A=- B. (20)

K, (sR) 

Then from (I), (5), (19) and (20) one obtains 

t(s) = trz(R,s) = 4BG(1 - v)s3K,(sR), (21) 

- R
Uz(R,s) = Gt(s)g(sR), (22) 

where: 
I Ko(sR) I (Ko(SR)) 2 I (23)g(sR)=-sRKI(sR) - 4(I-v) K1(sR) + 4(I-v)' 

In what follows it will be useful to obtain asymptotics of function g(sR) for s -+ 0 
and s -+ 00. Using formulas (9.6.8), (9.6.9), and (9.7.2) from [8] one gets 

g(sR) ""' In(sR) +a, for s -+ 0, (24) 

3-4v 
(25)g(sR) ""' - 4(1 _ v)sR' for s -+ 00, 

where: a = y-In2 + 4(I~V) > 0, Y= 0.577215649... (the Euler constant). 
Fibre equilibrium condition can be written as follows [14]: 

(26) 

Boundary conditions associated with Eq. (26) have the following form 

dU,
E) = -" =P forz=O (27)

dz' , 

UI -+ 0, for z -+ 00. (28) 

Application of cosine Fourier transform (17) to the boundary value problem (26)
(28) yields 

2 - 2 P 
-s U,(s) + -E t(s) + -E = O. (29)

,R 1 

From condition (I) and relations (22), (23) and (29) we find t(s), Uz(R,s) and U,(s). 
Using then inverse cosine Fourier transform (26) of the form 

• 
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00 

Uz(R,z) = n2/-Uz(R,s)cos(sz)ds, 
o 

one obtains 00 

t"(~) = -~ / M(q»cos(q>~)dq>, 
o 

00 
2(1 + v)PR / 

Uz(1,~) = - 7T:EI M(q»g(q»cos(q>~)dq>, 

o 

PR /00 [E1 E1 ]Ul(~) = - 7T:EI kR - (ig(q» M(q»cos(q>~)dq>, 
o 

o"r(l,~) = -~ 1[2q>g(q» + ~~~:n M(q»sin(q>~)dq>, 
o 

az(1,~) = ~ 1[2q>g(q» - 1 ~ v ~~~:n M(q»sin(q>~)dq>, 
o 

2 kR 2 
q> = sR, kl = EI' M(f) = -s- _ E1PJ(f) + 2' 

I 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

Formulae (31)-(35) differ from formulae for the problem of single fibre embedded 
in the space obtained in [14] only by factor 2. 

Now we will estimate integrals (31 )-(35). First of all, we rewrite them in the 
following form: 

P 
t"(~) = Ill, 

I J:) _
Uz( ,." -

Uf(~) = 

ar(I,~) = 

az(l,~) = -~ 

2(1 + v)PR
E /Z,7T:] 

P PR 
7T:k h + 7T:G/z, 

P
--(21]+/4),

7T: 

(21] - 1~ v I4 )' 

Asymptotics of function M (q» are of the following form 

M(q» ----t I, forq>----tO, 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 
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2k2 
M(q» ----> -t, for q> ----> 00. (43)

q> 

Asymptotic expressions (42), (43) give a possibility to obtain the following interpo
lation function (valid for all values of q»: 

(44) 

(45) 

and, respectively, one has 

(46) 

1CPkl 
'!max(k):::::: (;; . (47)

y2R 

We compared this value of '!max with numerical data (see [6]). Discrepancy between 
approximate analytical and numerical results is not sufficient. 

Now we will analyse integral h Asymptotic expressions for function g( q> )M(q» 
are as follows 

g( q> )M(q» ----> In q> +a, for q> ----> 0, (48) 

2alk2 
g(q»M(q» ----> --3-1 , for q> ----> 00, (49)

q> 

where: a, = (3-;V)a. 

Let us suppose integral h as follows: 

(50) 

where: I~I) = h _/~2), I?) = jf(q»cos(q>~)dq>, f(q» = {Inq>, 0 < q> < I, 
o 0, 1 'S q>.
 

Calculate integral I?),one obtains:
 

(51) 

where: Si( ~) is familiar sine integral [8]. 

Expression under the integral sign M2 (q» in the integral/~l) has the following 
asymptotics: 

M2(q» ----> a, for q> ----> 0, (52) 

2a 1kT
M2(q» ----> --3-' for q> ----> 00. (53)

q> 

> 

Load-Transfer from an Elastic Fib! 

It means that for all values fP 
M2( q»: 

M2 

where: a2 = ada. 
Using residual theorem, or 

Now we will analyse integral 
q> g( q> )M( q»: 

q> g( q»A

q> g( q» 

Let us divide integral h into t 

where: Ijl) = 13 -IY), Ij2) = 

Computation of integral/j 

Expression under the integral 

Using asymptotics (60), (61) 
valid for all values of q> of tht 

On the other hand the residua 

(I) 2 
=13 2k 
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(43) 

~ interpo
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It means that for all values q> one can use the following interpolation function for 
M2(q»: 

(54) 

where: a2 = ai/a. 
Using residual theorem, one obtains: 

(55) 

Now we will analyse integral h Let us obtain asymptotic expressions for function 
q> g( q> )M(q»: 

q>g(q»M( q» ~ q> (In q> +a), for q> ~ 0, (56) 

2alk2 
q>g(q»M( q» ~ --2-1 , for q> (57)~ 00. 

q> 

Let us divide integral h into two following parts 

h =Ij')+If), (58) 

where: Ijl) = h - If), If) = je-rpq> Inq>sin(q>~)dq>. 
o 

Computation of integral If) yields 

Expression under the integral If) has the following asymptotics 

(60) 

2alkr
M3(q» ~ --2-' for q> ~ 00. (61)

q> 

Using asymptotics (60), (61) one can construct interpolation function for M3( q», 
valid for all values of q> of the form 

(62) 

On the other hand the residual theorem, yields: 

(I) 2ak2 
r,;113 = -2--[exp( -~) -exp(-v2kl~)]' 

2k l -1 
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Finally let us analyse integral 14. Function ~(:t:l M( q» has the following asymptotics: 

~(q»	 . 
kl (q» M( q» -+ -q> (Inq> +a), for q> -+ 0, (63) 

ko( q» 2k2 
(64)k[(q»M(q»-+ q>i' forq>-+oo. 

In what follows we assume the following form of integral 14 

-/(1)+1(2) 1(1) -I _/(2)I	 (65)4-44' 4-44' 

Expression under the integral sign M4 (q» in the integral/~ I) exhibits the following 
asymptotics: 

M4( q» -+ -aq> for q> -+ 0, (66) 

2k2 

M4( q» -+ --t for q> -+ 00.	 (67)
q> 

Interpolation functions valid for all values of q> can be written as follows 

M	 ( ) ~ -2k2a q>(l- q>la) (68)
4 q> I (I + q(2)(2kr+ q(2) . 

Therefore, the residual theorem yields the following result 

(I) 2ak2	 ~ ~ 
14	 = --2-j-[exp(-~) -exp(-v2k\ )]. (69)

2k j -I 

5 Conclusions 

The obtained results can be used for investigation of a composite fracture. Solved 
problems in the field of Civil Engineering model, the behaviour of piles or piers 
embedded in soil media, which exhibit a linear elastic response in the working-load 
range. Analytic solutions presented in this paper will be useful in evaluating test 
results calculated by boundary elements and finite element methods. 
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