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Abstract.

A general symbolic-numerical computational approach is
applied to a study of the oscillations of the string type
generator with a time-delay amplifier. First the analytical
perturbation method (supported by symbolic computation) which
yields the averaged differential equations is used and then
the obtained averaged equations are analyzed numerically
showing some surprising phenomena.

1. INTRODUCTION

Our report has two aims. On the one hand we analyze
nonlinear dynamics of the electromechanical system, whereas
on the other hand based on this example a systematic strategy
of solving many other relative problems is given. The
investigation includes a few steps. 1. Equations of dynamics
are derived. 2. The averaging method is proposed and a
written program for symbolic computation yields the averaged
differential equations. 3. A further systematical study of
the obtained equations is developed.

2. ANALYZED SYSTEM AND GOVERNING EQUATIONS

The electromechanical model under consideration is rather
simple. It consists of a distributed mass system (string),
whose oscillations are governed by a partial differential
equation. The dynamics of an amplifier is modelled as a

simple linear oscillator with the damping c and frequency Vk.
The amplifier supplies a current to the string, which is

embedded into a magnetic field. The amplitude of the current
undergoes control changes from the amplifier with time delay.



656

The electromagnetic induction B(x) acting along the string
generates stresses at the ends of the string according to the
following equation

auU.x)d

{
EU)=J;B(x) T

X, (D)

where x is a spatial coordinate, t denotes time, u(t,x) is
the amplitude of oscillations of the string in the (t,x)
point and 1 is the length of the string. The generated
stresses are responsible for the force excitation

Y (t)=h,E(t)-h,E3(t), (2)
where h,, h, are constant coefficients. Dynamics of the
amplifier is governed by the equation

F(OY+2NI()+kI(ty=Y (t-p), (3)
where a "dot" denotes differentiation with respect to t, A is
damping coefficient, and p is a time delay. The changes in

time of I(t) and the changes in x of B(x) causes the oscilla-
tions of the string due to the equation
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where h,, p are constants, and ¢ is a small positive parame-
ter. The frequencies of free oscillations of the string are
given by w,=Ilcs/l, and the homogeneous boundary conditions
are as follows

w(t,0)=u(t,l)=0. (5)

3. AVERAGING METHOD

For ¢=0 the solution to the equation (4) is given by

3 -
TE“‘)‘ (6)

where a,, a; are the amplitudes, and 6,, 0; the phases.

For small enough € # 0 the solution to the equation (4) is
expected to be of the form

X
uo=(Ilcos{u31t+e,)sin(—;—)*—aacos(SLulr+83)sin(

u=ug+eu,(x,a,,a43.,9,,03)+ higher order terms, (7)
We take
B=B,sin(llx/1l)+ B5sin(3llx/1). (8)

For small p the right hand side of equation (3) can be

approximated by Y -puY. The solution to the linear equation
(3) has a form
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Io(t)y=M,cosw, t+N ;sinw,t+Mzcos3w , t+Nzsin3w,t, (9)

where M ,,N,,M;,N; can be obtained and are rather compli-

cated terms.

Further analysis is typical of the perturbation technique
and details can be found elsewhere [1-3]. Because B(x) and
I(t) are defined, therefore equation (4) can be solved using
a classical perturbation approach. Substituting equation (7)
to equation (4) and taking into account that a;,=a;(t) and

0;,=6,(t) (i=1,3) the following averaged equations are obtained

da;

:ﬁ—=efﬂ(al,a3,n)

do,

;ﬁ'=EQJﬂl'anU- (10)

where
1 B;(N;cosO;+ M;sin9;)
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As can be seen from equation (10), we have one variable n
instead of 0, and 6;. This is the key point of the averaging

procedure presented here. Variable mn results from
n=6,-36,, (12)

and again the averaging is applied to the equation (310) in a
somewhat special way, e.g., for i=1 we take 0;=n+30,,

whereas for i=3 we take 0,=(1/3)(065-7m). (It must be acknowl-

edged that the first attempt to derive an averaged set of
equations has been made by Rubanik [4]).

As it is assumed by the averaging procedure, amplitudes aq,

and 0, change with a time very slowly, and a long numerical
integration to trace a behaviour of the system is required.

4. ANALYSIS OF THE AVERAGED EQUATIONS

First the stationary solutions of the equation (10) are
considered. This leads to the question of solving the follow-
ing nonlinear algebraic equations. To solve the problem the
Powell hybrid method and an variation of Newton's method have
been used. It takes a finite-difference approximation to the
Jacobian with high precision arithmetics.

It is rather very difficult task to proof existance of time
dependent solutions in the analyzed system of the averaged
equations. The most expected situation is to find stable
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fixed points, which correspond to the oscillations with con-
stant amplitudes in the original system. One of the important
questions is: in which way the phase flow reaches stable
fixed points, i.e. exponential or oscillatory manner. Theo-
retically the system can also exhibit unbounded solutions as
well as stationary long time aperiodic behaviour can be
found. We have found the various, and sometimes very surpris-
ing phenomena discovered during the numerical analysis.

5. CONCLUDING REMARKS

The obtained results are briefly summarized below.
1. With the increase of the B, constant amplitude a,

decreases, whereas aj; and 1n remain constant.

2. For each value of B, there are two solutions of a, and one
of a3 and a reach set of 7n solutions which possess character-
istic structure.

3. In the case of time dependent solutions the occurrence of
time delay causes loss of stability of a,=a3=0 and sudden
jump to the constant positive values, where they remain con-
stant in spite of 0,(!) time evolution (the new frequency has

0; occurred).

4. Amplitude a, is constant, whereas amplitude a;(¢) monoto-
nously decreases in time, and the phases remain constant
(time independent).

5. A transitional phase modulated state can be realized.

6. After a passage with w through resonance a sudden extin-
guishing of oscillation occurred.

7. Unbounded solutions exhibited by a; has been found.

8. Steady state with the oscillation of a,, a;, 6; and con-
stant 6, is also detected.
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