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Abstract. /n this work a control of one- and two-degrees-of-freedom vibro-impact system
with a delay loop is presented and analysed. The aim of the delay loop application is to make
the return to the vibro-impact periodic motion afier the occurrence of disturbances quicker
tham in the case without the loop. The proposed analytical approach yields the required delay
loop coefficients. The original vibro-impact map is described which allows to solve the
problem analytically for near resonance case in one-degree-of-freedom system. The
numerical calculations have proved our theoretical investigations. In addition, an efficient
delay loop control applied to two-degree-of-freedom system is proposed.

1 INTRODUCTION

Vibro-impact vibration problems with one-degree-of-freedom systems have a long history
in mechanics. The problems like stationary subharmonic motions and their stability, the
influence of damping and friction on vibro-impact dynamics, elastic and plastic type impacts;
time histories and phase portraits of the vibro-impact systems have been considered [1-7].

We have to mention also the chaotic dynamics of the vibro-impact one-degree-of-freedorh
oscillators. A vertical motion of a ball acting on sinusoidally vibrating table has been
analysed. It has been investigated using a simple model of difference equations satisfying an
impact condition. For small velocities and for a restitution coefficient close to value one, a
chaotic dynamics has been found. The mentioned simple systems have been also investigated
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experimentally. It has been observed, that for a restitution coefficient equal zero a velocity of
the reflected body was also equal zero which allows one to construct a one dimensional map.
In addition, two dimensional maps, as the singular perturbations of the one dimensional, have
been analysed.

The existence and stability of the vibro-impact periodic motion have been investigated
[12]. The intervals of parameters, for which the stable vibro-impact motion does not appear,
have been numerically detected [8, 9, 13]. For some of those parameters, the bifurcation
processes leading to chaotic dynamics have been observed. In reference [14] the vibro-imact
chaotic dynamics using the Duffing [15] oscillator has been reported.

Recently more attention is paid to the analysis of the chaotic vibro-impact dynamics in
one- and two-degree-of-freedom oscillators with various friction models.

The peculiar bifurcation governing a transition between vibration with and without impacts
has been analysed (the so called “grazing bifurcation) [16]. The effect of the folded vibro-
impact rotating bodies on the periodic and chaotic dynamics has been reported [17]. An
interesting proposition of the vibro-impact dynamics using the catastrophe theory has been
outlined [18].

The vibro-impact systems are very important in industry. It turned out that purely
theoretical impact models governed by an artificial rule between the velocities just before and
just after an impact (joint via the restitution coefficient) had not been satisfactory confirmed
with the experiments.

Nowadays, in the field of the vibro-impact phenomena two main directions of
investigations are dominating. The first one concerns the mathematical description of a vibro-
impact motion including the restitution coefficient. The experimental investigation shows that
it depends on many parameters such as material of impacting bodies, their shapes and
velocities [19, 20] and therefore it is difficult to define it exactly.

The second direction concerns the control of vibro-impact systems. Many references are
devoted to a field of control of the nonlinear systems including the control of chaotic orbits
[21. 22]. Among them we mention only the control methods with a delay loop [23], the
adaptive control [24], the learning control systems [26] and others[25].

Generally, the aim of those approaches is to control rather complicated systems where
mathematical model is not known and their dynamics is tracking numerically. In contrary to
those methods, in this work we propose an analytical approach to determine suitable delay
loop coefficients to realise the required vibro-impact periodic dynamics for both resonance
and non-resonance cases. The obtained analytical formulas allow for a proper choice of the
delay loop coefficients in order to achieve the required vibro-impact periodic motion quicker
then in the case without a loop. When the vibro-impact periodic motion is achieved the delay
loop is automatically switched off.

2 THE ANALYSED SYSTEM

The analysed system with the kinematic excitation is presented in figure 1. The system
dynamics (including a delay loop) is governed by the equation:

#+ct+a’x = Pycosar + S[x(t) - x(¢ -]+ Q[x(r) - ¥ - 7] for x<s, (1)
x,=x_, X =-Rx_ for x>y,

where: c=c¢,/m, a* = (k, + kl)/m, By =kyyy[m, S=k,p/m, O=k,q/m and T =2nk/w
is the period of a stabilised periodic orbit, R denotes the restitution coefficient, and s is the
constraint. The natural number k defines the number of excitation periods occurring during
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one impact. The indeces ™+” and "-" define positions and velocities of the body just after and

before an impact, correspondingly.
(@ (b)

x y=ycos(ax+g)  Yocos(ar+p) )
> y .. . .
¢ 74 [" mi+c %+ (k) +ky)x = kyy -
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Yy, =a [t(:} -x(r - T)] 4
+by[5{1) - #{¢ - 7)]

Figure 1. One-degree-of-freedom vibro-impact system kinematically excited (a) and the control diagram (b)

It is assumed (see figure 1) that the stabilised periodic orbit xy(f) = x,(r = T) has the
period of the excitation the same as in the system without that loop and that x,(r) is the

particular solution for the system with and without the delay loop [27-29]. The delay loop
starts to operate when the disturbances occur and is going to act on the dynamics in order to
achieve the vibro-impact periodic motion quicker than in the case without a loop.

2.1 Periodic motion

Consider the periodic vibrations of the analysed system without the delay loop. Then, the
vibro-impact dynamics (1) can be reduced to the following form:

i+ci+a’x=Pycosax for x<s, 2)
x, =x_, X, =—-Rx_ for x>s

The solution to the equation (2) has the form:

x(t)=e"(Ccos Ayt + Dsin 4t) + F, cos(ax +6) for x<s, (3)
x,=x_, X, =—-Ri_ for x2s,

where:
By

" \[(az-wz)w’w’ . =Jaz_(32 ’

and the coefficients C, D, and @ are defined using the impact boundary condition. The
boundary conditions have the form:

t=0, x(t)=s, x(t)=x,, 4

(=2 28 x)=s, #(0)=%..
w

Differentiating the equation (3) and taking into acount the boundary conditions (4) we get
the following four equations:

C+ Ficosf=s,
-05cC+ A4D-Fwsinf =x_,

e"*(CcosZﬁA, + Dsin2£&)+ F, cosf =5,
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- 05ce#(Ccos2p4, + Dsin24 ) +e # (4 Deos2f4, - 4,Csin2p4 ) - Fosind=%_,

which gives
¢ A
=5 o -— 2
C=s5—-F cos8, D Sn2pA (c cos2fA ), | 5)
sinf= Lx_, cosﬂ=-§,——Mi,,
1
S mee1-5 e 0
F, F:
= I+ M '
and.

—0_5c(R+l)sm2ﬂ/1, +),[(R 1)cos284, +¢e* - Re™* ]
AFo|2c0s26%, —e* %)
_ (R+1)sin282,
- A,F,(2cos2ﬂﬂ, -e” —e'ﬁ‘)O

©)

3 CONTROL NEAR THE MAIN RESONANCE

In order to find the analytical solution to equation (1) the approximate analytical method
has been applied assuming that:

— the difference x(¢) — x(t — 7) is small,

— the damping ¢ is of the same order as the introduced formally perturbation parameter ¢ .

From equation (1) one obtains:

.i"+a2x=0{Pocosax+.5'[x(r)-x(r-T)]+4[l—é—)i—(r)—i(t-T)]} for x<s (7

x,=x_, X, =—Rx for x2s.

We are looking for solution in the form:
x(t) = acosy.

We assume that the amplitude of the excitation is small and in the resonance case (@ = @)
we use the method of equivalent linearization {20, 29]. The problem is reduced to the analysis

of the following equivalent linear equation with the error of O(a’) :
¥+ 2h (a)k + a’(a)x = £P, cosax (8)

where:
el S .
hia)=h = ——[—- sinal -c+ Q{1 ~ cosaT)},
2|a
el S .
ela)=a,=a+ E[E(msaT ~1)+ QOsin aT}

The solution to the equivalent linear equation (8) has the form:
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x()=e ™ (Ccost + Dsin )+ Fcos{ax +6), for x<s, (9)
x,=x_, X, =-Rx for x2s,

where:

A -
F=7 0 A=ya; -h

J(a, -0?)+4hlo’ ,

and the parameters C, D, and & are defined using the relations (5) and (6).

3.1 Stability

In order to investigate the stability we use the following approach [6). When the vibro-
impact periodic solution (9) is disturbed because of d,, then it causes a change of the C and
D and the phase shift of &C,, 6D, and 86, , correspondingly.

The perturbated solution has the form:

x+&, = é"""[(Cﬂ‘.‘C,)cosAt, +(D+ JD,)simu,]-e- Fcos(ax, +8+56)). (10)

In the above relation the time ¢ is measured beginning from the /-th impact The next impact
occurs in the time movement i, =2ad/w+61;,, where &7, denotes the period change.

Because 7 is related to the unperturbeted equation, therefore 7, =t + &, , where &, = 0 for the
I-th impact and &, = 8T, for /+1 impact.
After transformations we get:

&) = e*|(5C, + AD&, - h,C&)cos it +(6D, - AC&, - b, D& )sin i+

(11)
- Flwd, +88)sinlax + 6).

Introducing the following boundary conditions for the /-th and (/+1)-th impact:

I t=0, & =0, & =0, &, =d&

27k
I+1: r=—a-)--+5r,=2ﬁ+&,, & =0T, & =0, & =&_,,_, (12)

s 2

we get the following six equations:
o, - Fé8 sinf =0,
-h,8C, + AdD, - Fwdb cosf = &, ,

&C,,, - F50,,, sinf =0,

~h3C,,, + 16D, - Fodl, cosf = &

{fel)e?
e MM (SC, + ADST, - h,C6T,)cos A(2+ 8T, ) +

+(8D, = ACST, ~ h, DT, )sin A(28 + IT, )| - F(wdT, + 88, )sin(wsT, +6) = 0,
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e-h,t:’*ﬂ;)[(_ h.&C, - 2h, ADST, +C(hf -2 )51; + A&D,)cosi(2ﬁ+é?})+

+(~ h,8D, + 2h, ACST, + D(h? - 22)8T, - A6C, )sin A2+ T )] +

- Fal@6T, + 66 ) cod wdT, + 6) = &

(++1)-"
]
Taking into account that 86, = 66, + Zoxﬂ:, we finally get the following three equations:
rul)
oC, - Fo6,siné = 0, (13)

. 1
e {JC, cos2A + 1), sin2 A + ;,-(59“1 - 66, I{w- h,C)cos22 +

~(4C+h,D)sin2p4)} - &C,,, = 0,

Re™ {(48D, - h,8C, )cos2 4~ (A8C, + h, 8D, )sin2 A +
1
+=(86,, -5 J(-2hAD+C{r? - #))cos22 +
+(2n,AC+ D} - #))sin2pA]} - h,&C,., + A8D,,, — (R +1)68,, Farcos6 = .

The solutions are being sought in the form:

&, =‘JIJ"’ oD, =az?'l! 66 =a:7" (14)

where y denotes the constant. Substituting (14) to (13) we get the following characteristic
equation:

b,y +by +b, =0, (15)
where:

b, = /I{Fsine - é e [(AD-h,C)cos2pA - (AC+h, D)sinZﬁil]}, (16)
b =e* {Fsine[(x ~1)Acos284 - (R+ 1, sin2 A |- (R +1)Fa cosBsin2 1 +
+ i #(h.C - ADY Re™™ - cos22) - (AC + h, D) sinZﬂA]},

by, = Rie™ ™ [ﬁ(w- h.C)- Fsina}

The problem of the investigation of this equation stability is reduced to the analysis of the
roots of the second power equation (15). If these roots fulfil the following inequality:

Inal <1, a7

then, in accordance with the expressions (14), the solutions 8C), 8D; and 86 approach zero at
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l—> +0, and the solution will be called asymptotically stable. The above inequality is
equivalent with the location of the roots inside the unit circle of the complex plane.

3.2 Simulation results
The figure 2 presents the simulation model of a one-degree-of-freedom system (see
figure 2a) and the control of the system (see figure 2b) constructed in the MATLAB-Simliink

package.
The following system parameters were used for the simulation: m=1[kg],

¢, =002[Ns/m), kK, =7[N/m], k,=1[N/m]}, w/a=099, y,=001[m], R=065,
s=0.0005{m]), and the parameters of the feedback loop: p=0{N /m] and g = -0.01[Ns/ m).

Figure 3 presents the simulation resuits in the form of phase planes and the transients of the
difference x(t)—x(¢—T). To compare these transients, an additional 1 parameter has been
adopted. That parameter defines the time interval where the signal [x(r) - x(r - T)| < p. In the
simulation p = 10,

(®)
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Figure 2. Simulation mode! of the one-degree-of-freedom vibro-impact system kinematically excited (a)
and the delay loop contrel (b)
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On the basis of the figure 3 one can conclude that the feedback loop system with a time
delay stabilises more quickly (in 38 seconds) than the system without the loop (42.5 seconds).
On the basis of the analysis of the stability of both systems, the following results were

obtained: |y,,|=0635 for the case without the loop, and |y, ,|=0.574 for the case with the

loop.
(a)
15:210"" . _ «10°
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Figure 3. Transienis x(/) - x(+-T) and the phase planes for the system: (a) without the feedback loop
(p =0, g = 0); (b) with the feedback loop (p = 0, g = -0,01)

4 TWO-DEGREE-OF-FREEDOM SYSTEM

In the figure 4 a control of a two-degree-of-freedom system with impacts with a use of the
delay loop is presented.

It is obvious, that a control of the two-degree-of-freedom system can be realised in many
ways. Below two fumdamental ways are mentioned:

1. A delay loop acts on the velocities and displacements related to only one of two masses;

2. Two delay loops act on the velocities and displacements of each of the masses.
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In this paper we present the first possibility, where the delay loop acts on the mass m;, (see
figure 5).
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Figure 4, Schematic of the two-degree-of-freedom system (s denotes the constraint, m; are the masses, c; are
damping, k; are the stiffnesses coefficients and fis the friction coefficient)
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Figure 5. Schematic of contro! of the system presented in figure 4

The system dynamics is governed by the following equations:

X, +2bx+ F| sgn(.v’cl - X, ) +alx, -ahx, = P,cosa,
(18)
£, +2b)%, - Fysgn(x, - %, )+ e (x, - x,) = S[x,(r) ~x,(t - T]]+ q:&z(r) A T)],

where: b, =¢,/2m,, b,=c,2m,, F=f/m, F, = f/m,, af,=(k,+k2)/m,, afz=k2/ml,
ap =k,/my, P=PF[m, S=p/m, Q=q/m, and T =27k/a.
When the mass m, meets the border, we have:

Ky, =Xy, Ky, =—Rx,_ for x; 2. (19)

Using (18) and (19) the simulation model of the investigated system (see figure 6), as well
as its control (see figure 7) are presented using the MATLAB-Simulink package.
The following system parameters were adopted for the simulation: m, =1[kg],

m, =036{kg], ¢, =005[Ns/m], ¢, =005[Ns/m), f=00[N], k =064[N/m],
ky, =036[N/m], F =01[m], @ = 08[rd s'], R=065, s = 028[m] and the feedback loop
parameters:

a) p=0[N/m)] and q =0 [Ns/m] for system without delay loop,

b) p=0[N/m)] and g = -0.05 [ Ns/ m] for system with delay loop.

In order to compare the simulation results the p = 10° parameter, defined as
xi(f) - xi(--T)| < p, has been introduced.

The simulation results are presented in figure 8 in a case without (a) and with (b) the delay
loop, correspondingly. Without the loop the mass m; reaches periodic orbit after 85.5 seconds,
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whereas the mass m, after 77.5 seconds. With the loop the mass m, achieves the periodic orbit
after 70.8 seconds, whereas the mass m; after the 68.5 seconds.

The calculations showed, that application of the delay ioop connected with only one mass
(m3) caused an acceleration of reaching the stable vibro-impact orbit of the second mass (m,).
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Figure 6. MATLAB-Simulink model of the analysed system

Figure 7. MATLAB-Simulink mode] of the control of the analysed system
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§ CONCLUSIONS

In this paper we have presented an analytical approach to estimate the delay control
coefficients for efficient stabilisation or destabilisation of the periodic orbit under
consideration. Although the efficiency of the method is presented for k = 1 (periodic orbit
with the same period as the excitation period) but our considerations are also valid for
subharmonics (for arbitrarily taken k > 1). The validity of our analytical approach has been
testified by numerical simulations.

To date, in the literature available to the authors, in order to achieve the mentioned
objective, the feedback loop coefficients have been adopted in a random way, using the
numerical observation. In this paper, in a case of one-degree-of-freedom system this probiem
was solved analytically for the resonance case. In addition, an efficient control of the vibro-
impact two-degree-of-freedom system has been proposed and illustrated.

(@
W
/\ |
AN
\\/ %

.l T ¥ ‘, T r ] -" Y [

j

|
| I .
A N

) .

4

EL:

e e ——— —r—
SN

-
ad ’ \ /
| Vv
20 as az . X, %2 7] - n ® - ) =, =
Ty

-
——
3
—

Ry
-

-‘-_-_'_"——\—...
I

[ ]

~

R B

ﬂ:l -ﬂli ai 1 I: al - L]

I3

i
P— % — % ¥ @

[

l
|
|
|
|
- 1

Figure 8a. Difference between two transients x(f)-x,(¢-T) and phase plane approaching periodic orbit for the
system: (2) without control (p = 0, g = 0); (b) with control (p =0, ¢ = -0.05)



-34-
(b)

—
1

P

B | |l \ x(0) - 1)

’ wi r .
fl L L
- 4%

- E a8

- as
as
- - c: [T :xl - - - » i = L ] ;_ _l. ¢ -
- o
AN
x(0) - x(-T)
s
X
[
23
2
a4
j ‘+
. . . P
a r o az [] x, ] - » » ® - [ =, ®
Figure 8b

6 ACKNOWLEDGMENT

This work has been financially supported by the Polish Nationals Scientific Research
Committee Grant No 7T07A00210.

REFERENCES

(1] LG. Rusakov and A.A. Kharkevich, ,Forced vibration of systems impacting against a
Step”, Zhurnal Tekh. Phys., Vol. XII, No 12 (1942), in Russian.

[2] L.V. Bespalova, "To the theory of vibro-impacting mechanisms”, /zv. AN SSSR OTN,
Vol. 5 (1957), in Russian.

[3] Yu.S. Fedosenko and M.L. Feygin "Periodic motion of vibrating hammer including the
presence of sliding regime”, Prikl. Math. and Mekh., Vol. 35, 5, 892-898, 1974 (in
Russian).

[4) W. Goldsmith, Theory and physical aspects of impacting systems, Moskwa (1965), in
Russian.



35

(5] M.Z. Kolovskij, Nonlinear theory of impact systems, Nauka, Moskwa (1966).

(6] W.I. Babitskij, Theory of impact systems, Nauka, Moskwa (1978).

[7] F. Peterka, "Laws of impact motions of mechanical systems with one degree of
Freedom”, Part I, 1, Acta Technica CSAV, Vol. 4, 462-473, Vol. 5, 569-580 (1974).

(8] P.J. Holmes, "The dynamics of repeated impacts with a sinusoidally vibrating table”,
Journal of Sound and Vibration, Vol. 82, 173-189 (1982).

[9] S.W. Shaw and P.J. Holmes, "A periodically forced piecewise linear osctillator”, Journal
of Sound and Vibration, Vol. 90, 129-155 (1983).

[10]S.W. Shaw and P.J. Holmes, "A periodically forced impact oscillator with large
dissipation”, ASME Journal of Applied Mechanics, Vol. 50, 849-857 (1983).

[11]S.W. Shaw and P.J. Holmes, "A periodically forced linear oscillator with impacts: chaos
and long period motions”, Physical Review Letters, Vol. 51, 623-626 (1983).

[12]S.W. Shaw, "The dynamics of a harmonically excited systems having rigid amplitude
constraints”, Part I: "Subharmonic motions and local bifurcations”, ASME Journal of
Applied Mechanics, Vol. 52 (1985).

(13]S.W. Shaw, "The dynamics of a harmonically excited systems having rigid amplirude
constraints”, Part II: "Chaotic motions and global bifurcations”, Translations of the
ASME Journal of Applied Mechanics, Vol. 52, 459-464 (1985).

[14]J. Awrejcewicz and K. Tomczak, "Estimation of differences between the precise and
equivalent model based on solutions in the vibro-impact systems”, Proceedings of the
First National Conference of MATLAB Users, Vol. 11, 276-281, Krakéw (1995).

{15]Y. Ueda and N. Akamatsu, "Chaotically transitional phenomena in the forced negative-
resistance oscillator”, [EEE Transactions of Circuits and Systems, Vol. CAS-28, 217-224
(1981).

[16JA.P. Ivanov, "Bifurcations associated with grazing collisions”. In: J Awrejcewicz (ed)),
Nonlinear dynamics: new theoretical and applied results. Akademie Verlag, 67-91,
Berlin (1995).

[17]S. Narayanan and P. Sekar, "Bifurcation and chaos in contact vibrations”. In:
J.Awrejcewicz (ed.): Nonlinear dynamics: new theoretical and applied results, Akademie
Verlag, 376-392, Berlin (1995).

[18]G.S. Whiston, “Catastrophe theory and the vibro-impact dynamics of autonomous
oscillators”. In: J. Awrejcewicz (ed.): Bifurcations and chaos. Theory and applications,
Springer Verlag, 71-95, Berlin (19953).

(19IR. Grybos, Theory of impact in discrete mechanical systems, PWN, Warszawa (1969), in
Polish.

[20]J. Awrejcewicz, Deterministic vibrations of the discrete systems, WNT, Warszawa
(1996), in Polish.

(21]JK. Pyragas, "Continuous control of chaos by self-controlling feedback™, Physics
Letters A, Vol. 170, Iss. 6, 421-428 (1992).

(22]T. Shinbrot, C. Grebogi, E. Ott and J.A. Yorke, "Using small perturbations to control
chaos”, Nature, Vol. 563 (June), 411-117 (1993).

[23]K. Youcef-Toumi and S.-T. Wu, "Input/output linearization using time delay control”,
Journal of Dynamics Systems. Measurement and Control, Vol. |14 (Mar.), 10-19 (1992).

(24]J.-J.E. Slotine and W. Li. Applied Nonlinear Conirol, Prentice-Hall, Englewood Cliffs.
New Jersey (1991).

[25]S. Hara, Y. Yamamoto, T. Omata and M. Nokano, "Repetitive control svstem: a new type
servo system for periodic exogenous signals™. JEEE Transactions on Automatic Control.
Vol. 33,7, 659-668 (1988).



-36-

[26]S. Anmoto, "Learning control theory for robotic motion”, International Journal of
Adaptive Control and Signal Processing, Vol. 4, 549-564 (1990).

[27]1). Awrejcewicz, K. Tomczak and C.-H. Lamarque, "Controlling Systems with Impacts™.
In: J. Awrejcewicz and C.-H. Lamarque, Proceedings of the International Conference on
Nonlineariry, Bifurcation and Chaos: the Doors to the Future, 1.6dz-Dobieszkow, 79-82
(1996).

[28]J. Awrejcewicz, K. Tomczak and C.-H. Lamarque, "Multibody Vibro-Impact Dynamics”,
Proceedings of the 2nd European Nonlinear Oscillations Conference, vol. 2, Prague, 9-
12 (1996).

[29]J. Awrejcewicz, 1.V. Andrianov and L.I. Manevitch, Asymptotic approach in nonlinear
dynamics: new trends and applications, Springer-Verlag Berlin (1998).





