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Flow-induced chaotic oscillations
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ABSTRACT: The mathematical model of a rectangular, thin, flat plate submitted to the aerodynamic force
action, which consists of three nonlinear partial differential equations, is given. The Galerkin procedure is used
to reduce the problem to the consideration of two amplitude equations. Further analysis includes both analytical
and numerical techniques leading to the detection of the Hopf bifurcation, and then also of chaotic motion.
Some new nonlinear phenomena that have occured in the system under considerations are discussed and

illustrated.

1 INTRODUCTION

In this paper we consider the oscillations of a
rectangular plate submitted to a constant aerodynamic
force action. Generally, nonlinear dynamics of the
plates have been analysed by many authors: Bolotin
[1963], Brush [1975], Chia [1980], Dowell [1966,
1967, 1975, 1982], Holmes [1977]. However, our
attention is concentrated on the investigations of the
bifurcation and chaotic oscillations of a rectangular
plate caused by aerodynamic force. The first attempt
to analyse the bifurcation occurring in the rectangular
plate submitted to the action of the aerodynamic
forces and external compressive force was made by
Holmes [1977]. This type of problem has been
analysed also by Bolotin [1963] and recently by
Dowell [1966, 1967, 1975, 1982]. Because our
attention is focused on the bifurcation phenomena and
chaotic motion, we will follow to some extend the
approach presented by Dowell, where the direction of
the acting airflow and the direction of the external
compressive force are parallel to the free supported
ends of the plate. This one dimensional model
permits an approximate solution in the form of the
sinusoidal series with respect to the coordinate x.
Dowell's investigation concerns the influence of two
essential control parameters, i.e. the velocity of the
airflow and the magnitude of the external
compressive force on the transition from steady state
(equilibrium) to a periodic motion (flutter). Then
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Dowell has proved numerically the occurrence of
chaotic motion by the plate. Contrary to his
approach, in our model we have additionally a
concentrated mass m, placed at the point (x,,y,) of
the plate. Finally, in our case the direction of the
acting aerodynamic force is perpendicular to the
freely supported ends of the plate.

Our theoretical approach develops the ideas
presented in Awrejcewicz [1989,1991]. After getting
the averaged governing ordinary amplitudes
differential equations we formulate the Hopf
condition analytically and obtain periodic oscillations
of the analysed system. Then by varying two control
parameters, we analyse two different routes to chaos,
transitional and steady state chaotic behaviour.

2 MATHEMATICAL MODEL

We consider a rectangular, long, thin, flat plate of
length a, width b (b<a) and thickness k, which is
small in comparison with its other dimensions. It is
assumed that the plate consists of a perfectly
homogeneous isotropic material. The concentrated
mass 7, is placed at the point (x,,y,) of the plate. The
airflow with velocity U acts on the plate in the
direction parallel to the y axis. The plate is referred
to the rectangular Cartesian coordinates x,y,z, where
x and y lie in the middle plane of the plate and z is
measured from the midsurface of the plate. We



assume that the plate is subjected to the classical
Hooke's law, but the geometrical nonlinearities,
which appear as a result of taking into account the
rotations of structural elements, play an essential
role.

Based on the theory of the virtual work three
equilibrium equations in the x,y and z directions are
derived.
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where: N, N,,N,, are the membrane forces per unit
length in the rectangular Cartesian coordinates; u,v,w
are displacement components in the midsurface in the
x,y,z directions, respectively; D is the flexural plate
stiffness; m is the plate mass per area; m, is the
concentrated mass; 8(x,,),) is the Dirac delta; p is the
air density; U is the air velocity; M is the Mach
number and ¢ denotes time.

The first two equations describe the static
equilibrium conditions of a dxdy element of the plate
along the x and y axes, respectively. The third
equation presents the dynamic equilibrium condition
along the z axis. The first three terms of the equation
(2.1c) can be easily obtained using the classical linear
plate theory. Three further terms appear as a result of
the consideration of the geometrical nonlinearity. The
terms including masses m and m, are the inertial
terms. The last term describes the aerodynamic force,
which consists of two parts: the force generated by
the convection velocity U(ow/dy) and the force
generated by the direct velocity ow/ot. The details
dealing with the derivation of the formulas of the
aerodynamic force can be found in Dowell [1975]
and will not be repeated here. It should also be
pointed out that this equation plays a fundamental
role in further considerations.

The following boundary conditions are taken into
account:
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for x=0,a:
w=M =0,

(2.2a)
N,=N_ =0,
for y=+b/2:
N,=N_,=0. (2.2b)
We assume the following solution form
W= awtaw, (2.3a)
w, = sin(gx) ,  w, = ysin(gx) , (2.3b)

where a,, a, are the amplitudes of the flexural and
torsional oscillations, respectively, and g=nn/a
(n=1,2,...) is the modal number. The torsional
oscillation occurs because our plate is long and the
direction of the airflow is perpendicular to the free
supported edges of the plate.

The approximate expression for the unknown
membrane forces is

N,=0, N,=0,
2 (2.4)
N, = a? jf:"jv)y{ g—x—%qsin@qx)] A

Now we use the Galerkin method to reduce the
problem to the considerations of the nondimensional
ordinary differential equations and the following
amplitude equations are obtained:
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The set (2.5) consists of the nonlinear and ordinary
autonomous differential equations. The only
nonlinear term appears in the second equation of
(2.5) and is generated by the membrane force N,,.

3 DETERMINATION OF THE THRESHOLD OF
THE PERIODIC OSCILLATIONS

The periodic oscillations appear when with a change
of the control parameter a pair of complex conjugate
eigenvalues crosses the imaginary axis with the
nonzero velocity. This phenomenon is often called as
the Hopf bifurcation (Guckenheimer [1986], Huseyin
[1983], looss [1980], Marsden [1989], Seydel
[1988]). The aim of our approach is to find the Hopf
condition analytically. First we transform the system
of equations (2.5) to the following one:
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We consider the equilibrium point x,=0. Then, we
locally perturb this solution and obtain the linearized
set of differential equations, whose Jacobi matrix is
given below:

(3.3)

The eigenvalues of the matrix J can be found from
the characteristic equation

4 3 2 -
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According to the Hopf bifurcation theorem
(Marsden [1989]), in the critical point there is one
pair of conjugate purely imaginary eigenvalues
A=+iw. We take A=+iw and substitute it to the
characteristic equation (3.4), which leads to

{w“-uz:-”+%= 0 (3.5)
-~ewtaw= 0
(When we take A=-iw, we get the same result.)

Eliminating the parameter © from (3.5), we
obtain:

el-a o+’ =0, (3.6)
with the additional inequality to be fulfilled
o /o,>0 . (3.7

Taking into account the equations (3.4a) we obtain
from (3.6) the Hopf condition in the parameter plane

y-B.



In our case we have examined the plate for different
values of the ratio a/b=1,3,5,10. We have not found
quantitative differences in nonlinear behaviour of the
system. The aim of our research is focused on
tracking qualitative analysis of bifurcation and
chaotic phenomena mainly. Two main results
discussed in the paper, i.e. occurrence of the Hopf
bifurcation threshold as well as nonlinear phenomena
associated with the chaotic scenario are indeed very
similar. For this reason we have limited ourselves to
present and discuss the result for the ratio a/b=10.
We take the following geometrical and physical
parameters of the system as fixed: length a=10 m,
width b=1 m, thickness £#=0.005 m, material
density p,=7.85-10° kg/m’, modulus of elasticity
E=2.1-10" N/m?, Poisson's ratio v=0.3, and we
obtain the graphic representation of the equation
(3.6), which is shown in Figure 1.
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Figure 1. The Hopf bifurcation diagram

The dashed area in this Figure corresponds to the
values of parameters, for which the plate is in the
stationary steady state (static equilibrium position).
After crossing a curve the Hopf bifurcation occurs.
In the close neighbourhood over this curve (dotted
region) the steady state becomes unstable, and the
periodic motion occurs.

4 DYNAMICS OF THE SYSTEM AFTER THE
HOPF BIFURCATION

We have found the periodic orbits for the parameters
of the system (2.5) in the neighbourhood and upon
the bifurcation curve. Now we want to investigate if
there are any other attractors or if the found periodic
orbits are persistent against the changes of the control
parameters. .

The analytical methods applied to the investigation
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of nonlinear behaviour of oscillatory systems usually
lead to complicated analytical formulas and generally
do not give correct "enough" results. The reason is
that only in some rare cases the system of nonlinear
equations can be analytically integrated and our
system is considered to be a complex one (two
degrees of freedom system).We have decided to use
only numerical techniques to avoid the occurrence of
such potential problems.

Again we use two control parameters f and y to
observe numerically the behaviour of the periodic
orbits found earlier.

The analysis has been done for a few arbitrarily
chosen rectangular plates with different geometrical
and physical properties. All the considered cases have
been investigated in a similar way. For the fixed
value of the parameter p we increased the parameter
v beginning from the values close to the Hopf
bifurcation curve. For each pair of the p and y values
we have observed time histories, phase portraits,
Poincaré maps or power spectra. All the mentioned
above numerical tools have allowed for the tracing
dynamical behaviour of the corresponding analysed
system. We have found that for all investigated cases
the scenario of the qualitative changes of dynamics is
similar.

The numerical analysis has shown, that the
periodic motion appears for a broad region of the
control parameters plane above the Hopf bifurcation
curve. The increase of the y, which is located close
to the Hopf bifurcation point causes the increase of
the oscillation amplitude, as well as the increase of
the frequencies observed in power spectra (for this
purpose Fast Fourier Transformation has been used).
There exist values of y parameter for which first
period doubling occurs and a new periodic orbit with
a period twice longer in comparison to the previous
one is born. The basic periodic orbit becomes
unstable. This is the first step of the so-called
Feigenbaum scenario, i.e. a cascade of period
doubling bifurcation (Reiss [1983], Szemplifiska-
Stupnicka [1989]). We have observed it numerically
using power spectra (see Figures 2a-f). :
The sequence of power spectra clearly proves the
period doubling scenario. Each next picture contains
new frequencies twice smaller in comparison to the
previous frequencies. For a certain value of y the
density of the frequency peaks becomes so high, that
eventually it is impossible to distinguish among them.
This indicates that the system is close to the chaotic
motion threshold.

Increasing the parameter y further above the
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Figure 2. Power spectra illustrating period doubling scenario leading to chaos (8=0.2):

(@) y=13900, (b) y=14000, (c) y=14020, (d) y=14025, (e) y=14028, (f) y=14028.3
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Figure 3. Poincaré maps illustrating the development of chaos with the increase of the control
parameter y (for $=0.2): (a) y=14029, (b) y=14030, (c) y=14035, (d) y=14045,

(e) y=14050, (f) y=14055.



chaotic motion threshold, we have observed a reverse
phenomenon, the so called period halving scenario.
It is worthy to be emphasized that the vanishing of
successive frequency peaks takes place on the broad
band power spectrum background. As the result of
such a process we finally get one frequency peak
plunged in the continuous power spectrum. In
Figure 3 the analysis is based on the observation of
Poincaré maps. In Figure 3a we can distinguish eight
separate parts of a strange chaotic attractor, which
correspond to the smallest frequency found in the
broad band spectrum, i.e. f/8. This property is
observed in each next figure. Two adjacent elements
are joined. Finally, we get a fully developed "one
element” compact strange attractor. During our
numerical simulation we have found that there are
some rare intervals of the parameter y for which the
system behaves regularly, the so called periodic
windows. The chaotic dynamics of the system is
exhibited outside these intervals. This phenomenon is
illustrated in Figure 3e.

Increasing the parameter y further we have found that
the scenario beginning from period doubling to full
development of chaos repeats a few times.

For a big enough value of y we have observed
another route to chaos. The periodic motion is
unpredictably interrupted by sudden jumps of chaos.
This phenomenon is called intermittency and was
introduced first by Manneville-Pomeau during their
analysis of one parameter map. The described
intermittency scenario is illustrated in Figure 4. As it
can be seen in this Figure, in the background of
regular motion irregular bursts are clearly visible.
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Figure 4. The example of intermittency chaos:
=0.2, y=16110. -

5 SUMMARY AND CONCLUDING REMARKS

Our attention has been focused on the nonlinear
dynamics of a rectangular plate driven by the
aerodynamic force action. We can divide our
investigation into two parts. In the first part we
emphasize the validity of the technical problems
caused by dynamic instability of the rectangular
plates, we define much more precisely the object of
our investigation, and then we derive the governing
equations. The equations are established on the
nonlinear thin plate theory. We have taken into
account the geometrical nonlinearity due to the
rotation of the structure elements. This leads to the
three partial differential equations and additionally
the boundary conditions have been defined in order
to solve the problem. Because the direction of the
acting airflow is perpendicular to the free supported
edges of the plate and because our plate is long, we
search for a particular solution including the expected
torsional effects together with the usual bending
effects. Then we put the assumed solution to the
governing equations set and after applying the
Galerkin procedure we finally get the set of two
amplitude ordinary differential equations. Thus, as a
final result of our investigation, we have reduced the
problem to the consideration of two second order
ordinary differential equations.

In the second part we have analysed analytically
and numerically the obtained earlier set of ordinary
differential equations. First we have applied the
analytical method in order to define the Hopf
conditions. Then we have checked the obtained result
using numerical simulation and showing a very good
agreement. The key point of our work, however, lies
in the investigation of the occurrence of chaotic orbits
and the analysis of two independent scenarios leading
to it. We have found that above the Hopf bifurcation
curve with the increase of one of two control
parameters the periodic orbit found earlier (after
Hopf bifurcation) becomes unstable, and a new
doubled period orbit is born, then it becomes
unstable, and a doubling period of new periodic orbit
appears and so on. This is the so-called Feigenbaum
scenario, which may lead eventually to chaos. During
this scenario we have discussed in some detail the
development of the strange chaotic attractor, which
is accompanied by inverse bifurcation cascade.
Additionally, our analysis has been supported by the
observation of the Poincaré maps.

During our numerical analysis we have discovered
some isolated "periodic windows" plunged in the
ocean of chaos.



