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ABSTRACT: The Bubnov-Galerkin method is applied to reduce partial differential equations gov-
erning flexible plates and shells dynamics to a system with finite degrees-of-freedom. Chaotic behav-
iour of systems with various degrees-of-freedom is analyzed.

1 MULTIBODY DYNAMICAL SYSTEMS

Chaotic vibrations exhibited by lumped systems with many degrees of freedom are quite rarely investi-
gated. However, recently remarkable progress in this field has been observed: hydrodynaniic processes
governed by ordinary differential equations have been investigated (Swinney & Gollub 1981), the finite
dimensional discretized (with respect to spatial coordinates) models of Ginzburg-Landau equations
(Lvov et al. 1981}, multidimensional modcls of radiophysical systems governing the dynamics of coupled
oscillators and generators (Waller & Kapral 1984), as well as chains of oscillators and gencrators have
been analysed. In the majority of the eited works a problem of modeling a continuous system by a tumped
(discrete) system governed by ordmary differential equations is addressed.

Nowadays various approximational methods are applied to construct lumped systems. In this work
we use the Bubnov-Galerkin method, which bas been successfully applied to different typcs of differ- -
ential equations: elliptie, hyperbolic and parabolic ones. In the monographs (Krysko & Kutsemako 1999,
Awrejcewicz & Krysko 2003) a review of the Bubnov-Galerkin method (MBG}) is given ineluding a dis-
cussion of its convergence for various classes of differential equations.

2 PROBLEM FORMULATION AND THE BUBNOV-GALERKIN METHOD

The equations governing dynamics of a reetangular shel! including both iransversal and longitudinal har-
nonic excitations have the following form (Krysko & Kutsemako 1999, Awrcjcewicz & Krysko 2003):
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The system of equations (1)}+(2) is already in the non-dimensional form, whereas the relations
between dimensional and non-dimensional parameters read:
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Let us depote the left hand s1des of equations (1}H2) by ¢, and ¢, respeetlvely Hence, the equations
have the form:
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In addition, the éorrespondmg boundary" cond:tlons should be attached. Since the exact solution of
the formulated boundary value problem is not known, the MBG methiod with higher approximations is
applied. We assume the followmg form of the unknown functions
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Applying the MBG procedure to equations (5) and taking into aceount (6), we get
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In the above symbol E[*] standing before each of the equations of the systein (7), should be inter-
preted as the vz system with similar form, and the integrals of the MB(G procedure are:
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The-integrals (8) except for {possibly) I ,,;, if the transversal load q is applied not to the whole shell
sutface, are computed along the whole middle shell surface.

To conclude, the derived system (7) consists of M, X M, second order differential equations with
respect to time and of the linear algebraic equations with respeet o By,

The initial conditions have the following form

ow|
w0 = Wy, A 9)
=0

where w, is either taken from the corresponding statical problem or is defined using another approacb.

Assuming the loading terms, the system of equaiions (7) is solved using the numerical method, and
- A and By, are obtained. Next, the found values of 4;; and By; arc substituted into (6), and the being
sought funetlons w, F are finally found. '

3 RESULTS

As an example the squared plate (A = 1, & = 1), supported hy balls on its contour on flexible non-
stretched (non-compressed) ribs and cxcned longitudinally by P, = P, (1 — sinwyt), is mvestlgated
The computations are carried out for fixed w, with variations of thc control parameter P, =1 * 18,
The numerical results are used to construct the dependencies wy,, (P, )i Wi (wy), power spectrum, the
‘Poincaré sections and the Lyapunov exponents.

Some of the mentioned characteristics are shown in Figures 1-4. In Figure 1 the dependencc of
maximal deflection in the center of squared plate, versus the longitudinal load P, is reported. The curve
1 is-ohtained using a. ﬁ.rst order approxlmatlon (i.e. in the relation (6) ¢; = sm(mx)sm{my),
sm(m:r)sm(;n'y) and i = j = 1); the curve 2 is obtained using the 9th order approximation (i = j = 3)
‘the:ourve 3 is-obtained using the 25th order approximation (i = = 5); and finally, the curve 4 is
obtained using 49th order approximation (i = j = 7). The derived results are divided into four intervals:
F-1<sP <45 [0 -45<sP =55H-55<P, <75 IV—-75<P, =<|85

The mtervals 0= P, <1anddl Gorrespond 1o mtervals of stablc equilibrium. In the interval /-, for
ll approximations (practlcally) the same results are obtained for all earlier mentioned charaeteristies
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Figure 1. The maximal deflection Wy, (0.5; 0.5) versus the longitudinal load P, .

(the dependencxes (w0, (w, 1)), power spectra, Poincaré sections and Lyapunov exponents). In the
interval [7, in practice a convergence is achieved when forty nine series terms are used. The dependencies
pxs ‘MyA,J(r) EfA,J[E,,A i1 and power spectra are reported in Figures 24 (the assoeiated parameters are
attaehed to the figures). Analysis of the data in Figure 2 for #, = 5.65 shows that the results obtained
using the first approximation are qualitatively different from the results obtained for M, = M, =3; 5, 7.

4 CONCLUSIONS

All of the characteristics for M, = M, = 3; 5, 7 practlcally overlap; the vibrations are quasi-periodic’
and (for higher approx1mat10ns) a strange chaotic attractor is detected, whieh eonsists of intervals of fast
and slow time seales. The relaxation character of vihrations is typical for all modes and has high fre-
quency inclusions on the top of impulses. In zones /I the same results are obtained for all approximations.
In the first approximation (one-degree-of-freedom) the solutions overlap with higher approximations in
zones /—III. Beginning with zone [¥, the solutions in the first approximation are not useful to approxi-
mate the vibration process and they are qualitatively different from higher order approximations. The
reported dependencies obtained for M; = M, = 3; 5; 7 in practice are the same for both ¥, A if2), as well
as for each term of the series A(%), phase portralts and power spectra. Increasing the parameter P, the
system begins to lose regular vibrations in the vicinity of region ¥, and to “forget™ its initial state, "and
it transits into a zone of chaotic vibrations. All of approximations, in spite of the first one, characterize
the chaotic vibrations. In addition, zones where neutral curve of vibrations change appear in “stiff”
manner, i. e. series of “stiff stability loss is observed in the vibration process (see Fig. 3). Note that the
results using approximation of 25 and 49 terms are similar. Recall that in the Lorenz model the inost
sensitive parameter is that associated with modes number. In our model governed by von Kirman equa-
tions, this property is not detected. On the contrary, the system behaves similarly for all modes for
P, e [0.55]. For P, e [5.5,7.5] higher approximations also converge to one solution, and for P, > 7.5
l:ugher approxunatlons descrlbe a chaotic plate dynamics. Therefore, here a coupling scheme is
cbserved. The investigation of the characteristics reported shows that each term of the series Ay, for
fixed P; values, fully describes the character of vibrations (a synchronization of subsystems is
ohserved) One may also conclude, that begmmng from P, > 7.5 the so called “multimode” turbulence
(or “true” turbulence) is observed.
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Figure 2. Phase portraits, time histories and power speetra for the attached parameters.
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Figure 3. Phase poriraits, time histories and power spectra for the attached parameters.
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Figore 4. Phase portraits, time histories and power speetra for the attached parameters.
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