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PREFACE  

The 15th International Conference “Dynamical Systems - Theory and Applications” 
(DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding 
scientists and engineers who deal with widely understood problems of theoretical and 
applied dynamics.  

Organization of the conference would not have been possible without great effort of 
the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz 
University of Technology. The patronage over the conference has been taken by the 
Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and 
Higher Education of Poland. 

It is a great pleasure that our event was attended by over 180 researchers from 35 
countries all over the world, who decided to share the results of their research and 
experience in different fields related to dynamical systems. 

This year, the DSTA Conference Proceedings were split into two volumes entitled 
“Theoretical Approaches in Non-Linear Dynamical Systems” and “Applicable Solutions in 
Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of 
Springer Proceedings in Mathematics and Statistics entitled “Control and Stability of 
Dynamical Systems”, “Mathematical and Numerical Approaches in Dynamical Systems” and 
“Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will 
be recommended to special issues of renowned scientific journals.  

The DSTA Conference Proceedings include papers covering the following topics:  

 asymptotic methods in non-linear dynamics, 

 bifurcation and chaos in dynamical systems, 

 control in dynamical systems, 

 dynamics in life sciences and bioengineering, 

 engineering systems and differential equations, 

 non-smooth systems 

 mathematical approaches to dynamical systems 

 original numerical methods of vibration analysis, 

 stability of dynamical systems, 

 vibrations of lumped and continuous systems, 

 other problems. 
Proceedings of the 15th Conference „Dynamical Systems - Theory and Applications" 

summarize 106 papers of university teachers and students, researchers and engineers from 
all over the world. The papers were selected by the Scientific Committee of DSTA 2019 from 
360 papers submitted to the conference. Therefore, the reader is provided with an overview 
of recent developments in dynamical systems and can study the most progressive 
tendencies in this field of science.  
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Our experience shows that a broad thematic scope comprising dynamical systems 
encourages researchers to exchange their opinions on different branches of dynamics. We 
think that the vivid discussion will influence positively creativity and will result in effective 
solutions of many problems of dynamical systems in mechanics and physics, both in terms 
of theory and applications.  

We do hope that DSTA 2019 will contribute to establishing new and tightening the 
already existing relations and scientific and technological cooperation between Polish and 
foreign institutions.  

 
 
 
 

On behalf of both  
Scientific and Organizing Committees 

 
 
 

Chairman 
Professor Jan Awrejcewicz 
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Distribution of lifetimes for transient bursting states in coupled 
noisy excitable systems 

 

 

Nurtay Albanbay, Bekbolat Medetov, Michael A. Zaks 

Abstract: In ensembles of coupled oscillators, intrinsic fluctuations often enable 

nontrivial dynamics in seemingly simple situations. We investigate one of such effects 

on the example of two coupled FitzHugh-Nagumo oscillators subjected to external 

noise. At the considered parameter values, the unique global attractor of the 

deterministic system is the state of rest. Additive white noise of low or moderate 

intensity leads to the onset of transient bursting regime: series of intermittent bursts 

(patches of spikes), followed by the abrupt decay to the state of rest. Depending on the 

noise strength and the initial conditions, the number of bursts before the ultimate 

decay displays strong variations. Our numerical studies disclose that in the 

sufficiently large ensembles of realizations, the statistics of lifetimes for the transient 

bursting states follows the exponential distribution. The distribution slope (i.e. the 

mean duration of the bursting regime) depends on the noise intensity, being small for 

very weak noise and asymptotically diverging when the noise becomes stronger. 

Observations on the statistics of transient bursting regimes have been qualitatively and 

quantitatively confirmed by our experiments with the coupled analog electronic 

circuits, modeling the FitzHugh-Nagumo dynamics. We relate the exponential 

character of the distribution to the probability that the trajectory of the system, under 

the action of noise, escapes the local attraction basin of the state of rest. 

1. Introduction 

One of the characteristic properties of the cerebral cortex is its ability to display neural activity even 

in the absence of external stimuli. This effect can be traced from large populations of neural cells 

down to small ensembles of electrically or chemically coupled neurons. Different mechanisms of this 

self-sustained activity are related to excitability: the property of a neuron whose membrane potential 

is contained at the state of rest, to react with the large-scale action potential (spike) to the sufficient, 

but nevertheless relatively weak, perturbations [1]. Collective properties of the neuronal ensembles 

are largely defined by the spiking patterns: the temporal arrangement of action potentials. One of the 

prominent patterns is bursting: alteration of relatively long intervals of quiescence with periodically 

or irregularly occurring groups (bursts) of densely packed spikes. Experimentally, bursting is well 

documented; its adequate mathematical modeling goes back to the formalism suggested by Rinzel [2]. 

In particular, it was shown that for the correct reproduction of bursting, the modeling dynamical 
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system should involve the timescale separation and be of the slow-fast type: the phase space should 

include subsets corresponding, respectively, to slow and fast evolution. 

Recently, it turned out that dynamics of the bursting type, a bit surprisingly, can be observed in 

the setups that, strictly speaking, preclude the existence of bursting [3]. The set of two linearly 

coupled FitzHugh-Nagumo neuronal oscillators was numerically simulated in the parameter region 

where the only attractors were verified to be the stable states of rest or the limit cycles. It turned out 

that these simple attracting states could be reproduced only if the precision of the integrating routine 

was sufficiently high: at the default accuracy of the standard Runge-Kutta integrator, the numerical 

solutions, instead of converging to the equilibrium or mild oscillations, demonstrated non-abating 

large-scale bursting. Inaccuracies of integration played the role of numerical noise; a similar effect 

was observed, when additive white noise was explicitly included into the system. 

Below, we return to the setup with additive noise where, in the absence of random terms, the 

only global attractor is the state of rest. If the noise intensity is sufficiently weak, only mild 

fluctuations around the equilibrium are observed. If, on the contrary, the noise is strong, the 

(deterministically non-existent) bursting is established which does not cease as long as the simulation 

goes on. There exists, however, a remarkable intermediate range of moderate noise intensities, where 

the system finally settles in the neighborhood of equilibrium, but this relaxation is preceded by a 

bursting transient: a number (from a few to thousands) of bursting episodes. A repetition of the 

process with the same starting conditions but under the different noise realization results, as a rule, in 

the transient with the different number of bursting epochs. By repeating this procedure sufficiently 

many times, we obtain the large ensemble of transients, and estimated the probability to observe the 

transient with the given number of bursts (“lifetime”). The distribution of lifetimes in the large 

ensemble of realizations turns out to be exponential; this qualitative result is robust against variation 

of parameter values in the original deterministic system. Furthermore, we model this system of two 

coupled neurons with the help of coupled analog electronic circuits, modeling the FitzHugh-Nagumo 

neurons. There, the noise does not need to be added explicitly: random fluctuations are inherently 

present in the voltage dynamics. Processing the experimental data from the series of experiments, we 

again recover the exponential distribution of lifetimes. 

The layout is as follows. Sect.2 contains formulation of the problem and description of general 

properties of the dynamical system. In Sect.3 we show how the exponential distribution of bursting 

lifetimes manifests itself in numerical simulations, whereas in Sect.4 we describe the analog 

electronic circuit and present results of the experimental measurements. Results are summarized in 

Sect.5; there, we briefly discuss the reasons that stand behind the onset of exponential distributions in 

the lifetime of the bursting transients. 
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2. Model equations and their properties 

The dynamical system consists of two coupled FitzHugh-Nagumo oscillators [4, 5]. Within the 

FitzHugh-Nagumo formalism, dynamics of each individual cell is described in terms of two variables: 

the fast variable 𝑥𝑖  (𝑖 = 1, 2) models the behavior of the action potential whereas the slow 𝑦𝑖 plays 

the role of the membrane recovery variable. 

The governing equations are: 

dx1

dt
= 𝑥1 −

𝑥1
3

3
− 𝑦1 + 𝛾1𝑥2  

dy1

dt
= 𝜀1(𝑥1 + 𝑎1) (1) 

dx2

dt
= 𝑥2 −

𝑥2
3

3
− 𝑦2 − 𝛾2𝑥1  

dy2

dt
= 𝜀2(𝑥2 + 𝑎2)  

Note that the neurons share the value of the parameter ε. When the coupling is switched off (𝛾1 =

 𝛾2 = 0), each oscillator is governed by two parameters: the small positive value of ε ensures the 

separation of dynamical timescales between 𝑥𝑖  and 𝑦i, whereas 𝑎i can be viewed as the “excitability 

parameter”: its value determines whether the cell is in the excitatory (stable equilibrium, |𝑎𝑖| > 1) or 

in the oscillatory (|𝑎𝑖| < 1) state. 

As soon as coupling is switched on, the voltage variable of each cell influences the evolution of 

voltage in the adjoint cell; these mimics electric coupling between the neuronal membranes (“gap 

junction”). By prescribing the signs before the coefficient 𝛾1,2 we deliberately restrict ourselves to the 

asymmetric interaction: the second neuron produces excitatory effect on the first one, whereas the 

action of the first neuron upon the second one is inhibitory. 

Below, the system (1) is treated under fixed values of 𝜀1,2 as well as fixed coupling strengths 𝛾1 

and 𝛾2. In fact, we fix values of excitability parameters 𝑎1,2 as well, but before proceeding that far, we 

need to characterize the stability of the state of rest. 

Equations (1) possess the unique equilibrium at 

𝑥1 = −𝑎1, 𝑦1 =
𝑎1

3

3
− 𝑎1 − 𝛾1𝑎2, 𝑥2 = −𝑎2, 𝑦2 =

𝑎2
3

3
− 𝑎2 + 𝛾2𝑎1 (2) 

if the values of |𝑎1,2| are sufficiently large, this state of rest is asymptotically stable; decrease of |𝑎1,2| 

destabilizes it via the Andronov-Hopf bifurcation. on the parameter plane of 𝑎1 and  𝑎2 this event 

occurs on the circle 𝑎1
2 + 𝑎2

2 = 2. The peculiarity of Eqs (1) is the degeneracy of the Andronov-Hopf 

bifurcation: at strong coupling 𝛾1𝛾2 > 1 , the Jacobian of the equilibrium at the critical set of 
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parameter values possesses not one but two, in general different, pairs of imaginary eigenvalues (see 

Fig. 1). 

 

Figure 1. Stability borders for the equilibrium of Eqs. (1) on the parameter plane of 𝑎1 and 𝑎2, for 

𝛾1𝛾2 > 1. Gray color indicates stability region. Thin solid lines (red): conventional Andronov-Hopf 

bifurcations. Thick solid line (blue): degenerate Andronov-Hopf bifurcation, where all four 

eigenvalues of the Jacobian are imaginary. Red filled circle: fixed set of parameter values, used for 

simulations and experiments. 

Below, we fix all parameter values inside the stability domain of the equilibrium (file red circle 

in Fig. 1; 𝜀 = 0.1 ). Although we were unable to present the mathematical proof that at these 

parameter values the state of rest is stable not only linearly, but also globally asymptotically (in other 

words, that non-stationary attractors are absent), numerical experiments with large set of randomly 

chosen initial conditions invariably display convergence to the state of rest. In particularly, no 

bursting behavior has been observed at these parameter values. 

3. Transient bursting in presence of noise: results of numerical simulations 

Let additive white Gaussian noise with intensity 𝑇 act upon the voltage variables of both interacting 

neurons: 

dx1

dt
= 𝑥1 −

𝑥1
3

3
− 𝑦1 + 𝛾1𝑥2 + √2𝑇𝜉1(t)  

dy1

dt
= 𝜀1(𝑥1 + 𝑎1) (3) 
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dx2

dt
= 𝑥2 −

𝑥2
3

3
− 𝑦2 − 𝛾2𝑥1 + √2𝑇𝜉2(t)  

dy2

dt
= 𝜀2(𝑥2 + 𝑎2)  

where the stochastic terms 𝜉𝑖(t) are delta-correlated: 〈𝜉〉𝑖(𝑡1)〈𝜉〉𝑗(𝑡2) = 𝛿𝑖,𝑗(𝑡1 − 𝑡2). 

Recall that at in the absence of noise (𝑇 = 0), the only attractor of the system is the equilibrium. 

Accordingly, one might expect that numerical integration of the stochastic differential equations (3) 

should display random oscillations around this equilibrium. Instead, however, we observe the 

characteristic bursting state: violent fast oscillations, separated by segments of relatively slow 

evolution. At large and moderate values of  𝑇 the system does not cease to burst during the whole 

integration interval. At smaller intensities of noise, the regime of bursting has transient character: 

after a finite number of bursts, the system settles in the vicinity of the equilibrium. Remarkably, even 

under fixed intensity of noise and fixed initial conditions in the phase space, duration of the transient 

appears to be unpredictable: sometimes relaxation to the equilibrium begins already after a few bursts, 

whereas in other trials tens and hundreds of bursts are required. The number of bursting episodes 

varies with every new realization of noise. This phenomenon is illustrated in Fig. 2. 

 

Figure 2. Variation of the number of bursting episodes for different realizations of additive noise in 

Eq.(3). Noise intensity: 𝑇 = 2 × 10−10. All trials start at the same position in the phase space. 
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A large sample of noise realizations delivers the ensemble of different lifetimes of the transient 

bursting states. We quantify this distribution of lifetimes by calculating the probability 𝑝(𝑁0) that at 

least 𝑁0 bursts occur before the ultimate relaxation to the state of rest. Results of these calculations 

for a range of noise intensities 𝑇 are displayed in Fig. 3.  

 

Figure 3. Distributions of lifetimes of the bursting transients at different values of  the  noise 

intensity 𝑇. For every shown value of 𝑇,  105 realizations of noise have been used. 

Presentation in semi logarithmic coordinates shows that in all cases the distributions are close to 

exponential: 

𝑝(𝑁0) ~ 𝑒−𝑘𝑁0  (4) 

The slope of the distribution κ yields the inverse average number of bursting episodes. As seen from 

the plot, the value of κ decreases when the noise intensity 𝑇 is raised. Further calculations have 

disclosed that the value of κ also depends on the distance to the stability border of the equilibrium in 

the state diagram: the further from the border (deeper into the shaded domain in Fig. 1), the steeper 

the distribution. Results of estimation of κ for two combinations of parameters of the deterministic 

system are shown in Fig. 4. 
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Figure 4. Slope of exponential distributions of the transient bursting lifetimes for different values of 

𝑇 and two different values of the parameter 𝑎2 in Eqs (1). 

4. Experimental setup and measurements 

It is known that all natural neural systems are analog. In this regard, we decided to check whether we 

get the same effects in the analog system that we observe in the system of two connected FitzHugh-

Nagumo neurons, solving the corresponding equations by numerical methods. For this purpose, we 

collected an analog electronic circuit simulating the equations (1) and (3). Figure 5 shows an analog 

electronic circuit corresponding to equation (3). But there is a slight difference from equation (3), in 

the circuit, noise is added only to the variable 𝑥2. 
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Figure 5. Diagram of an analog electronic circuit simulating a system. 

18



And Fig. 6 shows a diagram of the noise generator, which used in our experimental setup [6]. 

 

Figure 6. Scheme of an analog electronic circuit simulating a system. 

19



To exclude the influence of various external conditions and increase the stability of the electronic 

installation, the analog circuit was assembled on a printed circuit board and closed in an aluminum 

case. Figure 7 shows the inside view of this installation. 

 

Figure 7. The inside view of an electronic installation for analog system simulation. 

To digitize and write to the computer the signals obtained from this electronic installation, the 

platform of the educational and laboratory complex NI Elvis II + [7] and the LabVIEW software [8] 

were used.  

For each noise level and system parameter values (Eq. 3), we repeated the experiment 5,000 

times. At the same time, the duration for one experiment was set to 10 seconds, since such a length of 

time is sufficient for all bursts barks to calm down in the system and the system can go to rest. 

Further, the obtained data, which were previously recorded in separate files for each 

experimental measurement, were processed using a program developed in the MatLab environment. 

This program first of all recognizes bursts in the signal and counts them. Recognition of burst is 

carried out using spectral analysis of a signal fragment. Such a method of recognizing bursts works 

quite steadily, since in the spectrum of bursts there is always one pronounced energetic peak 

corresponding to the spike repetition rate. 
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Figure 8 shows several graphs of the temporary implementation of experimental data 

corresponding to the values of the variable 𝑥1.  All these implementations were obtained with the 

same values of the system parameters (Eq. 3) and the same noise level. 

 

Figure 8. Temporary implementations of signals obtained from an experimental setup. The 

values of system parameters and noise level are the same in all cases. 

As the graphs in Figure 8 show, the number of bursts before attenuation, as well as in the case of 

numerical studies, turns out to be different when using the same values of the system parameters and 

noise level. Further analysis of the distribution of the number of bursts before attenuation in the data 

obtained from an analog experiment also showed that it obeys an exponential law. Experiments show 

that with a low level of noise, the bursts fade out faster. 

One can easily be convinced that the distribution of the number of bursts according to 

experimental data obeys an exponential law. For this, graphs of this distribution are plotted on a 

logarithmic scale along the ordinate. The graphs are shown in Figure 9. 
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Figure 9. Distribution of the number of bursts before attenuation depending on the noise level 

according to data obtained from an analog device, where E is the noise level. The logarithmic scale is 

used along the ordinate. 

5. Conclusions 

Here, we briefly comment on the mechanism that stands behind the exponential distrubution of 

lifetimes. Like bursting itself, it appears to be enrooted in the slow-fast nature of the deterministic 

dynamical system (Eq. 1) at small values of ε. In the four-dimensional phase space of (Eq. 1) there is 

a two-dimensional surface 𝑆𝑠, corresponding to the slow motions. Upon this surface, both 𝑑𝑥1/𝑑𝑡 

and 𝑑𝑥2/𝑑𝑡 vanish; hence, algebraically 𝑆𝑠 is defined by the equations 

𝑦1 =  𝑥1 − 
𝑥1

3

3
+ 𝛾1𝑥2 ,   𝑦2 = 𝑥2 −

𝑥2
3

3
− 𝛾2𝑥1 (5) 

The state of rest (Eq. 2) lies on 𝑠𝑠 . In the deterministic setup, the typical phase trajectories 

rapidly reach the vicinity of 𝑠𝑠  and then slowly converge to the equilibrium (which, under the 

employed parameter values, is a stable focus), to stay there forever. Introduction of noise distorts this 

picture; the reason is of geometric character: the slow surface (Eq. 5) is not flat, but folded. Whenever 

a trajectory, slowly evolving along 𝑠𝑠, reaches the fold, it “slides off” into the space of fast motions 

and performs there several violent large-scale oscillations before returning to 𝑠𝑠 again; taken together, 

these oscillations correspond to a single bursting episode. In a sense, this construction is akin to the 

textbook mechanism of relaxation oscillations in the Van der Pol equation, where the segments of 
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slow evolution are interrupted by fast flights between the branches of the slow curve. The stronger the 

noise, the higher are the chances that the trajectory, in the course of approaching the state of rest, gets 

kicked to the fold and leaves the slow surface, starting the next bursting event. Notably, once the 

trajectory has reached the sufficiently small neighborhood of the equilibrium, it becomes “safe”: there 

the deterministic motion towards the stable state of rest dominates, and the noisy departure to the fold 

becomes virtually improbable. 

At fixed intensity of noise there is a well-defined probability 𝑝𝑒𝑠𝑐  that the trajectory, arriving at 

the slow surface ss and tending to the state of rest, will, on its way, escape: reach the fold, with 

subsequent bursting. [The value of 𝑝𝑒𝑠𝑐   can be estimated e.g. by means of constructing the Fokker-

Planck formalism for the motion along 𝑠𝑠; this problem lies outside the scope of the current paper]. 

Consider a large ensemble of orbits: M trajectories, starting in the appropriate region of 𝑠𝑠 . 

Approximately 𝑀(1 − 𝑝𝑒𝑠𝑐) trajectories march to the equilibrium directly, without bursting; their 

evolution is effectively ended at the state of rest. The remaining ≈ 𝑀 𝑝𝑒𝑠𝑐 trajectories participate in 

the first burst and subsequently return to the slow surface. Part of them is then directly absorbed by 

the stable equilibrium, but ≈ 𝑀 𝑝𝑒𝑠𝑐
2   orbits perform the second burst, ≈ 𝑀 𝑝𝑒𝑠𝑐

3  trajectories feature 

the third one, and so on. This is a geometric progression: for a randomly chosen trajectory from the 

original ensemble, the probability 𝑝(𝑁0)  to perform at least 𝑁0  bursts equals 𝑝𝑒𝑠𝑐
𝑁0 = 𝑒(log 𝑝𝑒𝑠𝑐)𝑁0 , 

resulting in the exponential distribution of the lifetimes of bursting transients. The slope 𝑘  of the 

distribution equals −𝑙𝑜𝑔𝑝𝑒𝑠𝑐 . Apparently, 𝑝𝑒𝑠𝑐  is the monotonically growing function of the noise 

intensity 𝑇 ; if the noise is strong, 𝑝𝑒𝑠𝑐 approaches 1, and 𝑘, respectively, shrinks: the decay of the 

distribution becomes rather slow, so that the observed numbers of the bursting episodes reach 

thousands and hundreds of thousands. In this situation, within the maximal available 

computational/observational time intervals, it is hardly possible to distinguish between the transient 

(albeit extremely durable) bursting states and the non- decaying bursting regime. 

The necessary ingredients of the described mechanism are: (a) the slow-fast dynamics involving 

the stable state of equlibrium, (b) the folded surface of slow motions in the phase space, and (c) 

existence of fast large-scale oscillations with subsequent reinjection close to the slow surface. We 

expect this kind of transient bursting dynamics, obeying the exponential distribution of lifetimes, to 

occur in the large class of neuronal models. Noteworthy, exponential distributions for the lifetimes of 

bursting transients were reported in [9] for large ensembles of randomly linked neurons; apparently, 

there the “quenched disorder”, owing to the randomness of connections, plays a role, similar to the 

action of time-dependent noise in the small ensemble, considered in the current paper. 
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On backward whirl excitation in linear time-variant intact and 

cracked rotor systems 

 

 

Tariq Alzarooni, Mohammad AL-Shudeifat, Oleg Shiryayev, C. Nataraj 

Abstract: The appearance of backward whirl (BW) phenomena in cracked rotor systems 

that are exposed to recurrent transitions through the critical forward whirl rotational 

speeds during startup and coast down operations could result in a catastrophic failure, 

which, in turn, poses serious economical and safety complications. This phenomenon 

is investigated here for rotor systems with a breathing crack model. The Finite Element 

Model (FEM) is used to develop the equations of motion of the considered cracked 

rotor systems in which startup acceleration is considered. In addition to incorporating 

the breathing crack, the effect of anisotropic and isotropic bearings on the excitation of 

this BW phenomena is also examined. The appearance of BW zones is more prominent 

at increased angular acceleration rates for the anisotropic bearing case of the cracked 

rotor. It is found that the BW zones are captured at nearly all values of crack depth 

ratios for the anisotropic bearing case. However, these zones only appear at relatively 

high crack depths for the isotropic bearing case. 

1. Introduction  

Backward whirl (BW) or backward precession in rotary systems is a dangerous phenomenon, which 

could eventually result in a catastrophic failure which would have serious environmental, health and 

safety implications. Therefore, early fault detection is essential to sustain safe working conditions and 

to minimize the cost burden due to potential equipment breakdowns and disruption of operation. 

Bearing damage, sometimes coupled with a propagating crack, could potentially excite backward 

whirling in rotors. Accordingly, studying the dynamic behavior of cracked rotor systems has gained 

broad interest in fracture mechanics and asset integrity fields.  

 Switching, or a hinged crack model, was first introduced by Gasch [1] to simulate fatigue crack 

behavior via abrupt stiffness change from a fully open to a fully closed crack at a certain shaft rotation 

angle within a complete revolution cycle. On the other hand, a breathing crack model proposed by Jun 

et al. [2] represents the behavior of a fatigue crack via gradual opening and closure over a complete 

revolution cycle. Considering intensive unbalance excitation and static loads of the rotor system, the 

breathing crack model better replicates real world rotor behavior. Consequently, the breathing crack 

model is further pursued in the current paper.  
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Breathing cracks have been extensively investigated by many researchers since early 1980’s, vast 

majority of whom have modeled the breathing crack behavior in the form of a stiffness variation using 

a simple cosine function [3-21]. This method was originally proposed by Mayes and Davies [3]. An 

alternate explicit breathing function was proposed in [5] to account for saturation of crack breathing 

behavior using a softly-clipped cosine function. The aforementioned breathing function allows lower 

lateral displacement amplitudes due to energy being dissipated among a higher number of harmonic 

response components. 

 Another modified cosine function was introduced in [6] to prevent total crack closure.  In a separate 

direction of work, the breathing mechanism was modeled using a steering function, which induces 

periodic local variation in stiffness parameters [10-12]. The steering function is obtained from a 

combination of theory-based stress-strain linear correlation assumption and previously performed 

experimental tests. Breathing cracks were also modeled using a harmonically varying stiffness within 

a revolution in two coordinate directions [13]. The study showed that high accuracy was attained using 

only two harmonic terms.  

 Al-Shudheifat et al. have developed three new breathing functions [22,23,25], which were based 

on a Fourier Series expansion for representing time varying moment of inertia for the cracked rotor 

element. The breathing functions are used in formulating the actual time-varying stiffness matrix of the 

cracked element. Two breathing functions were derived in [25], which represent stiffness variation in 

lateral and transversal rotor directions, while the third breathing function was derived in [23], which 

represents the coupling behavior in the form of the product of inertia. The proposed functions are 

arguably more precise in resembling the actual breathing mechanism compared to cosine or steering 

functions. More details regarding the theoretical basis of these breathing functions and their comparison 

with traditional cosine function representation is discussed in [25]. 

 Whirl orbit analysis associated with the breathing crack model has been studied in depth by many 

researchers [4, 16-17, 23, 25, 26-30]. In [23] the whirling orbits were studied at 1/3 and 1/2 of the 1st 

critical rotor speed in correlation with the presence of breathing cracks. It was found that the appearance 

of two inner loops during rotor speed passage at 1/3 of 1st critical speed can represent a clear signature 

for presence of a breathing crack in the shaft. Further, the appearance of a single whirl orbit during rotor 

speed passage through 1/2 of 1st critical speed was found as an additional indicator for the presence of 

the breathing crack. Similar studies have been performed in [27] on a cracked rotor system whereby 

analytical and experimental analysis of orbital plots were performed. Analytical results showed 180⁰  

shift in phase orientations before and after passages through 1/2 and 1/3 critical speeds. Experimental 

results have not yielded the same orientation shift mainly due to the excessive damping present in the 

system.  
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 In [16] a rotor dynamic analysis was conducted, in which the breathing crack model is assumed to 

be independent of the shaft’s weight dominance for governing the breathing crack mechanism. Instead, 

an angle between the crack direction and the shaft whirling direction is used for determining the opening 

and closing behavior in the model for the breathing crack. It was concluded that the steady-state 

response amplitude peak is determined by the imbalance orientation angle regardless of the rotor’s 

condition in terms of the crack presence.  

 In [25] the position of the orbit loops was studied as a function of the BW and FW frequencies. It 

was found that the outer loops appear during the passage through the subcritical backward whirl speed, 

while the inner loops appear during the passage through the subcritical forward whirl speed. It was also 

reported that the orientation and the number of these loops can be indicatively used for rotor crack 

diagnosis. Experimental analysis was also used to verify analytical and numerical findings of whirl 

analysis. In [4] the shift in FW and BW frequencies was studied in the presence of multiple cracks. It 

was found that their relevant frequencies decrease with increasing crack depths and orientations.  

 Whirl orbit shape has also been extensively investigated in [17] using general harmonic balance 

technique followed by experimental verification. It was found that the shaft’s amplitude corresponding 

to BW frequency appears to be larger than the one corresponding to FW frequency at a very low crack 

depth. The results also showed the appearance of the shaft’s BW at lower frequency values than FW 

frequency within the subcritical speed range.  

 In [26] whirl orbits for a cracked rotor were obtained from simulations by considering two 

scenarios: with and without the unbalance effect. In the absence of the unbalance effect, BW was 

observed for a short instant near the critical speed range and following a steep reduction in shaft’s 

amplitude. This phenomenon was attributed to presence of a crack in the shaft as interpreted in [28]. 

However, BW was not observed in the second scenario where the unbalance effect was incorporated in 

the model.  

 In [31-34], a numerical solution using Runge-Kutta integration technique was employed to solve 

for the dynamic response of a rotor during transient operation. A constant acceleration was assumed to 

replicate start-up operation, which would result in a speed linearly varying in time. FE model was used 

in [31-32], whereas a 4-DOF model was used in [33] as an enhanced feature to a simple 2-DOF Jeffcott 

model incorporating gyroscopic effects. These studies were mainly focused on capturing backward 

whirl zones for open crack problems at various crack depths and unbalance force orientation with 

respect to the transverse crack direction.  

 To the best of the authors’ knowledge, no previous studies of backward whirl phenomena during 

transient operation of a rotor with a breathing crack have been reported in the literature. Furthermore, 

it is suspected that the occurrence of backward whirl forms a good indication for presence of a crack 

since it cannot be excited in a crack-free shaft [35]. In the present paper, the transient rotor operation 
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in the form of rotor startup will be simulated at various constant acceleration rates for various crack 

depths. The same simulation is intended to be executed at various unbalance force orientation angles 

with respect to the transversal crack direction. The dynamic response of the rotor will be examined to 

identify effects on the critical forward speed, fundamental amplitude, transient amplitude, and local 

peaks. The obtained results will be compared with the results of analysis obtained in [31-33] for open 

crack cases. 

2. Rotor-disk-bearing system modeling with breathing crack 

The breathing crack model, proposed in [25] is considered here, where its schematic representation is 

shown in Fig. 1. The crack’s opening and closure mechanism is solely dominated by the static deflection 

of the rotor system. This happens due to variation in compression and tension stress states at the 

periphery of the shaft, which results in the crack breathing phenomenon. The schematic of the shaft’s 

cracked cross-section is shown in Fig. 2, where the transverse crack depth h is normalized by the radius 

of the shaft R, which results in a non-dimensional representation of the crack depth μ=h/R.  

 
 

Figure 1.   Breathing crack mechanism and relevant shifting in centroid [25]. 
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Figure 2.   Schematic diagrams of the cracked element cross-section: (a) before rotation and (b) after 

the shaft rotates [23]. 

 

The orientation of the unbalance force vector 𝐹𝑢 is located at angle β with respect to the crack opening 

direction. Considering t = 0 at negative Y axis, and for a complete revolution cycle, the crack is assumed 

to be fully open for the range of angles −θ1 ≤ θ ≤ θ1, partially open for 𝜃1  ≤  𝜃 <  (𝜋 + 𝛼)/2  and 

𝜋 − 𝛼/2 ≤  𝜃 <  2𝜋 − 𝜃1; and, fully closed at (𝜋 + 𝛼)/2 ≤  𝜃 ≤  (3𝜋 − 𝛼)/2. Detailed derivation 

of the breathing crack functions can be found in [25]. 

The underlying physics is that the gradual opening/closure of the cracked element leads to variation 

in centroidal axes location, which, in turn, leads to variation in the stiffness parameter of the cracked 

shaft. Thus, gradual opening and closure of the cracked shaft element within a complete cycle of 

rotation dictates smooth increasing and reduction of the shaft’s stiffness, respectively. In the context of 

analytical modeling using the FE approach, the element containing the breathing crack will undergo 

variation in stiffness based on centroidal shift, whereas the remaining elements shall be treated as intact 

shaft elements based on Euler-Bernoulli beam with circular cross-section. The following schematic 

shown in Fig. 3 represents the FE model used in the simulation. Transverse displacements were 

measured at the 2nd node from the left. 

 

Figure 3.   Schematic diagrams of the finite element disk-shaft-bearing-rotor system (not to scale). 
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The rotor of mass M and length L is divided into finite N-elements with N + 1 nodes and the finite 

element equation of motion is described as follows: 

𝑴�̈�(𝑡) + �̂��̇�(𝑡) + 𝑲𝑞(𝑡) = 𝑭𝑢(𝑡) + 𝑭𝑔 (1) 

where 𝑴, �̂�, 𝑲 are 4(N+1) × 4(N+1) global mass, damping and gyroscopic, and stiffness matrices, 

respectively. 𝑴 resembles the addition of rotor’s classical mass and inertial matrices. �̂� resembles the 

rotor’s total gyroscopic and proportional damping matrices as �̂� = Ω𝑮 + 𝑪, where Ω is the rotor’s 

angular speed and C is a proportional damping matrix obtained via C = 𝛾M+𝜉K where 𝛾 = 0.0005 s-1 

and 𝜉 = 0.00005 s. These matrices are omitted in this paper for conciseness. The overall system 

unbalance force vector 𝑭𝑢(𝑡) has a size of 4(N+1) × 1. Considering 2D rectangular coordinates, the 

unbalance force will have two components on i-th node, at which it is added as per the following 

relations: 

𝑓𝑖 = [𝑓𝑖
𝑢 𝑓𝑖

𝑣 0 0]  (2) 

𝑓𝑖
𝑢 = 𝑚𝑒𝑑Ω(𝑡)2 cos(𝜃(𝑡) + 𝛽)  (3) 

𝑓𝑖
𝑣 = 𝑚𝑒𝑑Ω(𝑡)2 sin(𝜃(𝑡) + 𝛽)  (4) 

where 𝑚𝑒 is the unbalance is mass, d is the distance between the unbalance mass location and the shaft 

center, θ(t) is angular displacement, and β is the orientation of unbalance force vector with respect to 

the transversal crack direction. The elements of 𝑭𝑢(𝑡) at the node corresponding to the disc location 

are given in Eqs. (3-4), while other nodal unbalance forces are set equal to zero. The gravity force vector 

is also included in 𝑭𝑔. Bearings were included in the model through addition of stiffness and damping 

at the corresponding nodes and incorporating them in the global stiffness and damping matrices. 

Analogous to the derivation of the cracked element stiffness matrix in [36] for the open cracked 

model in the stationary coordinates, the following elemental stiffness matrix of the cracked element 

with a breathing crack model is obtained and merged with the j-th cracked element matrix of the global 

stiffness matrix: 
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The rotordynamic transient whirl response is obtained by numerical simulation based on constant 

angular acceleration rate α. The change in rotation angle and angular velocity during the shaft’s ramp 

up are described as 𝜃(𝑡) = 𝛼𝑡2/2  and 𝛺 =  𝛼𝑡 respectively. Subsequently, the gyroscopic matrix 

becomes a time-varying matrix. Furthermore, the two components of the unbalance force vector 𝑭𝑢(𝑡)  

become nonlinear.  The maximum simulation time was set when the shaft reaches the angular speed of 

𝛺(𝑡𝑚𝑎𝑥) = 470 rad/s, or approximately 4500 rpm. The peak whirl amplitude is obtained from 𝑧 =

√𝑢2 + 𝑣2 where u and v represent the horizontal and vertical whirl vibration amplitudes, respectively, 

at the second node from the left bearing. 

3. Numerical simulation results 

Transient responses of the considered cracked single disk configuration (SDC) rotor in Fig. 3 are 

obtained by numerical simulation for the startup operation. The FE model of the cracked rotor-bearing-

disk system is carried out with the physical parameters as listed in Table 1. 

 

Table 1: Physical parameters of the considered rotor-disk system. 

Description Value Description Value 

Length of the rotor, L 0.7 m Disk outer radius, 

 

0.075 m

 Radius of the rotor, R 19.06∙10-3 m Disk Inner radius,  0.019 m

 Density of rotor, ρr 7850 kg/m3 Density of disk, ρd
 
 2700 kg/m3

 Modulus of elasticity, E 210 GPa Mass of the disk, md  0.663 kg
 

Bearing stiffness, kxx, kyy 5×106 N/m, 7×107 N/m Mass unbalance, med 310  kg m   

Bearing damping, cxx, cyy 5×102 N∙s/m Mass unbalance 

angle, β 

varying 

 

Numerical simulation results for startup operation of SDC for asymmetric bearings are shown in 

Fig. 4. The plots are obtained for two crack depth ratios of μ = 0.1 and 0.4 for two different unbalance 

force orientation angles β = 0 and 2π/3 rad. It is observed that in all cases, as acceleration increases new 

local peaks of whirl amplitudes start appearing after passing through the fundamental FW speed. It is 

also observed that zones of BW orbits start appearing prominently following the passage through the 

critical FW speed once the cracked shaft and anisotropic bearings models are incorporated. It can also 

be observed that more zones of BW orbits are captured in the case of μ = 0.4, suggesting a higher chance 

of occurrence of BW at a higher crack depth. 

Furthermore, it is observed that the maximum peak amplitude is directly proportional to the crack 

depth ratio μ. It can also be observed that the maximum FW amplitude is indirectly proportional to the 

rate of angular acceleration. The peak of the critical FW speed is shifted towards higher rotation speeds 

at an increased angular acceleration rate. These findings align well with the findings of earlier work 

oR 7.5cm iR

1.9cm 

32700 kg/m
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that used the open-crack model [31]. One last important observation is that for the same crack depth 

ratio μ and varied unbalance force vector orientation β, the captured BW zones vary accordingly, which 

suggests that the unbalance force orientation vector has an impact on the extent of BW zones captured 

after the fundamental FW amplitude peak. 

 

Figure 4.   Dynamic response of cracked rotor with asymmetric bearing at a) μ=0.1, β=0 rad; b) μ=0.1, 

β=2π/3 rad; c) μ=0.4, β=0 rad; d) μ=0.4, β=2π/3 rad (red color represents BW zones). 

Fig. 5 shows an example of BW orbits (in red) which takes place at minima between fundamental 

and subsequent local FW amplitude peaks in the case of asymmetric bearing conditions. 

        

Figure 5.   Backward whirl orbits for cracked rotor and symmetric bearing  

For isotropic bearings, Fig. 6 illustrates the effect of an ideal bearing condition on the BW zones. 

Similar findings are observed here with regards to capturing of BW zones as in anisotropic bearings 

conditions except for the minor difference that BW zones are only observed at higher crack depth ratio 

(≥ 0.55) compared to the anisotropic bearing condition. Furthermore, the captured BW zones appear in 

the narrower speed range for the isotropic bearing case. 
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Figure 6.   Dynamic response of cracked with symmetric bearings at a) μ=0.55, β=0 rad; b) μ=0.55, 

β=2π/3 rad; c) μ=0.6, β=0 rad; d) μ=0.6, β=2π/3 rad. 

Fig. 7 shows examples of BW orbits (in red) for the cracked rotor with isotropic bearings, which also 

take place at minima between fundamental and subsequent local FW peaks. This observation indicates 

that the BW zones can be observed for isotropic bearings, but at a significantly lower extent.  

 

   
 

Figure 7.    Backward whirl amplitude for cracked rotor and symmetric bearing 

4. Conclusion 

The BW phenomenon is studied here in accelerated cracked rotor systems with a breathing crack model. 

The study was based on numerical simulation using finite element equations of motions (EOM) for 

startup rotor operation. The time-varying stiffness matrix of the cracked element was superimposed in 

the FE model to simulate the breathing behavior of the crack.  The obtained linear-time-varying EOMs 
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were numerically integrated to compute the whirl response of the cracked rotor system during startup 

operation. Whirl behaviors were analyzed during and after the passage of the critical FW speed zones. 

It was found that following the immediate reduction of whirl amplitude after the fundamental FW peak, 

small transient FW peaks start evolving. The extent of these local peaks was found to be directly 

affected by the rate of angular acceleration, unbalance force vector orientation and the crack depth. 

Further, BW orbits were found to be captured in the vicinity of these local transient peaks, particularly 

at the minima between the fundamental FW and the subsequent local transient peaks. BW zones were 

found to be affected significantly by the condition of the bearings. In other words, the extent of BW 

zones was found to be larger with anisotropic bearings condition regardless of the rotor’s crack 

condition. However, for symmetric bearings, BW zones were only captured at relatively high crack 

depth ratio, which suggests the significance of bearing’s condition influence on BW zones. The 

unbalance force orientation vector was also found to have significant impact on the shape of these BW 

orbits. It is necessary to study the combination of BW and FW transient phenomena because it will help 

to develop novel condition monitoring approaches for rotor systems with a goal of early detection of 

rotor crack or bearing damage. 
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Estimation of the domain of attraction for a nonlinear
mechanical system

Jan Awrejcewicz, Dmytro Bilichenko, Akram Khalil Cheib,
Nataliya Losyeva, Volodymyr Puzyrov

Abstract: The paper deals with the problem of obtaining estimates of the do-
mains of attraction and stability for a nonlinear mechanical system. It is based
on special procedure of polynomial Lyaponov function construction. This pro-
cedure is applied to to estimate the domain of attraction for a single DoF sys-
tem (Duffing oscillator) and 3-DoF system. The latter consists of two coupled
linear oscillators, to one of which a dynamic absorber with damping and non-
linear stiffness is connected. Possible advantages and drawbacks of suggested
approach are discussed.

1. Introduction

The stability of a dynamic system to disturbances is a prerequisite for the stable operation

of most technical systems. Therefore, in the theory of control, the problem of asymptotic

stabilization, which consists in finding an admissible control providing the required motion

of a closed system with asymptotic stability, has become especially important. As a rule, the

problem of asymptotic stabilization has many solutions, so there is a need to choose one that

provides the best performance for a closed system. One of the most important quantitative

characteristics of asymptotically stable motion is the domain of attraction (DA) or region

of attraction, i.e., the set of those and only those initial perturbations for which there is an

asymptotic tendency of the perturbed motions to the unperturbed. In this regard, the tasks

of accurately constructing the region of attraction or even its estimation are relevant. When

synthesizing the stabilization law, it is advisable to maximize the region of attraction of the

desired equilibrium state, since the larger the region of attraction, the easier it is to get into

it when external disturbances arise. In other words, the larger the area of attraction, the

more robust the control will be.

Over the past decades, many authors have investigated various aspects of this problem

[1, 2, 4, 5, 6, 8, 9, 10, 11, 13, 14, 15, 16]. Several methods have been proposed for calculating

the approximation for DoA, which can be broadly divided into Lyapunov and non Lyapunov

methods. Lyapunov approaches include, for example, sum-squared programming (SOS) [2],

methods that use both simulation and SOS programming [15], and procedures using moment
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theory [5]. In this approach, the appropriate Lyapunov function (LF) is first chosen to show

the asymptotic stability of the system in a small neighborhood of equilibrium. Further, the

largest set of sub-levels of this Lyapunov function, in which its time derivative is negative

definite, is calculated as an estimate for DoA. Non-Lyapunov methods include, for example,

changing the trajectory approach [4] and occupation measures [6].

This report proposes a procedure for a kind of normalization of PL (terms having an

order of smallness above the second) in order to eliminate the presence of “optional” terms

in the derivative and thereby improve the estimate for the region dV/dt < 0. The examples

of Duffing equation and 3-DoF mechanical system are considered.

2. Description the approach

2.1. Formulation of the problem

Let the origin x = 0 be an asymptotically stable equilibrium point for the nonlinear system

ẋ = f(x) (1)

where f : D → Rn is locally Lipschitz function, and D ⊂ Rn is a domain containing the

origin.

Definition 2.1 [8]. Let φ(t,x) be the solution of system (1) that starts at initial state

x0 at time t = 0. The region of attraction of the origin, denoted by Ra, is defined by

Ra = {x ∈ D : φ(t,x)→ 0 as t→∞}. (2)

For most nonlinear systems, the exact determination of region (2) is not possible, therefore,

the task is to obtain an estimate

S ⊂ Ra, 0 ∈ S, (3)

so that S can be represented in a fairly simple form. Such an estimate can be obtained using

the Lyapunov function for system (1). Consider a locally positive definite function V (x)

whose derivative V̇ (x) is locally negative in a neighborhood of origin.

Statement 2.1 [12] Let S be a compact set, and the following conditions hold:

1) ∃c : 0 < V (x) ≤ c, ∀x ∈ S(x 6= 0), and ∀x ∈ ∂S : V (x) = c; (4)

2) ∀x ∈ S : V̇ (x) < 0(x 6= 0), (5)

then S ⊂ Ra.
Note that the set x : V (x) ≤ c may not be compact, it is enough only that condition (4)

is satisfied in the considered region S.
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An estimate of the form (4) substantially depends on the choice of the function V, the

choice of an arbitrary Lyapunov function for system (1) in the general case may turn out

to be ineffective. Such function V (satisfying conditions (4)) will give some estimate of the

attraction region, however, an estimate obtained can be arbitrarily small.

2.2. Construction of the Lyapunov function

In the case when all the eigenvalues of the system linearized in a neighborhood of the equi-

librium are located in the left half-plane, this equilibrium is asymptotically stable regardless

of the nonlinear expansion terms of the right-hand side. In terms of the direct Lyapunov

method, it is sufficient to use quadratic LF. However, when estimating the region of attrac-

tion, the influence of nonlinear terms is significant. To obtain an effective estimate, it is

necessary to add terms of a higher order to the LF V (x) that can improve the properties of

the derivative dV/dt.

Consider the following model system

dx

dt
= Ax+ P (3)(x), (6)

where A is a stable (Hurwitz) matrix, P (3) is a polynomial of third order.

With non-degenerate linear transformation

x = S

 z

z̄


system (1) can be converted to the form

dz

dt
= Jz + P (3)(z, z̄),

dz̄

dt
= J̄ z̄ + P̄ (3)(z, z̄). (7)

Here J ⊕ J̄ = diag(−h1 + iω1, · · · ,−hn + iωn,−h1 − iω1, · · · ,−hn − iωn) − Jordan

normal form of matrix A(hj ≥ 0, j = 1, n).

Adhering the results of works [3, 7], we introduce the following notation. Let

L = (l1, · · · , ln) is the n−dimensional subscript, l = |L| = l1 + · · · + ln, then the homo-

geneous form of order s may be presented as following

∑
l+m=n

kL,M zLz̄M =
∑

l+m=s

kl1,··· ,ln,m1,··· ,mnz
l1
1 · · · z

ln
n z̄

m1
1 · · · z̄mn

n . (8)

Consider the Lyapunov function

V (z, z̄) =

m∑
j=1

αjzj z̄j + V (4)(z, z̄) =

m∑
j=1

αjzj z̄j +
∑

l+m=4

kL,M zLz̄M , (9)
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where αj are arbitrary positive constants and kL,M are some coefficients (unknown at this

point). The full derivative of LF with respect to system (7) has the following view

V̇ (2)(z, z̄ = −
n∑
j=1

αjhjzj z̄j , V̇ (4)(z, z̄ = 〈∂V
(4)

∂z
,Jz〉+

n∑
j=1

αjzjPj(z, z̄) + c.c., (10)

V̇ (6)(z, z̄) = 〈∂Ṽ
(4)

∂z
,P (z, z̄)〉+ c.c. (11)

Here the acute parentheses mean the scalar product, abbreviation “c.c.” means complex

conjugate part of expression.

The coefficients kKM can be selected so that conditions

V̇ (4)(z, z̄) =
∑
l=2

GL z
Lz̄L

(12)

are met, where GL are some real constants. In fact, the condition (12) is equivalent to the

following equalities:

A) all coefficients in terms zLz̄M(L 6= M) are equal to zero, which imply

n∑
j=1

αj(bL,M−δj + bL−δj ,M ) + (−〈l +m,h〉+ i(〈l −m,ω〉)kL,M = 0. (13)

Remind that

〈l +m,h〉 ,
n∑
j=1

(lj +mj)hj , 〈l −m,ω〉 ,
n∑
j=1

(lj −mj)ωj . (14)

Since 〈l + m,h〉 + i(〈l −m), ω〉 6= 0 (neither real part nor imaginary one), the coefficients

kL,M unambiguously can be found from equalities (13).

B) The coefficients in terms zLz̄L are equal to GL,L, which imply

n∑
j=1

αj(bL,L−δj + bL−δj ,L)− 2〈l, h〉kL,L = GL, (15)

and, hereafter, we have

kL,L =
1

〈l, h〉 [
n∑
j=1

αjRe(bL,L−δj )− 1

2
GL]. (16)

Such procedure may be continued by adding to function V the form of order six and nor-

malizing the V ′(6). Obviously, it requires the bigger portion of calculations, so the common

dilemma “cost – profit” is an essential factor.

Remark 1. This approach is valid in case when some of values hj are equal to zero, but

the origin remains asymptotically stable. This is the critical case on pure imaginary roots

according to Lyapunov classification, and the procedure is the same. The only difference is

that V ′(2) is semi-negative definite now, but V ′ is still negative definite.
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2.3. Example of a single DoF system

Consider, as an illustration of the procedure described above, the Duffing equation

ẍ+ cẋ+ klinx− knonlinx3 = 0, (17)

where positive constants c, klin, knonlin represent the coefficient of damping and stiffness

(the case of softening spring). We suppose that

c2 < klin,

i.e the origin

x = 0, ẋ = 0

is classified as stationary point of spiral type.

Introducing the dimensionless variable, parameters and time according to formulas

ω =
√
klin − c2/4, h =

c

2ω
, x1 =

√
knonlin

ω
x, τ = ωt, (18)

we can rewrite equation (17) as a system (6)

x′1 = x2, x
′
2 = −x1 − 2hx2 + x32, (19)

where the prime means the differentiation on time τ.

Hereafter the matrix A is

A =

 0 1

−1 −2h

 . (20)

and their eigenvalues and eigenvectors are:

λ12 = −h± i, β12 = (1, λ12)T .

The upper subscript “T” means the transpose operation. With transformation

x1 = z + z̄, x2 = λ1z + λ2z̄

we have a system in form (7), herewith

J = diag(λ1, λ2), P (3)(z, z̄) = −1

2
i(z + z̄)3. (21)

According to formulas (13), (16) we have

k40 =
1− ih

8(1 + h2)
, k31 =

1− 2ih

1 + 4h2
, k22 = − 1

4h
G2 (b30 = −1

2
i, b21 = −3

8
i, α1 = 1). (22)
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Function V and its derivative V ′ in real variables are

V (x1, x2) = (x21 + x22) +
1

4
[(

σ3

σ1σ2
+ k22)x41 +

4hσ3

σ1σ2
x31x2 + (− 6

σ2
+ 8k22)x21x

2
2+ (23)

+12h
12h

σ1σ2
x1x

3
2 + (− 3

σ1σ2
+ 4k22)x42],

V ′ = −2h(x21 + x22)[1 + 2k22(x21 + x22)] + 4x31[
hσ3

σ1σ2
x31 + x21x2(− 3

σ1
+ 4k22)+ (24)

+
9

σ1σ2
x1x

2
2 + (− 3

σ1σ2
+ 4k22)x32], σ1 = 1 + h2, σ2 = 1 + 4h2, σ3 = 5 + 8h2.

Here the unknown arbitrary value b22 (or G2) is a kind of “tuning” parameter. It has

some influence on size of both domains where V is positive and V ′ is negative. Its value is

chosen with the aim to maximize the corresponding estimation of the Ra. As it follows from

formulas (23), (24), the positive value of b22 is welcomed, because it gives some additional

effect to functions V, V ′ (first of them becomes “more positive”, and second one becomes

“more negative”). The typical view of the domains 0 < V ≤ c, V ′ < 0 is presented in Fig.1a

(h = 0.3, b22 = 0.5, c = 0.5). Varying the parameter b22 brings different approximations of

DA. The optimal value is about 0.96 (solid line in Fig.1b).

Figure 1. a: Boundaries of domains 0 < V ≤ c, V ′ < 0. b: Estimates of region of attraction

for different values of tuning parameter: b22 = 0.5− dot-dash line; b22 = 0.8− dash line;

b22 = 0.96− solid line; b22 = 1.05− dot line.

3. Application to 3-DoF system

We consider the 3-Degrees-of-Freedom mechanical system which is schematically presented

on fig.2. It consists of two masses connected to each other and to fixed supports by springs

(linear) and an absorber connected to one of them.

The motion equations of the mechanical system considered are

mẍ1 + c(ẋ1 − ẋa) + kx1 + k(x1 − x2)− klina (x1 − xa) + knonlina (x1 − xa)3 = 0,
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mẍ2 + k(x2 − x1) + kx2 = 0, (25)

maẍa + c(ẋa − ẋ1) + klina (xa − x1)− knonlina (xa − x1)3 = 0.

Here x1 and x2 refer to the displacements of the primary 2-DoF system, while xa refers

to the displacement of the absorber; m is the mass of the bodies, and k− the stiffness of

the springs; c, klina , knonlina are the absorber damping coefficient, linear spring coefficient and

cubic (positive) spring coefficient respectively. It is supposed that parameters of main system

are given, parameters of absorber are tunable, and the mass of the absorber ma is much less

then m.

Figure 2. The 3-Degrees-of-Freedom mechanical system.

Let us introduce the dimensionless parameters and time with formulas

µ =
ma

m1
, ω =

√
k

m
, h =

c

maω
, κ =

klina
maω2

, τ = ωt. (26)

Here ω1 = ω, ω2 =
√

3ω are the natural frequencies of the main system.

With substitution

xa = x1 + x3 (27)

the linearized system in the vicinity of origin is associated with the following λ− matrix
λ2 + 2 −1 −µ(hλ+ κ)

−1 λ2 + 2 0

−µ(hλ+ κ) 0 λ2 + hλ+ κ

 . (28)

Accordingly, the characteristic polynomial is as follows

f(λ) = λ6 + hλ5 + (4 + κ − µ2h2+)λ4 + 2h(2− µ2κ)λ3+ (29)

43



(3 + 4κ − 2µ2h2 − µ2κ2)λ2 + h(3− 4µ2κ)λ+ κ(3− 2µ2κ).

The transformation matrix is determined as following S = (β1, · · · , β6), and the com-

ponents of column βj are:

βj1 = µ(hλj + κ)(λ2
j + 2), βj2 = µ(hλj + κ), βj3 = (1 + λ2

j )(3 + λ2
j ), (30)

βjq+3 = λjβjq (q = 1, 2, 3).

Here λj is the corresponding eigenvalue.

The single cubic term in system (25) is x33, then

x3 = β31z1 + β32z2 + β33z3 + c.c (31)

For instance with h = 0.14, κ = 1.49 the eigenvalues are

λ1,2 = −0.0000396± 0.9995627i, λ3,4 = −0.0000399± 1.732127i, (32)

λ5,6 = −0.06992± 1.21889i.

The corresponding matrix S is given in Appendix.

Of course, the calculation for the multi-DoF system is very cumbersome, so here we

restrict ourselves to listing the main stages of obtaining an estimate.

Step 1. Finding the eigenvectors and linear transformation matrix.

Step 2. Writing the equations of motion in new variables.

Step 3. Construction the LF according to the procedure described in Section 2 (finding

the coefficients bL,M ).

Step 4. Variation of values GL in order to obtain the maximal (within the framework

of this approach) estimate for the attraction region.

Step 5. Visualization of the results obtained.

Remark. The last paragraph is a separate rather nontrivial problem due to the di-

mension of the phase space (n = 6 in our case). It may be useful here to go to the polar

coordinates zj = ρjexp(iϕj) and build the corresponding region in space ρ1, ρ2, ρ3.

4. Conclusions

In this paper, we propose a method for constructing the polynomial Lyapunov function in

order to obtain approximations of the attraction region for nonlinear mechanical systems.

This method uses the procedure of normalizing the terms of the higher terms of the PL

decomposition in order to eliminate the presence of optional terms in the derivative and

thereby improve the estimate for the region. This approach seems quite effective, although
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like other well-known methods it is computationally costly and time-consuming, especially

for systems of high dimension and/or with uncertain parameters. This approach is applied

to estimation of DA for single DoF and three DoF mechanical systems.

APPENDIX.

The transformation matrix in case h = 0.14, κ = 1.49 is

0.029826 + 0.002799i −0.029807− 0.004855i 0.015952− 0.003274i

0.029800 + 0.002799i 0.029800 + 0.004850i 0.029604 + 0.003413i

0.001750− 0.000159i 0.000528 + 0.000276i −0.759487− 0.176995i

−0.002799 + 0.029813i 0.008411− 0.051629i 0.002875 + 0.019673i

−0.002799 + 0.029787i −0.008402 + 0.051617i −0.006230 + 0.035846i

0.000159 + 0.001749 −0.000479 + 0.000915i 0.268841− 0.913356i


,

(three absent columns are complex conjugate to presented ones).
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Nonlinear dynamics of flexible nanobeams taking into account 

the Casimir, van der Waals and Coulomb forces 

 

 

Jan Awrejcewicz, Olga A.Saltykova, Vadim A. Krysko, Anton V. Krysko 

Abstract: A mathematical model of a flexible nanobeam, described by the kinematic 

hypothesis of the first approximation and located in the field of action of the forces of 

Casimir, van der Waals, and Coulomb, is proposed. Using the methods of nonlinear 

dynamics, we studied the influence of the scale parameter on the forced vibrations of 

nanobeam made of nitrogen. 

1. Formulation of the problem  

Currently, MEMS and NEMS are widely used in various instrumentations [1]. As an element of such 

systems, a beam having dimensions of the order of nano can be considered, which is under the influence 

of external mechanical and electric fields, such as the forces of Casimir, Van der Waals, or Coulomb 

[2, 3]. In the present work, we construct a mathematical model of a nanobeam located in the field of 

action of these forces. Classical solid mechanics does not take into account the size-dependent behavior 

occurring in nano-scale structures. Among the theories that allow modeling scale effects in a continuum, 

we note the couple stress theory of elasticity [4, 5], nonlocal theory of elasticity [6], and gradient theory 

of elasticity [7]. The paper uses couple stress theory of elasticity to take into account a size-dependent 

behavior. 

The structure under consideration is a two-dimensional region of the space R2 
with a Cartesian 

coordinate system, introduced as follows: in the body of the beam, a cast line, called the median line, 

is fixed 0z , the OX axis is directed from left to right along the median line, whereas the OZ axis is 

down, perpendicular to OX. Between the beam and the electrode there is a gap 1h . In the indicated 

coordinate system, the beam as a two-dimensional domain Ω is defined as follows (Fig. 1): 

  1;,0 hhzhax  ,  t0 . 
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Figure 1. The settlement scheme 

 

The equations of beam motion, in displacements, described by Euler-Bernoulli hypotheses, in 

dimensionless form (1): 
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where w  is the deflection functions of the beam, u  is the functions of moving the middle surface, 

h

a

2
  is the geometric parameter, 
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h

l
  is the size-dependent parameter, l  is the material 

length scale parameter. 

The boundary conditions corresponding to the rigid sealing of the ends of the beam follow 
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and we take the initial conditions: 
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The system of nonlinear partial differential equations is reduced to a system of ordinary differential 

equations by the finite difference method with approximation )( 2cO , where c is the step along the 

spatial coordinate. The obtained Cauchy problem in time is solved by the Runge – Kutta type methods 

(4th, 2nd order Runge – Kutta method, 4th order Runge – Kutta – Fehlberg method, 4th order Cash – 

Karp method, Runge – Kutta – Prince – Dormand method of 8th order, implicit Runge-Kutta method 

of the 2nd and 4th order [8-9]). Based on the described algorithm, a software package has been created 

that allows you to solve the problem, depending on the control parameters  pq ,0 .  

A transverse alternating load of the form distributed on the surface acts on the beam: 
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,)sin(0 cwkp qqqtqq    (4) 

where 0q  is the amplitude, p  is the frequency of the forced oscillations, 
4

1

2
1

)(240 wh

c
qk





 is the 

Casimir force, 
3

1 )(6 wh

A
qw





, 

2
1 )(15.298*4

202.1

whk
q

b

c


  is the van der Waals force, Coulomb 

force. Here   is the Planck constant, 1c  is the speed of light in vacuum, bk  is the Boltzmann constant, 

and A is the Hamaker constant. To study the dynamics of the described structure, nonlinear dynamics 

analysis methods are used: Fourier power spectra are constructed, phase portraits are calculated, the 

values of the highest Lyapunov exponent are calculated using the Wolf, Kantz, Rosenstein algorithms, 

the Lyapunov exponents spectra are estimated using the Sano-Savada algorithms and using neural 

networks, Poincaré sections are built, wavelet spectra based on the mother wavelets of Morlet, Gauss 

16–32 are also employed [10-13]. 

 

2. Numerical results 

We study the nonlinear dynamics of a beam under the action of the Casimir force in vacuum. The 

system is conservative. The geometric and physical parameters of the mechanical structure are as 

follows: mhmhma  6,4,400 1  , 1002/  ha . The material of beam is silicon, with the 

following physical parameters 28,0 , GPаE 131 , 
2/33.2 smg . In addition to the Casimir 

force, an external alternating load acts on the beam. The natural frequency of the beam p  was 

calculated, with the above geometric and physical parameters, and it was found that 5.22p .  

Tables 1–3 show Fourier power spectra, Morlet wavelet spectra, and signals for various amplitudes 

of the driving oscillations. In Table 1, the size-dependent parameter 0 , in Table 2 - 1,0 , in 

Table 3 - 3,0 . 

When exposed to an external load beam with an oscillation amplitude 
4

0 10q  of the beam, two-

frequency response with 537.22p  and 375.221   is obtained. Frequency values are linearly 

independent. The maximum amplitude of the oscillations is )2(103 5 h . Increasing the load does not 

lead to the appearance of new frequencies up to 3.00 q . At a given amplitude of the driving 

oscillations, a third frequency 23.222   occurs, the amplitude of the oscillations is )2(1.0 h . 
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Table 1. The dynamic characteristics of the beam structure at 0  

0q  Fourier power spectra Morlet wavelet spectra Signals )(tw  

0
.0

0
0
1
 

   

0
.3

 

   
 

Table 2 and Table 3 show the results where the size-dependent parameter   is taken into account. 

Under the action of an external load with an amplitude 
4

0 10q , the oscillations are two-frequency, 

however, the frequency 
'

1 22.8  , i.e. frequency has become larger in value than frequency 

53.22p . The amplitude of the oscillations decreased to 
5102  , compared with the results given 

in Table 1 (for 
4

0 10q ). Changes in the frequency characteristics does not occur, but the amplitude 

of the oscillations decreased by almost two times. This makes it possible to increase the amplitude of 

the driving load up to 5.00 q  where the frequency 1  occurs, and at the following resonance 

conditions 1
'
1   pp . 
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Table 2. The dynamic characteristics of the beam structure at 1.0  

0q  Fourier power spectra Morlet wavelet spectra Signals )(tw  

0
,0

0
0
1
 

   

0
,3

 

   

0
,5

 

   
 

An increase in the size-dependent parameter leads to a decrease in the amplitude of oscillations of 

the beam, if 3.0 , 4
0 10q  the amplitude of oscillations is )2(103 6 h , which is an order of 

magnitude smaller than for 0  (Table 1). In contrast to the cases considered above, when 3.0  

the power spectrum contains only 53.22p  frequency. For 100 q  there is a frequency 

127.191  . 
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Table 3. The dynamic characteristics of the beam structure at 3.0  

0q  Fourier power spectra Morlet wavelet spectra Signals )(tw  

0
,0

0
0
1
 

   
 

0
,3

 

   
 

1
 

   

1
0
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Changing the   parameter implies decrease in the time periods of frequency of intermittency. This 

can be seen on the Morlet wavelet spectra. For 0  the number of periods is 14 (Table 1), 1.0  - 

22 (Table 2), and for 3.0  is no intermittency of frequencies (Table 3). The wavelet spectra contain 

frequencies that are not reflected in the Fourier power spectra, but it is also impossible to determine 

frequencies whose values are close in value to the frequency of the forcing oscillations on the wavelet 

spectra.  

For all cases considered, the values of the spectrum of Lyapunov exponents were calculated using 

the Sano-Savada algorithm. As a result, we can conclude that the increase of the   parameter leads to 

a regularization of beam vibrations. 

 

3. Conclusions 

The influence of the parameter and the amplitude of the driving load on the nonlinear dynamics of the 

beam, described by the kinematic hypothesis of the first approximation located in the field of action of 

the Casimir force, is investigated. The beam is made of silicon. Summarizing, it was found that an 

increase in the parameter leads to a regularization of beam vibrations and to a decrease in the beam 

deflection under the action of the same external load. 
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Vibration of nonlinear lumped systems with serially 

connected elastic elements 

 

 

Jan Awrejcewicz, Roman Starosta, Grażyna Sypniewska-Kamińska 

Abstract: The mechanical system with the nonlinear springs connected in series is 

considered in the paper. The mathematical model of that kind of systems consists of the 

differential and algebraic equations (DAEs). Adequately modified multiple scales 

method (MSM) in time domain have been applied to solve effectively the problem of 

harmonically forced vibration governed by DAEs. The obtained approximate solution 

in the analytical form allows for qualitative study of the considered system, among 

others for identification of the resonance conditions. The case of the main resonance is 

analysed in details. The modulation equations of the amplitudes and phases which are 

the integral part of the MSM solution allow one to study both steady and unsteady 

resonant motion. The stability of the resonant curves concerning the steady states has 

been tested and verified by comparison with the numerically obtained solutions. 

1. Introduction 

The massless springs in various configurations serve as a widely used models of the elastic effects in 

many structures. They occur not only in pure mechanical systems but also in mechatronical devices and 

in micro-electro-mechanical systems as well. The springs arranged in various configurations can be a 

source of manifold and sometimes unexpected dynamical phenomena, especially near resonances. 

Our research deals with the one dimensional lumped system containing two springs with nonlinear 

properties and connected in series. The system seems to be quite simple, however its governing 

equations contain both differential and algebraic equation, therefore the appropriate modification of the 

asymptotic approach is necessary. We are focused on the forced vibration both far from resonance as 

well as in the resonance conditions. The alike system but containing one nonlinear and one linear spring 

was analyzed by Telli and Kopmaz [1]. The one dimensional oscillator with two nonlinear springs 

connected in series was analyzed in the paper [2], where the solutions dealing with only the non-

resonant case are analyzed.  

2. Mechanical system and mathematical model 

Let us consider a body of mass m attached to the immovable wall by two springs connected in series, 

which can move in the horizontal path. The physical model of the analyzed system is given in Fig.1. 
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Figure 1.   The analyzed mechanical system. 

Let 𝑋1 and 𝑋2 are the elongation of the springs, whose nominal length are 𝐿01 and 𝐿02, therefore the 

absolute displacement of the body equals 𝑋1 + 𝑋2.  We assume the nonlinear character of the restoring 

forces in the springs in the following form 

 𝐹𝑖 = 𝑘𝑖(𝑋𝑖 + Λ𝑖𝑋𝑖
3) for 𝑖 = 1, 2 , (1) 

where 𝑘𝑖 is the stiffness coefficient and Λ𝑖  stands for the nonlinearity parameter for the i-th spring. 

The kinetic energy of the system is  

𝑇 =
1

2
𝑚(�̇�1 + �̇�2)

2
, (2) 

while the potential energy 

𝑉 =  𝑘1 (
1

2
𝑋1

2 +
1

4
Λ1𝑋1

4) + 𝑘2 (
1

2
𝑋2

2 +
1

4
Λ2𝑋2

4).  (3) 

The forces connected with the external excitation and the damping effects are introduced into 

model as generalized force 

𝑄 = 𝐹0 cos(Ω 𝑡) + 𝐶(�̇�1 + �̇�2).  (4) 

Since the springs are connected serially, the equilibrium equation for the weightless connecting 

point S is as follows 

𝑘1𝑋1(1 + Λ1𝑋1
2) = 𝑘2𝑋2(1 + Λ2𝑋2

2). (5) 

The equation of motion, derived using the Lagrang’e formalism, and the equation (5) are 

transferred to the convenient dimensionless form, so the governing equations supplemented with the 

initial conditions take the following form 

�̈�1 + �̈�2 + 𝑐(�̇�1 + �̇�2) + (1 + 𝜆)𝑥2(1 + 𝛼2𝑥2
2) = 𝑓0cos (𝑝 𝜏), (6) 

𝑥1(1 + 𝛼1𝑥1
2) = 𝜆𝑥2(1 + 𝛼2𝑥2

2), (7) 

𝑥1(0) + 𝑥2(0) = 𝑥0, �̇�1(0) + �̇�2(0) = 𝑣0, (8) 

C 

m 

S 

𝑘1, Λ1 𝑘2, Λ2 

X1 X
2
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where 

𝜆 =
𝑘2

𝑘1
, 𝛼1 = Λ1𝐿2, 𝛼2 = Λ2𝐿2, 𝑐 =

𝐶

𝑚 𝜔
, 𝑓0 =

𝐹0

𝐿 𝑚 𝜔2
, 𝑝 =

Ω

𝜔
, 𝐿 = 𝐿01 + 𝐿02. 

The overdot denotes the differentiation with respect to the dimensionless time 𝜏 = 𝑡 𝜔, where 𝜔 =

√𝑘𝑒/𝑚 and 𝑘𝑒 =
𝑘1 𝑘2

𝑘1+𝑘2
  is the effective stiffness of two linear springs connected in series which plays 

the role of a characteristic coefficient. 

Differentiating twice the algebraic equation (7) the following relation between the second 

derivatives of the unknown functions is obtained 

�̈�1(1 + 3𝛼1𝑥1
2) + 6𝛼1𝑥1�̇�1

2 = �̈�2𝜆(1 + 3𝛼2𝑥2
2) + 6𝛼2𝜆𝑥2�̇�2

2, (9) 

which allows to eliminate, for example, the function 𝑥1(𝜏) from the equation (6). 

3. Analytical solution to the problem 

The differential-algebraic problem (6) – (8) is solved in the asymptotic way using the Multiple Scale 

Method (MSM). Since we assume the smallness of some parameters, so we formally introduce the 

parameters with the tilde over the symbol: 

𝛼1 = 𝜀�̃�1, 𝛼2 = 𝜀�̃�2, 𝑐 = 𝜀�̃�, 𝑓0 = 𝜀𝑓0, (10) 

where 0 < 𝜀 ≪ 1 is a so called small parameter. 

Each of the solutions are assumed in the form of the sum containing the new unknown functions 

dependent on two time scales, i.e. we have 

𝑥1(𝜏; 𝜀) = 𝜉10(𝜏0, 𝜏1) + 𝜀 𝜉11(𝜏0, 𝜏1), (11) 

𝑥2(𝜏; 𝜀) = 𝜉20(𝜏0, 𝜏1) + 𝜀 𝜉21(𝜏0, 𝜏1), (12) 

where 𝜏0 = 𝜏 is the fast time scale, and 𝜏1 = 𝜀𝜏 is the slow time scale. The differential operators take 

the form 

𝑑

𝑑𝜏
=

𝜕

𝜕𝜏0
+ 𝜀

𝜕

𝜕𝜏1
,    

𝑑2

𝑑𝜏2 =
𝑑

𝑑𝜏
(

𝑑

𝑑𝜏
) =

𝜕2

𝜕𝜏0
2 + 2𝜀

𝜕2

𝜕𝜏0𝜕𝜏1
+ 𝑜(𝜀2). (13) 

Substituting expressions (10) – (13) into equations (6) – (7) yields the algebraic-differential system 

in which the small parameter 𝜀 appears in various powers. This leads to the first and the second order 

approximation equations: 

- approximation of the order 𝜀0 

(1 + 𝜆)𝜉20 +
𝜕2𝜉10

𝜕𝜏0
2 +

𝜕2𝜉20

𝜕𝜏0
2 = 0, (14) 
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𝜆𝜉20 − 𝜉10 = 0, (15) 

- approximation of the order 𝜀1 

𝜕2𝜉11

𝜕𝜏0
2 +

𝜕2𝜉21

𝜕𝜏0
2 + (1 + 𝜆)𝜉21 + (1 + 𝜆)�̃�𝜉20

3 + �̃� (
𝜕𝜉10

𝜕𝜏0
+

𝜕𝜉20

𝜕𝜏0
) + 2 (

𝜕2𝜉10

𝜕𝜏0𝜕𝜏1
+

𝜕2𝜉20

𝜕𝜏0𝜕𝜏1
) =

𝑓0cos (𝑝 𝜏0), (16) 

𝜆�̃�2𝜉20
3 + 𝜆𝜉21 − �̃�2𝜉10

3 − 𝜉11 = 0. (17) 

The above set of the differential-algebraic equations is solved in the recursive way, i.e. the 

solutions to the lower order approximation equations are substituted into the higher order ones. 

The solution to the equations (14) – (15) are 

𝜉10 = 𝜆𝐵(𝜏1)𝑒𝑖𝜏0 + 𝜆�̅�(𝜏1)𝑒−𝑖𝜏0 , (18) 

𝜉20 = 𝐵(𝜏1)𝑒𝑖𝜏0 + �̅�(𝜏1)𝑒−𝑖𝜏0, (19) 

where 𝐵(𝜏1) and its complex conjugate �̅�(𝜏1) are the unknown complex functions. 

4. Vibration far from resonance 

After substituting the solutions (18) – (19) into the equations (16) – (17), the secular terms should be 

eliminated, which leads to the following solvability conditions 

2 𝑖
𝜕𝐵

𝜕𝜏1
+ 𝑖 𝐵�̃� +

3𝐵2�̅�(𝜆3�̃�1+�̃�2)

1+𝜆
= 0, (20) 

2 𝑖
𝜕�̅�

𝜕𝜏1
+ 𝑖 �̅��̃� −

3�̅�2𝐵(𝜆3�̃�1+�̃�2)

1+𝜆
= 0. (21) 

Substituting solutions (18) and (19) into (16) – (17) and taking into consideration the conditions 

(20) – (21), the following solution to the second order approximation equations is found 

𝜉11 = −
𝑒𝑖 𝑝𝜏0𝜆𝑓0

2(𝑝2−1)(1+𝜆)
+

𝑒3𝑖𝜏0𝜆𝐵3(𝜆2(𝜆−8)�̃�1+9 �̃�2)

8(1+𝜆)
− 3𝑒𝑖𝜏0𝜆B2�̅�(𝜆2�̃�1 − �̃�2 ) + 𝐶𝐶  (22) 

𝜉21 = −
𝑒𝑖 𝑝𝜏0𝑓0

2(𝑝2−1)(1+𝜆)
+

𝑒3𝑖𝜏0𝐵3(9λ3�̃�1−8 �̃�2)

8(1+𝜆)
+ 𝐶𝐶  (23) 

where CC stands for the complex conjugates. 

There is convenient to express the complex functions 𝐵(𝜏1) and �̅�(𝜏1) in the exponential form 

𝐵(𝜏1) =
1

2
𝑎(𝜏1)𝑒𝑖𝜓(𝜏1), �̅� =

1

2
𝑎(𝜏1)𝑒−𝑖𝜓(𝜏1), (24) 

where 𝑎(𝜏1) and 𝜓(𝜏1) are unknown real valued functions and stand for the amplitude and the phase 

of the oscillations, respectively. 
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Introducing relationships (24) into the solvability conditions (20) – (21), returning to the original 

notations according to (10) and using the definition of operator (13)1 allow us to write the modulation 

equations in the following form 

𝑑𝑎(𝜏)

𝑑𝜏
= −

1

2
𝑐 𝑎(𝜏), (25) 

𝑑𝜓(𝜏)

𝑑𝜏
=

3(𝛼2+𝜆3𝛼1)𝑎(𝜏)2

8(1+𝜆)
. (26) 

Assuming the initial conditions in the form 

𝑎(0) = 𝑎0,    𝜓(0) = 𝜓0, (27) 

we obtain the solution to the problem (25) – (27) as follows 

𝑎(𝜏) = 𝑎0𝑒−
𝑐𝜏

2 , 𝜓(𝜏) = 𝜓0 +
3𝑎0

2(1−𝑒−𝑐𝜏)(𝛼2+𝛼1𝜆3)

8𝑐(1+𝜆)
. (28) 

The amplitude and phase determined by (28) are then introduced into the solutions (18) – (19), 

(22) – (23) of the first and second order approximation. Then the relationships (24) are taken into 

account. Afterwards, using expressions (11) – (12) and returning to  the original denotations according 

to (10), we obtain the approximate solution to the original problem (6) – (8).  The absolute 

dimensionless displacement of the body obtained in this way follows 

𝑥(𝜏) = 𝑥1(𝜏) + 𝑥2(𝜏) = −
𝑓0 cos(𝑝𝜏)

(𝑝2 − 1)
+ (1 + 𝜆)𝑎(𝜏) cos(𝜏 + 𝜓(𝜏)) + 

1

32
𝑎(𝜏)3 cos(𝜏 + 𝜓(𝜏)) (24𝛼2𝜆 − 𝛼2 − 25𝛼1𝜆3 + 2(𝛼2 + 𝛼1𝜆3) cos (2(𝜏 + 𝜓(𝜏)))),  (29) 

where 𝑎(𝜏) and 𝜓(𝜏) are the solutions (28) to the modulation problem (25) – (27). 

The comparison of the time course of the body displacement determined by the solution (29) with 

the analogic one obtained numerically is presented in Fig.2 and Fig.3 for the transient and the steady 

state vibration, respectively.  

 

Figure 2.   Body displacement in time for the transient non-resonant vibration. 
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Figure 3.   Body displacement in time for the steady-state non-resonant vibration. 

The results presented are obtained for the following data: 𝛼1 = 0.87, 𝛼2 = 1.21, 𝜆 = 0.63, 𝑓0 =

0.01, 𝑝 = 0.215, 𝑐 = 0.009, 𝑎0 = 0.1, 𝜓0 = 0. The compatibility of the two approaches, i.e. MSM and 

numerical solution, is very high which confirms the correctness of the derived analytical solutions. The 

relationship between initial conditions (8) and (27) has been determined using the analytical form of 

the solution (29). 

5. Vibration at resonance 

Let us analyze the case of the main resonance when 𝑝 ≈ 1. In order to investigate the behaviour 

of the system near resonance, the detuning parameter 𝜎 is introduced as follows 

𝑝 = 1 + 𝜎. (30) 

The assumption (30) is inserted into equation (6) and then the procedure similar to that of the 

previous section is carried out. In result, the modulation equations are obtained of the following form 

𝑑𝑎(𝜏)

𝑑𝜏
= −

1

2
𝑐 𝑎(𝜏) +

𝑓0sin (𝜎𝜏−𝜓)

2(1+𝜆)
, (31) 

𝑑𝜓(𝜏)

𝑑𝜏
=

3(𝛼2+𝜆3𝛼1)𝑎(𝜏)2

8(1+𝜆)
−

𝑓0cos (𝜎𝜏−𝜓)

2(1+𝜆)𝑎(𝜏)
. (32) 

Observe that equations (31) – (32), supplemented by initial conditions (27), cannot be solved 

analytically. The numerical treatment is required in this case. The absolute dimensionless body 

displacement obtained in the way similar to the one described in the previous section is as follows 

𝑥(𝜏) = 𝑥1(𝜏) + 𝑥2(𝜏) = (1 + 𝜆)𝑎(𝜏) cos(𝜏 + 𝜓(𝜏)) + 

1

32
𝑎(𝜏)3 cos(𝜏 + 𝜓(𝜏)) (24𝛼2𝜆 − 𝛼2 − 25𝛼1𝜆3 + 2(𝛼2 + 𝛼1𝜆3) cos (2(𝜏 + 𝜓(𝜏)))),  (33) 

where 𝑎(𝜏) and 𝜓(𝜏) denote the solutions to the modulation equations (31) – (32). 
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Time history of the body displacement in the case of the main resonance is presented in Figs. 4, 5 

for the transient and the steady state. The data assumed for the calculations are as follows: 𝛼1 =

0.87, 𝛼2 = 1.21, 𝜆 = 0.63, 𝑓0 = 0.009, 𝜎 = 0.008, 𝑐 = 0.008, a0 = 0.2, ψ0 = 0. 

 

Figure 4.   Time courses of the body (transient vibration) obtained analytically and numerically 

(resonance case). 

 

Figure 5.   Time course of the body (steady state vibration) obtained analytically and numerically 

(resonance case). 

The obtained results clearly exhibit powerful of the employed approximate analytical method. 

5.1. Steady-state resonant responses 

When the transient processes disappear, the forced system can reach the steady state oscillations. In 

order to study this case it is convenient to introduce the modified phase 𝜃 = 𝜎𝜏 − 𝜓(𝜏) into equations 

(31) – (32) which allows to transform them into the following counterpart autonomous form 

𝑑𝑎(𝜏)

𝑑𝜏
= −

1

2
𝑐 𝑎(𝜏) +

𝑓0sin (𝜃)

2(1+𝜆)
, (34) 

𝑑𝜃(𝜏)

𝑑𝜏
= 𝜎 −

3(𝛼2+𝜆3𝛼1)𝑎(𝜏)2

8(1+𝜆)
+

𝑓0cos (𝜃)

2(1+𝜆)𝑎(𝜏)
. (35) 

Fixation  of the values of the amplitude and the modified phase is characteristic for the steady state 

solutions. Consequently, zeroing the derivatives of both the amplitude and the modified phase in 
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modulation equations (34) - (35) yields the conditions of the steady state in the form of the set of two 

following equations 

−
1

2
𝑐 𝑎(𝜏) +

𝑓0 sin(𝜃)

2(1+𝜆)
= 0, (36) 

𝜎 −
3(𝛼2+𝜆3𝛼1)𝑎(𝜏)2

8(1+𝜆)
+

𝑓0 cos(𝜃)

2(1+𝜆)𝑎(𝜏)
= 0. (37) 

The resonance curves with regard to the amplitude and the modified phase, obtained through 

equations (36) – (37) are presented in Figs. 6, 7 for the following fixed parameters: 𝛼1 = 0.87, 𝛼2 =

1.21, 𝜆 = 0.63, 𝑓0 = 0.009, 𝑐 = 0.008. 

 

Figure 6.   Resonance curve for the amplitude of 𝑥(𝜏). 

 

Figure 7.   Resonance curve for the modified phase of 𝑥(𝜏). 

In Figures 6 - 7 the stable branches are depicted in red color, whereas unstable ones in blue color.  

5.2. Stability of the resonance curves 

In order to examine the stability of the steady-state solution in the sense of  Lyapunov, we analyze 

the non-stationary solutions of equations (34) – (35) that are close to the steady state solutions (𝑎𝑠, 𝜃𝑠). 
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Introducing the functions �̃�(𝜏), 𝜃(𝜏) that can be treated as small perturbations, one can assume the 

following non-stationary solution 

𝑎(𝜏) =  𝑎𝑠 + ã(𝜏),     θ(𝜏) =  𝜃𝑠 + θ̃(𝜏). (38) 

Next, substituting expressions (38) into equations (34) – (35), linearizing the obtained equations and 

noting that (𝑎𝑠, 𝜃𝑠) are the steady-state solutions, we get 

 
𝑑�̃�(𝜏)

𝑑𝜏
= −

1

2
𝑐 �̃�(𝜏) +

𝑓0 cos(𝜃𝑠)

2(1+𝜆)
𝜃(𝜏), (39) 

𝑑�̃�(𝜏)

𝑑𝜏
= −

3𝑎s(𝛼2+𝜆3𝛼1)�̃�(𝜏)

4(1+𝜆)
−

𝑓0 cos(𝜃𝑠)

2(1+𝜆)𝑎𝑠
2 �̃�(𝜏) −

𝑓0 sin(𝜃𝑠)

2(1+𝜆)𝑎𝑠
𝜃(𝜏). (40) 

The characteristic matrix of the homogeneous differential equations (39) – (40) has the form 

𝐀 = [
−

𝑐

2

𝑓0 cos(𝜃𝑠)

2(1+𝜆)

−
3𝑎s(𝛼2+𝜆3𝛼1)

4(1+𝜆)
−

𝑓0 cos(𝜃𝑠)

2(1+𝜆)𝑎𝑠
2 −

𝑓0 sin(𝜃𝑠)

2(1+𝜆)𝑎𝑠

]. (41) 

If the real parts of all eigenvalues of the matrix A are negative, then the fixed point (𝑎𝑠, 𝜃𝑠)  relating 

to the steady state solution is asymptotically stable in the sense of Lyapunov. 

The analytical form of equations (36) – (37) which determine the resonance response functions 

allows for predict behavior of the system in various conditions. In Figs. 8, 9 there is presented the 

influence of the external excitation amplitude on the shape of the response curves ( 𝛼1 = 0.87, 𝛼2 =

1.21, 𝜆 = 0.63, 𝑐 = 0.008). 

  

Figure 8.   Influence of the external force amplitude on the system response amplitude. 
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Figure 9.   Influence of the external force amplitude on the modified system phase. 

6. Conclusions 

The dynamics of the lumped system containing two serially connected nonlinear springs has been 

investigated. The mathematical model consists of the differential and algebraic equations, which 

requires the appropriate modification of the asymptotic approach in order to deal with the considered 

mechanical system. The forced vibration in two cases have been analyzed: far from resonance and in 

the resonance conditions. The approximate analytical solution to the governing equations has been 

achieved. Its analytical form allows for quantitative and qualitative analysis of the behavior of the 

system for wide range of the characteristic parameters. The correctness of the results has been 

confirmed by the numerical calculations.  
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Nonlinear dynamics of thermoelastic Sheremetiev-Pelekh nanobeams with 

topologically optimal microstructure 

 

 

Jan Awrejcewicz, Maxim V. Zhigalov, Sergey P. Pavlov, Vadim A. Krysko 

Abstract. Non-uniform structural elements with complex microstructure or varying 

material properties, such as rods, beams, plates and shells, are widely used in micro-

electro-mechanical (MEMS) and nano-electro-mechanical systems (NEMS). 

Topological optimization of mechanical structures is becoming a common tool in the 

design of structures with improved physical characteristics. In the present work, at the 

first stage, for specific loading conditions, heating conditions and fastening of the 

mechanical structure, one of the dimensions of which is much larger than the other 

two, a topological optimization of its microstructure by the criterion of maximum 

stiffness is carried out. In each of these cases, the optimal microstructure is original. 

The obtained microstructure (values of the elastic modulus, density, etc.) are used at 

the second stage in the study of nonlinear dynamics. At the second stage, a 

mathematical model of the nano beam is constructed on the basis of the Sheremet'ev-

Pelekh-Reddy kinematic hypothesis, taking into account the size-dependent behavior 

on the basis of the modified couple stress theory and geometric nonlinearity of von 

Kármán. On the basis of the constructed mathematical model, the static and dynamic 

behavior of inhomogeneous (optimal) and homogeneous beams is studied. The paper 

compares the static and dynamic results for optimal and homogeneous beams, taking 

into account the size-dependent behavior, and without it, for different boundary 

conditions, temperature distribution and types of the applied load. It is shown that for 

a homogeneous beam and a beam with an optimal microstructure, the stress-strain 

state, the magnitude of the natural frequencies and the nature of the dynamic regimes 

differ significantly, both for linear and nonlinear cases. 

1. Introduction 

Structurally inhomogeneous materials (NM) are composites with properties varying in any desired 

direction. This allows the new material to have better strength characteristics without causing 

unwanted stress concentration. Due to these features, NM beams are widely used in various 

engineering structures such as gas turbines, wind turbines, helicopter rotor blades, ship propellers, 

space and marine structures. Recently, the creation of beam elements from NM mainly by the 

methods of topological optimization.  

Topological optimization of composite structures is becoming a common tool in the design of 

metamaterials with improved physical characteristics. To average the complex microstructural 

behavior of an elastic medium, the method of asymptotic homogenization [1, 2], created in the 80 
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years of the last century, is mainly used. Recently, however, the most widely used methods for 

topological optimization of structures are explicit parameterization methods, which are known as 

density-based methods. These methods work on a region broken down into finite elements. Instead of 

a set of elastic properties of a microstructure, each finite element contains only one design variable. 

This variable is often understood as the density of the element material. The basic idea is to define the 

element parameters as design variables, and to calculate the parameters in the optimization problem. 

A relationship is established between local parameters (for example, density) and global physical 

properties of the material (for example, Young's modules or thermal conductivity coefficients).  

In general, the following methods are employed while designing of microstructure objects: solid 

isotropic material with penalization (SIMP) [3], evolutionary structural optimization (ESO) [4], level 

set method [5], and the rational approximation of material properties (RAMP) [6]. By means of 

various algorithms of search of an optimum, for example, such as a method of optimum criterion 

(OC) [7], a method of mobile asymptotes (MMA) [8], materials in the field of optimization are 

redistributed so that desirable functional characteristics of a material are reached. Elastic, thermal or 

thermoelastic criteria are taken into account in the design of the NM. The elasticity criteria take into 

account only the mechanical load [1], the thermal criteria take into account the thermal load [9], 

whereas the thermoelastic criteria cover both mechanical and thermal loads [10]. 

As mentioned above, the construction of KM are widely used in various industries. One of the 

directions is the creation of elements of nanoelectromechanical systems (NEMS). Nanosensors 

(cantilevers, nanoequilibrium, resonators, etc.) and nanoactuators (nanomotors, gears, etc.) are used in 

physics, biology, chemistry, medicine (diagnostics, cellular nano - and microsurgery, drug delivery to 

the affected area of the body) and many other areas. The dependences of elastic behavior on size can 

be explained using molecular dynamics (MD) modeling or higher order continuum mechanics. While 

the molecular dynamics approach can provide more accurate approximations to real objects, it is too 

computationally expensive. Therefore, the higher-order continuum mechanics approach has been 

widely used in modeling small-scale structures. In general, these theories can be divided into three 

different classes, namely: the family of deformation gradient theories, micro continuum theory, and 

nonlocal elasticity theories. One of the most popular theories is the modified couple stress theory, 

proposed by Young et al. [11] are based on the change in the theory of moments. One of the most 

important aspects of the use of the couple stress theory of elasticity is its application to the problems 

of statics and dynamics of beams. This is due to the fact that the beams are the main element of 

nanodetectors, nanowires and switches. The hypotheses of Bernoulli-Euler, Timoshenko, 

Sheremetiev-Pelekh-Reddy are used to construct mathematical models of beams.  

The analysis of the literature shows that the studies of dimension-dependent beams on the 

Bernoulli-Euler, Timoshenko, Sheremetiev-Pelekh-Reddy models are carried out mainly based on the 
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Duffing-type equations, which are obtained by applying the Bubnov-Galerkin method in the first 

approximation to the original partial differential equations. Linear problems on determination of 

natural frequencies and static problems on research of influence of size-dependent parameters are 

considered. Studies of nonlinear chaotic dynamics, especially for inhomogeneous beams of the 

Sheremetiev-Pelekh-Reddy model have not been carried out.  

It is shown that for a homogeneous beam and a beam with an optimal microstructure, the stress-

strain state and eigenfrequencies differ significantly for both linear and nonlinear cases. 

2. Mathematical background 

Consider a two-dimensional elastic region  0, ;
2 2

h h
x a z

 
      

 
, bounded by a closed surface

1 2 3     , which is under a plane stress state (Fig. 1). On the 1  there are given boundary 

conditions of different types, whereas 2  is not fixed and not loaded. At the border 3  there is a 

vertical load F , directed downwards. It is assumed that the material is linearly elastic and isotropic.  

The area is under a constant temperature 

field  ( ), ,zT xx x . We denote by 

0( )T T  x  the change in temperature 

relative to the initial temperature 0T . 

For the displacement field  1 3,u u , the 

equilibrium equation has the following form 

, 0ij j   in  , (1) 

where ij  is the stress tensor. The relationship between linear deformations and displacements is 

determined by the following relations 

 , ,

1
, , 1,2

2
ij i j j iu u i j    . (2) 

The stress-strain relation satisfies the Duhamel-Neumann law 

( )( )ij ij ijE    x , (3) 

where ( ), ( ), ( )E  x x x  and ij  denote the Young's modulus of elasticity and thermal expansion 

coefficient of the inhomogeneous material of region   the difference between the current and the 

initial temperature field and the Kronecker symbol, respectively. The displacement and temperature 

fields are coupled via equation (3). 

Fig.1. Computational model. 
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The purpose of topological optimization is to find the optimal material distribution that 

maximizes the stiffness or minimizes the flexibility of the thermoelastic body. The problem of 

topological optimization in its counterpart thermoelastic formulation obeys the following formal 

description [12]: 

, 3
0 ( ) 1
min i i
r x

C u d F u d
 

 

     , (4) 

and is subjected to the following constraint 

 ( )x d A 


   , (5) 

where: ( ) ( ) ( )E x x x ;   x  beam material density,   coefficient associated with the basic 

material of the beam.  

The projection variable ( )r x  is coupled with Young’s moduli ( )E x , with   x , and with the 

volume material density   x  of each element, following the scheme for minimum compliance 

topology optimization (the so-called ramp scheme)  [6]: 

 
 

 
 

 

 

 

 
0 0 0 0

, , ( ) ,
(1 (1 ) (1 (1 ) (1 (1 )

E r E r r
E x

p r q r p r

 
    

        

x x x
x x x

x x x
, 

(6) 

where: ,p q  - penalty parameters used to guarantee the compact material distribution;  r x  field 

of the projection variables  00 1r r  x ; 0r   small number guaranteeing non-zero stiffness of 

the finite elements. Observe that for   1r x  the whole space is filled with the reinforced basic 

material. After applying the topological optimization procedure, the values of the elastic modulus 

( )E x , coefficient   x  and bulk density of the material for the optimal topology of the 

microstructure   x  are determined. The obtained values ( )E x ,   x  и   x were further used in 

the construction of a mathematical model of a inheterogeneous nano-beam of Sheremetiev-Pelekh-

Reddy. 

A mathematical model nano-beam Sheremetiev-Pelekh-Reddy to homogenous beams have been 

firstly proposed in the work [13]. We give below the equations for the inhomogeneous beam: 
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 (7) 

where:  1( ) 2
A

k x dA   ;  
2

4 6 2
2 2

2 2 4 2

1
( ) 2 1

3 9 4
A

z z z
k x z l dA

h h h
  

   
        

   
 ; 

 
4 6 4

2

3 2 4 4

1
( ) 2 1

3 9 4
A

z z z
k x l dA

h h h
  

   
       

   
 ;  

2
6 4

2

4 4 4

1
( ) 2 1

9 4
A

z z
k x l dA

h h
  

 
    

 
 ;

2
2 2

2

5 2 4
( ) 1

A

z z
k x l dA

h h
 
 

   
 

 ; 1b A ; 2

3
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Boundary conditions of different types are reported in [13]. In this paper we will consider the 

boundary condition of the form: 

   (0, ) ( , ) 0; 0, , 0;

(0, ) ( , ) 0; (0, ) ( , ) 0.

w t w a t w t x w a t x

u t u a t t a t 

       

   
 (8) 

and the following initial conditions are taken 

     ( ,0) ,0 0; ( ,0) ,0 0; ( ,0) ,0 .w x w x t u x u x t x x t             (9) 

3. Results and discussions 

Based on the solution of the optimization problem, the distribution of the elastic modulus and density 

along the length of the beam was obtained. The obtained values of physical quantities were used for 

the study of static and dynamic problems of the nonlinear beam of the Sheremetiev-Pelekh-Reddy 

model. Numerical study of static and dynamic problems, the results of which are described below, 

was carried out for dimensionless equations [13] and the following parameters: relative length 

401  ha , size-dependent parameter 3.0;02  hl .  

3.1. Methods of solution 

To reduce the partial differential equation (2) to the system of ordinary differential equations we have 

employed the Cauchy problem, and the method of finite differences in spatial variables with 
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approximation O(h2). The Cauchy problem was solved by the Runge-Kutta method of the 4th order 

and selection of the optimal step in the numerical method was carried out using the Runge principle. 

3.2. Obtaining the optimal topology 

In this paper, two types of problems with boundary conditions (8) and two types of load were 

considered. In what follows we consider both problems separately. 

Case study 1. A beam with boundary conditions (8) and loaded with a force distributed over the 

entire length of the beam 

Table 1 Microstructures of optimal beams. 

 =-

100 
 

 =0 
 

 =100 
 

 

Case study 2. Beam with boundary conditions (8) and loaded with force concentrated in the 

center of the beam 

Table 2 Microstructures of optimal beams. 

 = -100 

 

 = 0 

 

 = 100 

 

Table 1, 2 shows the optimal material distribution topology for beams exposed to different 

temperatures  . Here, the red color is associated with the reinforcing base material, whereas the blue 

color is the matrix, which has a low stiffness. 

 

 

 

70



3.3. The study of nonlinear dynamics with maps of the characters of the oscillations 

Map comparison for case study 1, temperature = + 100 

 

Table 3. Comparison of oscillation mode maps 

 2 0   2 0.3   

optimal 

 
 

homogeneou

s 

  

 

The area of zones of harmonic vibrations on maps of modes of vibrations both for homogeneous 

(suboptimal beam) and for optimal beam taking into account the size-dependent behavior  2 0.3   

is larger, and the area of zones of chaotic and other zones of vibrations is larger on maps of modes of 

oscillations at  2 0  . In addition, for optimal beams, both taking into account the size dependent 

behavior  2 0.3  , and when  2 0   the harmonic vibrations zone is significantly less than for a 

non-optimal beam. Common to all cards is the presence of vibrations at an independent frequency 

(marked in green) in the frequency range from 7.5 to 8.5 over the entire load interval. It should also 

be noted the shift of bifurcation zones (marked in yellow) from areas of small loads (q<3·104) for 

non-optimal beams, both taking into account the size-dependent behavior  2 0.3  , and at  2 0  , 

to areas of large loads (q >3·104) for optimal beams. On maps of suboptimal beams, both taking into 

account the size-dependent behavior  2 0.3  , and at  2 0  , there is a much smaller number of 

harmonic vibration zones (marked in blue) than for maps of optimal beams.  
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Map comparison for case study 2, temperature = + 100 

 

Table 4. Comparison of various charts of the vibration regimes 

 2 0   2 0.3   

optimal 

  

homogeneous 

 
 

The area of zones of harmonic vibrations on the maps of the modes of vibrations for both 

homogeneous (non-optimal beams) and for the optimum beam taking into account the size dependent 

behavior  2 0.3   more, and square zones of chaotic areas and other fluctuations more maps modes 

of vibrations  2 0  . In addition, for optimal beams, both taking into account the size dependent 

behavior  2 0.3  , and when  2 0   the harmonic vibrations zone is significantly less than for a 

non-optimal beam. 

Common to all cards is the presence of oscillations at an independent frequency (green color) in 

the frequency range from 7.5 to 8.5 over the entire load interval. It should also be noted that the 

largest bifurcation (yellow color) zones are distributed for non-optimal beams, both taking into 

account the size-dependent behavior  2 0.3  , and at  2 0   frequencies from 4 to 7. For optimal 

beams, bifurcation zones are located over the entire load interval for certain frequency values, and the 

main part is located for loads from 3·104. On maps of suboptimal beams, both taking into account the 

size-dependent behavior  2 0.3  , and at  2 0  , there is a much smaller number of harmonic 

oscillation zones (blue color) than for maps of optimal beams.  
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4. Concluding remarks 

The paper presents a mathematical model for obtaining the optimal topology of beams under given 

loads and fastening conditions. Algorithms and programs allowing to receive optimum distribution of 

a material of a beam on criterion of a minimum of elasticity are developed. As a result of static and 

dynamic studies, the influence of the optimal structure of the beam on the change of deflection, 

natural frequencies and dynamic characteristics is shown. The analysis of the results showed that the 

frequency-deflection dependence ( )w  for all cases of the temperature field ( 100, 0   ) 

demonstrate a qualitative and quantitative difference between the results of static and dynamic 

problems for optimal and homogeneous beams. At the same time, for the optimal beam deflection w, 

for the same load, is less than for a homogeneous (non-optimal) beam, both taking into account and 

without taking into account the size-dependent behavior. In this case, in the problems taking into 

account the temperature field for large deflections (large loads), there is a convergence of results 

between beams with optimal microstructure and non-optimal (homogeneous) problems. 

Taking into account the topological optimal material allows for more than 10% increase in the 

bearing capacity of the beam.  

Comparative analysis of the maps of the modes of vibrations showed that the area of the zones of 

harmonic maps for homogeneous (non-optimal beams) and for the optimum beam taking into account 

the size-dependent behavior  2 0.3   more, and square zones of chaotic areas and other fluctuations 

more maps modes of oscillations  2 0  .  

In addition, for optimal beams both with  2 0.3   and without dimension dependent behavior 

 2 0  , the harmonic oscillation zones are significantly smaller than for a non-optimal beam. 

Note the common location of bifurcation zones for optimal and suboptimal zones regardless of 

the load and the type of boundary condition.  
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Gravity waves in channels with corrugated bottom:
asymptotic approaches

W lodzimierz Bielski, Ryszard Wojnar

Abstract: We consider a propagation of long one-dimensional gravity waves
of a homogeneous incompressible fluid in a rectangular channel with corru-
gated (wavy) bottom, while we assume a micro-periodic corrugation. The
term ”asymptotic” is used in two meanings: firstly, in a linear problem for an
asymptotic transition to find the equivalent channel depth heff , and secondly
to derive the nonlinear gravity wave equation from Euler’s equations.

1. Introduction

A gravity wave arises when fluid is displaced from a position of equilibrium. In fluid dynam-

ics, gravity waves are generated in a fluid medium or at the interface between two media

when the force of gravity or buoyancy tries to restore equilibrium, [1]. This type of waves

include huge floating elevations of the sea water level (ocean tides) which, with regularity

dictated by the lunar rotation, roll over the surface of the water and sometimes even fall into

river beds and run against their currents. Also gravity waves are a mechanism that produce

the transfer of momentum from the troposphere to the stratosphere and mesosphere, [2].

1.1. Flow in the channel with uneven bottom

The important problem is a fluid flow upon an uneven bottom. It concerns propagation of

gravity waves in a canal with uneven bottom, and relates to the problem of flows in beds

of rivers (canals, pipes, lakes) with obstacles at the bottom (such as stones, plants or other

structures), which are not susceptible to outer influences, cf. [3, 4].

The older book by M. W. Dingemans and the recent book by I. Popescu are providing a

review of techniques available for the problems of wave propagation in regions with uneven

beds as they are encountered in coastal areas, [5, 6].

The problem of the linear description of gravity waves in a shallow channel dates back

to Lagrange’s work from 1781, [7].

When it comes to the description of gravity waves in a shallow channel, when the influ-

ence of a nonlinear term should be included in the Euler equation, the issue goes back to the

Russell report of 1841, [8, 9]. A long period of efforts of scholars such as Rayleigh, Boussi-

nesq, McCowan was crowned with the famous paper by Korteweg and de Vries [10]. Since

then, a plethora of works have appeared on solitary waves in shallow channels, [11, 12, 13].
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1.2. Plan of the paper

In this paper we are dealing with long gravity waves travelling in in channels with corrugated

(wavy) bottom.

The article consists of two parts. In the first part (Sections 2 and 3) we treat a linear

description of gravity wave reaching back to Lagrange’s work on the gravity waves, [7],

and by the method of asymptotic homogenization we find the effective channel depth heff ,

and hence the gravity wave velocity
√
gheff . In the second part (Section 4) we give the

asymptotic derivation of KdV equation for a rectangular channel with a wavy bottom, [10].

2. Long gravity waves in an infinite channel

Let us examine first the propagation of long waves in a rectangular channel with corrugated

(wavy) bottom. The channel is supposed to of the constant width b, and of infinite length

along the x1- axis,. The depth h of the fluid in the channel is supposed to be small in

comparison with the length L of the considered fluid wave, h� L, see Fig.1.

The waviness of the bottom is described by the periodic function β = β(x1). The mean

value of β, is 〈β(x1)〉 = 0, and the mean depth of the fluid in channel in equilibrium is h0.

The function β = β(x1) and the function η = η(x1, t) describing the profile of the

considered gravity wave (it is the elevation of the wave surface above the equilibrium free

surface level) are small in comparison with the fluid depth, β � h0 and η � h0. The

cross-section area of the liquid in the channel is given by S(x1, t) = b ·h(x1, t). We shall here

consider longitudinal waves, in which the liquid moves along the channel. In such waves the

velocity component v1 ≡ u along the channel is large compared with the components v2 ≡ v.

We omit small terms, and we omit terms quadratic in the velocity, since the amplitude of

the wave is supposed small. The x1 and x2 - components of Euler’s equation can be written

in the form

ρ
∂u

∂t
= − ∂p

∂x1
and

∂p

∂x2
= −ρ g.

From the latter equation we have p = pAt + ρ · g · (yA − x2), since the pressure at the free

surface (x2 = yA = h0 + η) must be equal to the atmospheric pressure pAt. We distinguish

here and elsewhere by the the suffix (·A) those quantities which refer to the free surface.

Substituting the last expression in the first Euler’s equation, we obtain

∂u

∂t
= − g ∂yA

∂x1
.

Finally, we have

∂u

∂t
= − g ∂η

∂x1
(1)
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Figure 1. One-dimensional gravity wave moving past the channel with uneven sinusoidal

bottom resulting in variations of the fluid depth h = h(x). In the phenomen described in this

paper h� L and β � h. Also l � L. The free surface of the fluid is described by the equation

y = y(x). The height of the point P at the free surface above the bottom is h = yP − β

The second equation needed to eliminate one of the two unknowns u and η is essentially the

equation of continuity for the case in question. The real depth of the fluid is, cf. Fig.1,

h = h(x1, t) ≡ yA(x, t)− β(x1) ≡ h0 + η(x1, t)− β(x1) (2)

We consider a volume of liquid bounded by two plane cross-sections of the channel at

a distance dx1 apart. The change per unit time in the volume of liquid between the two

planes considered is (∂S/∂t) dx1. We can therefore write

∂S

∂t
+
∂(Su)

∂x1
= 0 (3)

This is the required global equation of continuity.

Let S0 be the mean equilibrium cross-sectional area of the liquid in the channel. Then

S = S0 + S′ + S′′ (4)

where S0 is the channel cross-section in equilibrium S0 = b h0, where b is the width of the

channel, S′ is the change in the cross-sectional area caused by the fluid wave S′ = b η(x1, t)

and S′′ is the change in the cross-sectional area caused by the uneven bottom S′′ = − b β(x1).

The continuity equation becomes

∂η

∂t
+
∂ {(h0 + η − β)u}

∂x1
= 0 (5)
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Differentiating the latter equation with respect to t and substituting ∂u/∂t from Eq.(1)

we obtain
∂2η

∂t2
+

∂

∂x1

{
∂η

∂t
u− g (h0 + η − β)

∂η

∂x1

}
= 0

This is a nonlinear equation. We linearize it by assumption that η and β are small in

comparison with the mean depth of the channel h0 receiving

∂2η

∂t2
− gh0

∂2η

∂x2
1

= 0 (6)

This is a wave equation; the velocity of propagation of long gravity waves in channels is

c =
√
gh0 (7)

In sequel we arrive at similar relations by another ways, cf. Eq.(2) and Eq. (36).

3. Homogenising equations in linear approximation

The method of asymptotic expansions is also known as the homogenisation method. This

method described, for example in the book by E. Sanchez-Palencia [14] was recently devel-

oped by Igor Andrianov and Jan Awrejcewicz, [15].

3.1. General principles for one-dimensional gravity waves

Notice, in this section we write simply x instead of x1.

We consider long gravity waves in the channel with a wavy bottom. The amplitude and

period of these wavy variations are small, and we call it the micro-waviness. Let L ⊂ R1 be

a section of x-axis. We introduce a parameter ε = l/L , where l is a typical length scale of

the waviness spacing.

The one dimensional domain L is assumed to have an εY - periodic structure. The

set L is covered by a regular mesh of size ε, each one-dimensional cell being a segment Y .

Accordingly to two-scale asymptotic approach, instead of one space variable x, we introduce

two variables, macroscopic x and microscopic y, where y = x/ε, and instead of a function

f(x) consider the function f(x, y). Taking into account the formula for the total derivative

(known as the chain rule) we have

∂f(x, y)

∂x
 

∂f(x, y)

∂x
+

1

ε

∂f(x, y)

∂y
with y =

x

ε

where the superscript ε denotes the micro-periodicity of the relevant quantities.

We study one-dimensional gravity wave propagation in a channel, whose bottom exhibits

a periodic micro-waviness, and the fluid cross-section S0 is of the form Sε
0 = S0(y, t), or what

is equivalent for the rectangular cross-section

h(
x

ε
, t) = hε(y, t) (8)
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The small parameter ε characterizes the micro-structure of the bottom. Hence, the coeffi-

cients and the fields are functions of the ε, what is indicated by the superscript ε.

According to the method of two-scale asymptotic expansions we write

ηε = η(0)(x, y) + ε1 η(1)(x, y) + ε2η(2)(x, y) + · · · (9)

where functions η(i)(x, y), i = 0, 1, 2, · · · are assumed to be Y - periodic. For shortness

we omit the argument t in the terms of this expansion. In full description we should write

obviously η(i) = η(i)(x, y, t).

Now, we perform asymptotic homogenisation of the problem.

Our equation of motion reads

∂2ηε

∂t2
− g

∂

∂x

(
hε

0
∂ηε

∂x

)
= 0 (10)

or

∂2

∂t2

(
η(0)(x, y) + ε1η(1)(x, y) + ε2η(2)(x, y) + · · ·

)
= g

(
∂

∂x
+

1

ε

∂

∂y

)
×

×
{
h0(y)

(
∂

∂x
+

1

ε

∂

∂y

) (
η(0)(x, y) + ε1η(1)(x, y) + ε2η(2)(x, y) + · · ·

)} (11)

The argument t is omitted again. According to the method of asymptotic homogenisation

we compare the terms associated with the same power of ε. We successively obtain:

At ε−2

0 =
∂

∂y

(
h0(y)

∂η(0)(x, y)

∂y

)
(12)

This equation is satisfied provided that η(0) does not depend on the local variable y, it is

η(0) = η(0)(x) (13)

This statement holds true under the assumption that the coefficient h0(y) is Y - periodic.

At ε−1 we receive

0 =
∂

∂y

{
h0(y)

(
∂η(0)(x)

∂x
+
∂η(1)(x, y)

∂y

)}
(14)

and at ε0

∂2η(0)(x, y)

∂t2
= g

∂

∂x

{
h0(y)

(
∂η(0)(x)

∂x
+
∂η(1)(x, y)

∂y

)}
+

+ g
∂

∂y

{
h0(y)

(
∂η(1)(x)

∂x
+
∂η(2)(x, y)

∂y

)} (15)
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3.2. Results of the (one-dimensional) homogenisation

Equation (14) is satisfied if

η(1) = ψ(y)
∂η(0)(x)

∂x
(16)

where ψ(y) satisfies the equation

∂

∂y

{
S0(y)

(
1 +

∂ψ(y)

∂y

)}
= 0 (17)

known as a local problem.

We submit the expression (16) into Eq.(15), integrate over Y and obtain

∂2η(0)(x)

∂t2
= g

∂

∂x

1

|Y |

∫
Y

{
h0(y)

(
∂η(0)(x)

∂x
+
∂η(1)(x, y)

∂y

)}
or

∂2η(0)(x, y)

∂t2
= g heff

0
∂2η(0)(x)

∂2x
(18)

where

heff
0 =

1

|Y |

∫
Y

h0(y)

(
1 +

∂ψ(y)

∂y

)
dy (19)

Equation (18) presents the homogenised equation of the long gravity wave in the channel

with the effective depth heff
0 . We have also

ceff =
√
g heff

0 (20)

the effective velocity of the gravity wave in the channel with a corrugated bottom.

4. Nonlinearity of gravity waves

4.1. Bernoulli’s equation for potential flow in channel with the wavy (corru-

gated) bottom

We consider a potential two-dimensional flow of an incompressible fluid of the density ρ. In

potential flow we can express the velocity as a gradient of scalar function Φ, viz. potential,

v = ∇Φ

Euler’s equation ∂v/∂t+(v ·∇)v = − (1/ρ)∇p+g can be written in the form of Bernoulli’s

type equation, [1],

1

2
(u2 + v2) +

p

ρ
+ gh = χ(t) (21)

where the potential energy ρgh is calculated from the bottom of the fluid, and χ = χ(t) is

an arbitrary function of the time t only. In the case of the wavy bottom in one-dimensional

flow in the direction of the axis x we have h = h(x, t).
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4.2. Long gravity wave in a shallow channel

In accordance with the method of successive approximations, [9, 10], we start from the

supposition that the horizontal and vertical fluid velocity components, u and v may be

expressed by convergent series of the form

u = f − 1

2
h2 ∂

2f

∂x2
+

1

24
h4 ∂

4f

∂x4
− · · ·

v = −h ∂f
∂x

+
1

6
h3 ∂

3f

∂x3
− 1

120
h5 ∂

5f

∂x5
+ · · ·

(22)

where h denotes the actual height of a fluid particle above the bottom of the channel, the

function f = f(x, t), and the axis x represents direction of the flow.

So defined components u and v satisfy the incompressibility condition and the poten-

tiality of the flow (the absence of rotation)

∂u

∂x
+
∂v

∂y
= 0 and

∂u

∂y
− ∂v

∂x
= 0 (23)

The introduced series for long waves are rapidly convergent: for the discussed waves the state

of motion changes slowly with x and therefore the successive derivatives of f with respect

to this variable, must rapidly decrease.

4.3. Boundary conditions and the wave velocity

The upper boundary of the fluid is a free surface, and is described, as previously, by the

relation, see Fig.1,

yA = yA(x) = h0 + η(x, t) (24)

while the depth of the fluid at a given point x is

h(x) = yA(x)− β(x) = h0 + η(x, t)− β(x) (25)

Both quantities β(x) and η(x, t) are very small

β � h0, η � h0 and moreover h0 � L (26)

Passing to the conditions at the free boundary, let pAt be the constant atmospheric pressure,

pA - the pressure at a point just below the surface where the capillary forces cease to act,

and τ - the surface tension. We have then, [1],

pAt − pA = τ
∂2y

∂x2
(27)
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Similarly as in Section 3, we distinguish here and elsewhere by the suffix (·A) those quantities

which refer to the free surface.

According to Bernoulli’s equation (21)

∂ΦA

∂t
+

1

2

(
u2

A + v2
A

)
+
pA

ρ
+ gyA = χ(t)

Therefore

pAt

ρ
= χ(t)− ∂ΦA

∂t
− 1

2

(
u2

A + v2
A

)
− gyA +

τ

ρ

∂2y

∂x2
(28)

or, after using the series (22) representing the velocity and regrouping

pAt

ρ
= L(x, t)− gyA +M(x, t)y2

A + · · ·+ τ

ρ

∂2y

∂x2
(29)

where

L = L(x, t) = χ(t)−
∫
∂f

∂t
dx− 1

2
f2

M = M(x, t) =
1

2
f
∂2f

∂t2
+

1

2

∂2f

∂x ∂t
− 1

2

(
∂f

∂x

)2

(30)

Remember that the atmospheric pressure pAt is a constant. By differentiation of (29) with

respect to x we receive the first necessary equation

∂L

∂x
+ h2 ∂M

∂x
+ · · · − g ∂h

∂x
+
τ

ρ

∂3z

∂x3
= 0 (i)

Moreover, a second equation must hold good at the surface. Namely, we have, cf. Eq.(24),

yA = h0 + η(x, t). Therefore

dyA

dt
=
∂η

∂t
+
∂η

∂x

dx

dt
or vA =

∂η

∂t
+ uA

∂η

∂x

Hence we get the second equation

−uA
∂yA

∂x
+ vA −

∂yA

∂t
= 0 (ii)

The bottom corrugation β = β(x) does not appear in this relation.
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4.4. Linear step of approximation

Dealing with the fact that for long waves (whose length is great in comparison with the

depth of the canal) every new differentiation with respect to x gives rise to continually

smaller quantities, we reduce Eqs. (i) and (ii) in the following manner.

In the lowest approximation from Eq.(i) we get

∂L

∂x
− g ∂h

∂x
= 0

or

∂f

∂t
+ f

∂f

∂x
+ g

∂h

∂x
= 0 (31)

From (ii) we have

∂h

∂t
+ h

∂f

∂x
+ f

∂h

∂x
= 0 (32)

In order to satisfy Eqs.(i) and (ii) by the method of successive approximation we put

h = h0 + η − β and f = f0 + ϕ (33)

where the quantities h0 and f0 are constant, and the η, β and ϕ are small.

After using expressions (33) the linearized version of the system of Eqs.(31) and (32)

reads

∂ϕ

∂t
+ f0

∂ϕ

∂x
+ g

∂(η − β)

∂x
= 0

∂η

∂t
+ h0

∂ϕ

∂x
+ f0

∂(η − β)

∂x
= 0

(34)

Equations (34) can be satisfied by taking ∂ϕ/∂t = 0 and ∂η/∂t = 0. Then

f0
∂ϕ

∂x
+ g

∂(η − β)

∂x
= 0

h0
∂ϕ

∂x
+ f0

∂(η − β)

∂x
= 0

(35)

The condition of non-contradiction of the last two equations is the disappearance of their

determinant, it is

f0 =
√
gh0 (36)
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while the solution of the set (35) is

ϕ = − f0

h0
(η − β + α) (37)

where α is an arbitrary constant.

4.5. Non-linear step of approximation

If we wish to proceed to a second (non-linear) step of approximation we put

f = f0 −
f0

h0
(η − β + α+ γ) (38)

where γ is a correction, small compared with η and α. We write in short

f = f0 −
f0

h0
(η̃ + α+ γ) (39)

where

η̃ ≡ η − β (40)

On substituting this in (i) and (ii) (from Section 4.3) and on writing out the result we find

respectively

f0

h0

∂η̃

∂t
+ g

∂γ

∂x
− g

h0
(η̃ + α)

∂η̃

∂x
−
(

1

2
gh2

0 −
τ

ρ

)
∂3η̃

∂x3
= 0

f0

h0

∂η̃

∂t
− g ∂γ

∂x
− g

h0
(2η̃ + α)

∂η̃

∂x
+

1

6
gh2

0
∂3η̃

∂x3
= 0

(41)

To obtain Eqs.(41) we rejected all terms which are small with any one of the remaining

terms. For instance, the terms with

∂η̃

∂x
· ∂

2η̃

∂x2
and

(
∂η̃

∂x

)2

are rejected in comparison with

η̃
∂η̃

∂x

which is retained in the equations, those with

∂γ

∂t
and

∂2η̃

∂x∂t
against

∂η̃

∂t

In eliminating ∂γ/∂x from Eqs.(41) we obtain

∂η̃

∂t
=

3f0

2h0

∂

∂x

(
1

2
η̃2 +

2

3
αη̃ +

1

3
σ
∂2η̃

∂x2

)
(42)
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where

η̃ ≡ η − β and σ =
1

3
h2

0 −
τh0

ρg
(43)

This result is a generalisation of the KdV equation, [10], for the flow in shallow channel with

the wavy bottom.

5. Comments

We have proposed a method estimating the influence of the corrugated bottom on the prop-

agation of the long gravity waves in two cases: linear and non-linear.

For the linear case we have shown that the equation describing such waves is formally

the same as in the case of the flat bottom, but the velocity of the wave is modified, because

the depth of a channel is replaced by its effective value.

What concerns the nonlinear description of the gravity waves in a channel with the

corrugated bottom, we have found that formally it is still the same KdV equation, in which

the wave elevation η is substituted by the modified elevation η̃ ≡ η−β. Hence, some results

obtained for the KdV equation can be transferred to the description of gravity waves in the

channels with corrugated bottom.
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Nonholonomic acceleration and chaotic dynamics of locomotion

Ivan Bizyaev, Alexey Borisov, Alexander Kilin, Ivan Mamaev, Elena Pivovarova

Abstract: An analysis is made of the dynamics of nonholonomic systems with
mass distribution periodically varying with time. This analysis is carried out
by considering the rolling of a rigid body and the motion of a wheeled vehicle.
In these problems, various types of motion, including those associated with
strange attractors, are observed. A detailed treatment is given of the problem of
unbounded acceleration (an analog of Fermi’s acceleration) by periodic action.
We also show the possibility of chaotic dynamics related to strange attractors of
equations for generalized velocities, which is accompanied by a two-dimensional
random walk of the platform in a laboratory reference system.

1. Equations of motion

Consider the rolling of a dynamically asymmetric unbalanced ball on a horizontal plane

within the framework of the model of a rubber body [6, 7, 9] (Fig. 1). That is, we assume

that there is no slipping at the point of contact, and the vertical component of the angular

velocity is zero. Denote by R and m the radius and the mass of the ball, respectively;

let a = (a1, a2, a3) be the displacement vector of the center of mass of the ball relative to

the geometric center, and let I = diag(I1, I2, I3) be the central inertia tensor of the ball.

We assume that noncoplanar rotors are put inside the ball, and they generate a variable

gyrostatic moment K(t), but do not affect the mass distribution in the system.

Figure 1.

To describe the dynamics of the top, we introduce two coordinate systems:

– a fixed system OXY Z with orthogonal unit vectors α, β, γ,
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– a moving system Cxyz with orthogonal unit vectors e1, e2, e3 rigidly attached to the

body, and with origin at the center of mass of the body.

It is further assumed that all vectors are referred to the moving coordinate system Cxyz.

Conditions for the absence of slipping at the point of contact and of spinning around

the vertical are described, respectively, by the following constraints equations:

v + ω × r = 0, (ω,γ) = 0,

where v and ω are, respectively, the velocity of the center of mass and the angular velocity

of the ball, γ is the normal vector to the plane of support, and r = −Rγ − a is the radius

vector of the point of contact.

The equations of motion of the system can be obtained from the d’Alembert – Lagrange

principle and written in quasi-velocities with undetermined multipliers in the following form

(for a detailed derivation of the equations, see [4])

Ĩω̇ + K̇ = (̃Iω +K)× ω −mr × (ω × ṙ) +mg(γ × a) + λ0γ,

γ̇ = γ × ω,
(1)

where Ĩ = I+m(r, r) ·E−mr · rT is the inertia tensor of the ball with respect to the point

of contact, E is the unit 3×3 matrix, and g is the acceleration of gravity. The undetermined

multiplier λ0 corresponds to the no-spin constraint and has the form

λ0 = −

(
Ĩ−1γ, (Ĩω +K)× ω −mr × (ω × ṙ) +mg(γ × a)− K̇

)

(γ, Ĩ−1γ)
.

For a complete description of the motion of the top in absolute space, equation (1) needs

to be supplemented with quadratures describing the orientation of the top in space and the

trajectory of the contact point,

α̇ = α× ω, β̇ = β × ω,

Ẋ = R(ω,β), Ẏ = −R(ω,α).
(2)

Here X and Y are the coordinates of the point of contact (or of the geometric center of the

ball) in the fixed system of coordinates.

Since, in the general case, the vector of gyrostatic moment K is a given time function,

it follows that system (1) is a nonautonomous system of six differential equations of the first

order.

System (1) admits two first integrals:

– the geometric one,

γ
2 = 1; (3)
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– and the constraint forbidding the spin about the vertical,

(ω,γ) = 0. (4)

Thus, on the given level set of the integrals of motion, the system reduces to a nonautonomous

system of four differential equations.

For the case in which the gyrostatic moment K is constant, the system also admits the

integral of energy,

E =
1

2
(ω, Ĩω)−mg(r,γ).

In the general case of a variable gyrostatic moment, the energy depends on time. Below we

consider the question concerning the possibility of unbounded growth of energy when the

ball rolls.

2. Speedup

1◦. Let us formulate the main question of the possibility of accelerating the system in

question as follows:

Is it possible to choose the mass-geometric parameters of the ball and the law of change

or the gyrostatic moment in such a way that bounded changes of the gyrostatic moment lead

to an unbounded growth in energy (and speed) of the ball?

To answer this question, we consider an initial system which does not depend on time,

and attempt to draw conclusions about the presence or absence of speedup in the system

using some of its properties. To this end we introduce the notion of frozen system. By

a frozen system we mean a system in which the gyrostatic momentum K is a constant

quantity and is equal to the value of the gyrostatic momentum of the initial problem at

different instants of time.

The equations of motion of the frozen system, for K = const, are of the form

Ĩω̇ = (̃Iω +K)× ω −mr × (ω × ṙ) +mg(γ × a) + λ0γ,

γ̇ = γ ×ω,
(5)

where

λ0 = −

(
Ĩ−1γ, (̃Iω +K)× ω −mr × (ω × ṙ) +mg(γ × a)

)

(γ, Ĩ−1γ)
.

Equations (5) admit three integrals of motion, namely,

– the geometric integral,

γ
2 = 1; (6)
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– the constraint forbidding rotation with respect to the vertical,

(ω,γ) = 0; (7)

– and the energy

E =
1

2
(ω, Ĩω)−mg(r,γ). (8)

This system can be reduced to the fixed level set of first integrals of motion (3), (4). As

a result of the reduction, we obtain an autonomous system of four differential equations that

preserve the energy integral (8).

Choosing the level set of the energy integral E and taking the section in the form of the

plane g = const, we can construct for this system, in the standard way [4], the Poincaré map

Πg
2
: {(l, y)} → {(l, y)}.

Let us formulate the following hypothesis.

Hypothesis. An acceleration in nonholonomic systems using periodic changes of parameters

in the course of time is possible if the corresponding frozen system at an arbitrary point of

time admits simple attractors (repellers) and, under the periodic change of parameters, a

periodic alternation of an attractor and a repeller on the phase plane occurs.

Numerical experiments have shown that for the system of interest such a speedup, which

satisfies the hypothesis, is possible when the following conditions are simultaneously satisfied:

1. the center of mass of the ball is displaced in one of the principal planes of inertia;

2. the principal moments of inertia corresponding to the plane in which the center of

mass is displaced are not equal to each other;

3. the gyrostatic momentum vector rotates uniformly in the same principal plane of

inertia in which the center of mass of the ball is displaced.

As an example, we consider the speedup of the ball with the mass-geometric parameters

m = 1, R = 3, I = diag(2, 6, 5), a = (−1, 0, 1.5), g = 9.8 (9)

by means of control actions of the form

K = k(− sinΩt, 0, cos Ωt), k = 1, Ω = 0.1, (10)

where k and Ω are constant parameters. Thus, in the coordinate system attached to the

ball, the gyrostatic momentum vector rotates in a circle of radius k in the plane e1e3.
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Remark. In the general case, the direction of the gyrostatic momentum vector at the initial

instant of time is given by the additional parameter α0

K = k(− sin(Ωt+ α0), 0, cos(Ωt+ α0)),

but in numerical experiments we assume that α0 = 0, since the initial position of the vector

K does not influence the dynamics of the system at large times.

2◦. To investigate and visualize the system dynamics, we perform a reduction of the

equations of motion (1) to the level set of the integrals (3), (4) by making a change of

variables to those similar to the Andoyer –Deprit variables [4]:

ω1 = G
√

1− y2 sin l, γ1 = y cos g sin l + sin g cos l,

ω2 = G
√

1− y2 cos l, γ2 = y cos g cos l − sin g sin l,

ω3 = Gy, γ3 = −
√

1− y2 cos g.

(11)

The equations of motion in the new variables (11) are a system of four differential equa-

tions with time-periodic coefficients. In the four-dimensional phase space G4 = {(l, y, g,G)}

the phase flow of the reduced system generates a four-dimensional map for each period

T = 2π/Ω

Πt
4 : G4 → G4. (12)

To visualize this map, we shall present its projection into the space G3 = {(l, y,G)}.

We consider an example of motion of the ball with parameters (9) and controls (10) at

which speedup is observed. We define the initial conditions as follows:

l = π, y = 0.5, g = π, G = 5. (13)

Figure 2 shows a projection of the map (12) into the space G3 under the above-mentioned

initial conditions. The figure demonstrates a growth of the absolute value of the angular

velocity of the top, G, and a decrease in the amplitude of oscillations of projections ω1, ω3

(i.e., the width of the “tube”).

The dependence of the energy of the system for the trajectory with initial conditions (13)

is shown in Fig. 3. It can be seen that the energy grows linearly in time, hence, the angular

velocity must increase as t1/2.

Remark. It is interesting that in another nonholonomic problem of speeding up a sleigh by

periodic oscillations of the moving mass [2, 3] or by rotation of a gyrostat [1] the velocity of

the system increases as t1/3.
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Figure 2. Projection of a map for each period T = 2π/Ω under the initial conditions (13).

Figure 3. Energy of the system versus time, and its enlarged fragments.

Numerical experiments show that the amplitude of oscillations of angular velocities

ω1, ω3 decreases with time. However, the question of the asymptotics of these amplitudes as

t → ∞ remains open, and its solution requires application of asymptotic methods of analysis.

For the above-mentioned mass-geometric parameters (9), control (10) and initial condi-

tions (13), the ball executes in absolute space rotations close to permanent ones and rolls,

on average, along a straight line. The trajectory of the contact point of the ball on the plane

(X,Y ) is shown in Fig. 4.

Remark. We have not been able to detect a speedup in the system for system parameters

that do not satisfy the proposed hypothesis. For example, we could not detect it when we

chose the parameters (9), but let the displacement of the center of mass be a = (0, 0, 1.5),
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Figure 4. Trajectory of the contact point of the ball on the plane (X, Y ).

or when we took the parameters (9) and chose the tensor of inertia to be axisymmetric

I = diag(5, 6, 5). In both cases the frozen system with a ⊥ K or a ‖ K had no simple

attractors (repellers) and no speedup was observed.

3. Asymptotic behavior

We have investigated the existence of accelerated trajectories depending on initial conditions

of the system. To do this, we integrate the equations of motion of the system for various

initial conditions and indicate the existence or absence of acceleration by various colors.

Figure 5(a) shows the map of the asymptotic regimes of the system for the initial value

G(0) = G0 = 5. In this figure, black corresponds to the growth of energy. White corresponds

to the decrease in energy. The shades of gray (in the chart) correspond to the changes in

energy that are close to zero.

It can be seen from the figure that there are three domains of initial conditions on the

chart that correspond to different asymptotic regimes:

1. Domains colored black and dark-gray. Under all initial conditions in this domain, a

linear growth of energy is observed.

2. Domains colored white and light-gray. Under all initial conditions in this domain, at

large times, the phase trajectory converges to the attractor.

3. The domains of mixed behavior exhibit points of different shades of gray. This mixing

is due to the fact that the boundaries between different types of asymptotic behavior

are of fractal nature, which results in color mixing.

Figure 5(b) shows a typical projection of a chaotic attractor to the space (l, y,G) which
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Figure 5. (a) Chart of asymptotic regimes of the system on the plane of the initial

conditions (l, y) for G0 = 5. (b) The projection of the phase portrait of a chaotic attractor.

the trajectory of the system reaches in the absence of acceleration.

Numerical experiments show that, when integrating a trajectory for the times t ≫ tmax

from the initial conditions corresponding to the white areas in Fig. 5(a), two cases are

possible:

1. All trajectories are eventually accelerating, i.e., after some period of chaotic regime,

the system exhibits acceleration. Most likely, this behavior is observed due to the

accumulated error caused by the integration at large times.

2. There are trajectories that move towards the attractor and do not descend from it;

however, due to the fractal structure of the plane of the initial conditions, the selection

of the initial conditions becomes a rather complicated problem.

The Lyapunov exponents for this attractor take the following values (due to the presence

of singularities in the Andoyer –Deprit variables, these exponents were calculated in the

variables ω,γ):

Λ1 = 0.01755, Λ2 = 0.002089, Λ3 = 0.00059, Λ4 = −0.000477,

Λ5 = −0.002236, Λ6 = −0.016431,
∑

Λi = 0.001103.

For the attracting trajectory corresponding to the acceleration of the system, the Lya-

punov exponents take the following values:

Λ1 = 0.000189, Λ2 = −4.2 · 10−5, Λ3 = −4.6 · 10−5, Λ4 = −0.000195,
∑

Λi = −9.5 · 10−5.
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4. Chaotic dynamics

In previous sections we consider a system which can be modeled as an unbalanced rigid

shell with a frame rigidly attached to the shell. Orthogonal rotors are installed on the

frame. These rotors rotate with time-periodic angular velocity and do not change the mass

distribution of the system.

Here we consider a system close to the previous one, but with some differences. We

consider a balanced rigid shell with a frame, which rotates with constant angular velocity.

On the frame an orthogonal rotor is installed which also rotates with constant angular

velocity.

To specify the orientation of the shell, we introduce a noninertial coordinate system

Cxyz which is attached to the shell. We denote its unit vectors by ex, ey and ez. Let the

unit vector ez = (0, 0, 1) be directed along the axis of dynamical symmetry of the shell.

Then the angular velocity of the frame relative to the shell is defined by the relation Ω(t)ez.

Nonholonomic constraints. Let u and w be, respectively, the translational velocity

and the angular velocity of the shell, referred to the axes Cxyz. As is well known, the

conditions that there is no slipping and no spinning at the contact point P are defined by

the following relations:

u+ aΓ×w = 0, (w,Γ) = 0, (14)

where Γ is the normal to the plane projected to the axes Cxyz.

The rotation matrix P(t) which defines the transition to the coordinate system Cx1x2x3

(attached to the frame) has the form

P(t) = RΦ(t),

Φ(t) =




cosϕ(t) sinϕ(t) 0

− sinϕ(t) cosϕ(t) 0

0 0 1


 , ϕ(t) =

∫ t

0

Ω(τ )dτ,

where R is the constant matrix.

The transition to the velocities v and ω (in the coordinate system Cx1x2x3) is defined

by the following relations (see [4] for details):

ŵ = P
T
ω̂P+ Ṗ

T
P, v = Pu,

ω̂ =




0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


 , ŵ =




0 w3 −w2

−w3 0 w1

w2 −w1 0


 .

(15)
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The angular velocity vector of the frame and the normal to the plane in Cx1x2x3 have

the form

Ω(t) = Ω(t)Pez, γ = PΓ.

Taking these relations into account, we represent the equations for constraints (14) in

the form

v + aγ ×
(
ω −Ω(t)

)
= 0,

(
ω −Ω(t),γ

)
= 0.

(16)

Kinetic energy. We represent the kinetic energy of the shell as follows:

Ts =
1

2
msu

2 +
1

2
(w, Isw),

where ms and Is = diag(Is, Is, Js) are the mass and the principal moments of inertia of the

shell, respectively.

In the coordinate system Cx1x2x3, up to an additive function of time, we obtain

Ts =
1

2
msv

2 +
1

2
(ω,RIsR

T
ω)− Js(ω,Ω(t)).

The kinetic energy of the frame in the coordinate system Cx1x2x3 can be represented as

Tf =
1

2
mfv

2 +
1

2
(ω, Ifω),

where mf and If are the mass and the tensor of inertia of the frame, respectively.

The kinetic energy of the ith rotor has the form

Ti =
1

2
µiv

2 +
1

2

(
ω + φ̇i(t)ni, ji(ω + φ̇i(t)ni)

)
,

where mi and ji are the mass and the tensor of inertia of the ith rotor, respectively, and ni

is the unit vector defining its direction of rotation.

Using the fact that the axis of rotation of the rotor coincides with the axis of dynamical

symmetry, i.e., jini = jini, we obtain the kinetic energy of the system in the form

T = Ts + Tf +
n∑

i=1

Ti =
1

2
mv

2 +
1

2
(ω, Iω) + (k(t),ω), (17)

where m is the mass of the entire system, and I and k(t) are its moment of inertia and

gyrostatic momentum, respectively:

m = ms +mf +
n∑

i=1

µi, I = RIsR
T + If +

n∑

i=1

ji,

k(t) =
n∑

i=1

jiφ̇i(t)ni − JsΩ(t).

(18)
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Since the matrix I is symmetric and positive definite, one can always choose the matrix R

in such a way that I = diag(I1, I2, I3) is a diagonal matrix.

In the general case, we represent the equations of motion in the form of Poincaré – Suslov

equations (for details, see [5, 8]):

d

dt

(
∂T

∂ω

)
+ ω ×

∂T

∂ω
+ v ×

∂T

∂v
+ γ ×

∂T

∂γ
=

3∑

i=1

λi
∂fi
∂ω

+ λ0

∂f0
∂ω

,

d

dt

(
∂T

∂v

)
+ ω ×

∂T

∂v
=

3∑

i=1

λi
∂fi
∂v

+ λ0

∂f0
∂v

,

(19)

where λ = (λ1, λ2, λ3) and λ0 are the undetermined multipliers defining the reaction of the

constraints (16).

Substituting the kinetic energy (17) in equations of motion (19) and supplementing by

the Poisson equation for γ, we obtain a system of 6 equations which admits three integrals

of motion

F0 = γ
2, F1 = (M ,γ), f = M

2,

where

M = γ ×
(
Ĩω −K(t)

)
, K(t) = k(t)−ma2

Ω(t). (20)

Thus, we obtain a three-dimensional phase flow which generates a two-dimensional Poincaré

map Φf,g0 . At some parameters of the system, a strange attractor arises on the map Φf,g0

(see Fig. 6).

Figure 6. An example of the strange attractor on the Poincaré map.

This attractor corresponds to the following Lyapunov exponents:

Λ1 ≈ 0.11, Λ2 ≈ 0, Λ3 ≈ 0, Λ4 ≈ 0, Λ5 ≈ 0, Λ6 ≈ −0.13.

Its Kaplan –Yorke dimension on the Poincaré map is

D = 1 +
Λ1

|Λ6|
≈ 1.84.
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Abstract: An advanced chaos-geometric computational approach to analysis, 

modelling and prediction of the non-linear dynamics of quantum and laser systems 

with elements of the deterministic chaos is briefly presented and applied to study of a 

chaos generation in the one-ring erbium fiber laser. The approach is based on using 

the techniques such as a wavelet analysis, multi-fractal formalism, mutual information 

approach, correlation integral analysis, false nearest neighbour algorithm, the 

Lyapunov’s exponents analysis, surrogate data method, prediction models etc. There 

are listed the advanced numerical data on the topological and dynamical invariants 

(correlation, embedding,  Kaplan-York dimensions, the Lyapunov’s exponents, 

Kolmogorov’s entropy etc) of  chaotic dynamics for the one-ring erbium fiber laser 

with the control parameters: the modulation frequency and dc bias voltage of the 

additional electro-optical modulator. 

1. Introduction 

In modern computational quantum electronics, laser physics etc dynamical systems (such as atomic 

and molecular systems in an electromagnetic field, multi-element semiconductors and gas lasers etc) 

are intensively studied in the last years. Especial interest attracts dynamics of the laser systems, which 

can exhibit chaotic dynamical behaviour. These systems can be considered in the first approximation 

as a grid of autogenerators (quantum generators), coupled by different way [1-8]. A quantitative study 

of the chaos phenomenon features is of a great interest and importance for many scientific and 

technical applications. At the present time it became one of the most actual and important problems of 

computational physics of the complex systems. Chaotic fluctuations in the laser diodes dynamics 

deserve much attention because of their potential for unprecedented application of the technologies, 

secure communication, the construction of chaotic lidars, optical reflectometers, true random number 

generators etc [1-21]. It is  known that a transition to chaos in dissipative regime of functioning of 

NMR-maser provides the construction based on a new type of detecting signals with unprecedented 

sensitivity especially when approaching control parameter to the point of doubling bifurcation. 

 In this work we present the advanced results of application of a uniform chaos-geometric 

formalism (CGF) to analysis and modelling of non-linear dynamics of some laser systems. The CGF 
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is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal 

formalism, mutual information approach, correlation integral analysis, false nearest neighbour 

algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc (see 

details in Refs. [4,5,17-41]). We present the advanced results of  study of chaos generation dynamics 

in the one-ring erbium fiber laser (EFL) with the control parameters: the modulation frequency  f and 

dc bias voltage V of the additional electro-optical  modulator (EOM). The values of the topological 

and dynamical invariants for the EFL dynamics are listed.      

2. Universal chaos-dynamical approach to analysis of dynamics of the complex laser 

systems 

As many blocks of the used approach have been developed earlier and needed only to be reformulated 

regarding the problem studied in this paper, here we are limited to presenting the key moments 

following to Refs. [4-6,12,29-39]. The important step of the quantitative studying chaotic dynamics of 

different dynamical systems is a numerical analysis of the characteristic time series, i.e. the time 

series of key dynamical characteristics.  Let us formally consider scalar measurements 

s(n) = s(t0 + nt) = s(n), where t0 is the start time, t is the time step, and is n the number of the 

measurements. In a general case, s(n) is any time series, particularly, the series for an amplitude level. 

Packard et al. [22] introduced the method of using time-delay coordinates to reconstruct the phase 

space of an observed dynamical system. The direct use of the lagged variables s(n + ), where  is 

some integer to be determined, results in a coordinate system in which the structure of orbits in phase 

space can be captured. Then using a collection of time lags to create a vector in d dimensions, 

       y(n) = [s(n), s(n + ), s(n + 2), …, s(n + (d1))],                                                                       (1) 

the required coordinates are provided. In a nonlinear system, the s(n + j) are some unknown 

nonlinear combination of the actual physical variables that comprise the source of the measurements. 

The dimension d is called the embedding dimension, dE. Two methods are usually used to determine 

this parameter. First approach is based on computing the autocorrelation function. Another approach 

is based on using an average mutual information. The next principal step is to reconstruct a Euclidean 

space Rd large enough so that the set of points dA can be unfolded without ambiguity. In accordance 

with the embedding theorem, the embedding dimension, dE, must be greater, or at least equal, than a 

dimension of attractor, dA, i.e. dE > dA. In other words, we can choose a fortiori large dimension dE, 

e.g. 10 or 15, since the previous analysis provides us prospects that the dynamics of our system is 

probably chaotic. However, two problems arise with working in dimensions larger than really 

required by the data and time-delay embedding [24]. Firstly, many of computations for extracting 

interesting properties from the data require search and other operations in Rd whose computational 
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cost rises exponentially with d. Secondly, but more significant from the physical viewpoint, in the 

presence of noise or other high dimensional contamination of the observations, the extra dimensions 

are not populated by dynamics, already captured by a smaller dimension, but entirely by the 

contaminating signal. In too large an embedding space one is unnecessarily spending time working 

around aspects of a bad representation of the observations which are solely filled with noise. Further 

it is necessary to determine the dimension dA. There are a few methods to reconstruct an attractor 

dimension (see, e.g., [1-8]), but usually there are applied only two methods. The first correlation 

integral analysis uses the correlation integral, C(r), to distinguish between chaotic and stochastic 

systems. To compute the correlation integral, the algorithm of Grassberger and Procaccia [26] is the 

most commonly used approach, where the correlation integral is  

  

 








)1(
,

||||
)1(

2
lim)(

Nji
ji

ji
N

rH
nN

rC yy

                                                                                          (2) 

where H is the Heaviside step function with H(u) = 1 for u > 0 and H(u) = 0 for u  0, r is the radius 

of sphere centered on yi or yj, and N is the number of data measurements. The correlation exponent d t 

can be determined as the slop of line in the coordinates log C(r) versus log r by a least-squares fit of a 

straight line over a certain range of r, called the scaling region. To verify the results obtained by the 

correlation integral analysis, one can use surrogate data method. This method (look for example, 

[3,4]) is an approach that makes use of the substitute data generated in accordance to the probabilistic 

structure underlying the original data.  

The next important step is computing the Lyapunov’s exponents, which are the dynamical 

invariants of a nonlinear system. In a general case, the orbits of chaotic attractors are unpredictable, 

but there is the limited predictability of chaotic physical system, which is defined by the global and 

local Lyapunov’s exponents. In a chaos theory, the spectrum of the Lyapunov’s exponents is 

considered a measure of the effect of perturbing the initial conditions of a dynamical system. Note 

that both positive and negative Lyapunov’s exponents can coexist in a dissipative system, which is 

then chaotic. In fact, if one manages to derive the whole spectrum of the Lyapunov’s exponents, other 

invariants of the system, i.e. Kolmogorov entropy and attractor's dimension can be found. The  

Kolmogorov entropy, K, measures the average rate at which information about the state is lost with  

time. An estimate of this measure is the sum of the positive Lyapunov’s exponents. The inverse of the 

Kolmogorov entropy is equal to the average predictability. The estimate of the dimension of the 

attractor is provided by the Kaplan and Yorke conjecture: 
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, and the Lyapunov’s exponents  are taken in 

descending order. There are a few approaches to computing the Lyapunov’s exponents. One of them 

is based on the Jacobi matrix of system. In the case where only observations are given and the system 

function is unknown, the matrix has to be estimated from the data. In this case, all the suggested 

methods approximate the matrix by fitting a local map to a sufficient number of nearby points. In our 

work we use the method with the linear fitted map proposed by Sano and Sawada, although the maps 

with higher order polynomials can be also used. To calculate the spectrum of the Lyapunov’s 

exponents from the amplitude level data, one could determine the time delay  and embed the data in 

the four-dimensional space. In this point it is very important to determine the Kaplan-York dimension 

and compare it with the correlation dimension, determined by the Grassberger-Procaccia algorithm.  

It is worth to remind that results of state-space reconstruction are highly sensitive to the length of data 

set (i.e. it must be sufficiently large) as well as to the time lag and embedding dimension determined. 

Indeed, there are limitations on the applicability of chaos theory for observed (finite) time series 

arising from the basic assumptions that the time series must be infinite.   

3. Results and conclusions 

Below we present the numerical results of a quantitative study of the chaos generation dynamics 

in the EFL with the control parameters: a modulation frequency f and dc bias voltage V of the 

additional EOM.  Feng et al. [1] experimentally observed generation of chaos in the EFL (laser 

parameters: the output power 20.9 mV, wavelength 1550.190 nm) with the EOM which is made from 

crystal LiNbO3. In the first series of measurements by Feng et al. [1] the DC bias voltage is 

maintained at 10V, frequency modulation control parameters was f= 64-75MHz. Figure 1 (column I) 

shows the measured time dependence of the output voltage Vout of the frequency modulation: A. f=75 

MHz (one-period  state); B. f=68MHz (double-period state); C. f=64MHz (chaotic state) [1]. In a 

second series of measurements by Feng et al. [1] the modulation frequency is kept at 60 MHz, and its 

dc  bias voltage V was changed from 4 to 10V (Figure 1, column II). Theoretical examination shows 

that depending on the values of f, V laser device is in turn in the one-period  (f = 75 MHz, V = 10V or  

f = 60MHts, V = 4V), double-period  (f = 68MHz, V = 10V or f = 60MHz , V = 6V), chaotic (f = 

64MHz, V = 10 V and f = 60MHz, V = 10V) states [1].  Using our version of the  CGF [4-6,12,29] we  

calculated values of Lyapunov’s exponents (LE), correlation dimension, embedding dimension, the 

Kaplan-York dimension, the Kolmogorov entropy (KE) Kentr for two time series. The relevant data are 

listed in the Table 1. In general, our theoretical analysis shows that the chaos in the EDFL device is 

generated via scenario of intermittency by increasing the DC bias voltage and period-doubling 

bifurcation sequence by reducing the EOM modulation frequency.  
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Figure 1.   Temporal dependence Vout (I): А. f = 75 MHz (1-period state); B. f = 68 MHZ (2-period); 

C.64 MHz (chaotic); (II): А.V=4В (3-period); B.V=6В (intermittency); C.V=10В (chaotic). 

Table 1. Results of calculation of the LE amplitude level: i in descending order, dL - Kaplan-York 

dimension, Kentr - KE 

Row 1 2 3 dL Kentr 

I 0.168 0.0212 -0.223 2.85 0.19 

II 0.172 0.0215 -0.220 2.88 0.19 

 

     To conclude, we presented the results of the CGF version (which includes the advanced techniques 

such as multi-fractal formalism, mutual information, correlation integral and the Lyapunov’s 

exponents analysis, false nearest neighbors, surrogate data algorithms etc [4,5,17-41]) application to 

analysis and modeling the chaos generation dynamics in the EFL using the experimental data by Feng 

et al [1]. The values of the topological and dynamical invariants (correlation, embedding, Kaplan-

York dimensions, the Lyapunov’s exponents etc) for the EFL dynamics are listed.      
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Thermographic analysis of the additional load influence on the muscle 
activation during gait 

 

Jarosław Chruściel, Anna Frątczak, Angelika Puchalska, Siam Streibl,  
Bartłomiej Zagrodny  

Abstract: Carrying loads in asymmetrical ways (on one shoulder, across the body or 

with one hand) has become a common practice. This study aims to introduce the effects 

of the aforementioned load carrying methods on muscle activation with the use of 

infrared thermography. Experimental results reveals differences in temperature 

symmetry distribution along upper part of the body. Also it was observed, that with 

higher asymmetrical load bigger temperature difference between left and right side was 

obtained.  

1. Introduction  

 Physical activity leads to increased blood flow in order to supply the activated muscles with all  

necessary nutrients and oxygen as well as to remove metabolites, a by-product of muscular contractions 

[1, 2]. The energy produced by muscles, caused by its relatively low efficiency, is expressed in the form 

of heat. The human body aims to dissipate it in order to prevent internal organs and muscles itself from 

overheating, also known as hyperthermia [3]. It does so through a process referred to as 

thermoregulation in which the skin plays a key role and involves vasoconstriction, sweating and 

shivering [4]. With that being said, skin temperature should reflect the level of heat dissipation and is 

correlated with muscle activation.  

 An increasingly popular method to assess muscle activation by analysing skin temperature is 

thermal imaging [5, 6]. Infrared thermography (IRT) is a technique which is based on the fact that every 

matter with a temperature greater than absolute zero emits infrared radiation. A thermographic camera, 

by means of its optical system, detects radiation emitted in the long-infrared range and creates a visual 

representation of temperature distribution, called a thermogram [7]. 

 Another popular method used for assessing muscle activation is surface electromyography 

(sEMG). This technique measures the electrical activity of skeletal muscles by detecting their electric 

potential when muscle cells are activated. It is possible to investigate the activity of a particular muscle 

with a pair of electrodes attached or inserted on the skin above the muscle [8].  

 Influence of different types of additional load on muscle activation have been determined in 

numerous studies. Load in a form of a hockey bag of different sizes [9] or backpack worn in different 

positions [10-13] was examined. The influence of carrying an additional load in one and both hands on 

muscle activation was investigated [14]. In most cases muscle activity was assessed by sEMG. To the 

best knowledge of authors, a study concerning the influence of additional load in form of a laptop bag 

107



carried in different forms on muscle activity by means of IRT has not been done yet.  

 Currently women and men keep their personal belongings, documents, electronic devices and 

everyday life items in bags. They use their hands or shoulders as a support or put a long strap across 

their torso. Carrying backpacks on one shoulder is also popular among students [15]. These four modes 

of carrying additional loads are going to be examined. Infrared thermography was chosen as it allows 

researchers to analyse a whole area at once, contrary to EMG. It is also a non-invasive and requires no 

contact what is its main advantage. 

 This study aims to determine the relationship between different types of asymmetrical loads and 

muscle activation with the use of IRT. The muscles chosen to be analysed are: latissimus dorsi, 

trapezius and obliquus abdominis. 

2. Materials and methods  

 A group of four college students were used in the study, aged 23±1, height 180±3.4cm and weight 

76±11.6kg. They were without any injuries and visible asymmetry/faulty posture. 

 Infrared thermography measures skin temperature, which is highly influenced by a large number 

of external factors. Activities such as sunbathing or exercising can affect skin temperature, even several 

days after. Moreover, substances such as specific food or drinks, when consumed, may influence blood 

pressure and thus skin temperature. Showering or applying lotion on the skin, along with many skin-

related activities must be strictly regulated in order to improve the quality and coherence of results 

obtained through thermography. To carry out this study, participants followed a standardised procedure 

[16]. The experiments were conducted in a 5x10 m room, which fulfills the standards of thermal 

imaging in medicine and physiotherapy - with a temperature between 22°C and 24°C and humidity 

levels between 24% and 28%. Experimental procedures was also identical for each participant. 

 Firstly, volunteers were asked to remove their tops and wait 20 minutes in order to acclimate their 

bodies to the study environment. Next, initial upper-body thermograms were taken (anterior and 

posterior) with the InfReC R300SR thermal camera positioned 3 m away from subjects and supported 

by a tri-pod. Once completed, the gait on a motorised treadmill (York Fitness T500 6010) was held for 

1 km with a velocity equal to 4 km/h. A second thermograph was taken right after the gait sequence. A 

third thermograph was taken 5 minutes after the second one due to the presence of sweat on the skin 

after the activity, which has a cooling effect on the skin [17]. Each participant was assigned to carry the 

additional load in one of four different ways, as shown in Fig. 1.  
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Figure 1. Four investigated modes of carring load a) backapack carriedon one shoulder b) laptob bag held in 

one hand c) laptop bag carried on one shoulder d) laptop bag with strap across torso 

 

 Each volunteer was required to walk with an additional weight value equal to 5%, 10% and 15% 

of their bodyweight as well as perform a control gait without additional load in order to determine the 

effects of each experiment. One sequence of measures took approximately 45 minutes per person and 

had to be done on separate days or after a one hour break so as not to disrupt the results. This resulted 

in about 3 h of measurements in total for each person. Every volunteer walked on a treadmill with one 

type of load. Types of load are assigned to the subjects according to the description: 

Subject 1 - backpack carried on one shoulder 

Subject 2 - laptop bag held in one hand 

Subject 3 - laptop bag carried on one shoulder 

Subject 4 - laptop bag with strap across torso 

 After all measurements were done, the results were analysed in the thermal imaging software 

InfReC Analyzer NS9500 Standard. Each approximate area of the 6 examined muscles was marked in 

the software as shown in Fig. 2. 

 

 

Figure 2. Muscles marked in thermal image software, A/B- trapezius - right/left, C/D- latissimus dorsi - 

right/left, E/F- obliquus abdominis - left/right 
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 Additionally, the overall skin temperature average was measured for before and 5 minutes after 

gait, separately for the anterior and posterior torso and defined by the polygons traced. 

3. Results 

 Table 1 presents the average temperature difference before and 5 minutes after gait between right 

and left side of investigated muscles. For Subject 1, difference in temperature between right and left 

latissimus dorsi after gait with no load is -0.11°C, which indicates bigger activation of the left latissimus 

dorsi. However, for gait with load, the temperature difference is positive, increases and reaches 0.21°C 

for load equal to 15% of body weight (Fig. 3). Changes in temperature difference for trapezius between 

no load and 15% body weight load is 0.01°C, therefore these changes are insignificant. Temperature 

difference between right and left obliquus abdominis decreases from 5% body weight with increasing 

load and obtains value of -0.31°C, which indicates that left obliquus abdominis is activated more during 

gait with load bigger than 5% of body weight. 

 

 

Figure 3. Average temperature difference between right and left latissimus dorsi for Subject 1 

 

 For Subject 2 difference in temperature between right and left side of the examined posterior 

muscles (latissimus dorsi and trapezius) rises with increasing load. It can 

be observed that left muscles are more active during no load gait and the right muscles 

become more active with increasing weight of the load. The right latissimus dorsi 

and trapezius become more active than left for 15% body weight load, as the temperature 

difference reaches 0.06°C and 0.18°C for latissimus dorsi and trapezius respectively. 

Opposite phenomenon is observed in obliquus abdominis as shown in Fig. 4. With increasing weight 
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of the load the difference between right and left muscles decreases and 

obtains value of -0.37°C, which indicates increase in left obliquus abdominis activation. 

 

 

Figure 4. Average temperature difference between right and left obliquus abdominis for Subject 2 

 

For Subject 3 increase in temperature difference after gait is observed for latissimus dorsi and trapezius 

throughout experiments which is interpreted as continuous growth in right side muscles activation. The 

temperature difference between right and left side for gait with no load is -0.33°C and -0.31°C, whereas 

for gait with 15% body weight load is 0.06°C and 0.20°C for latissimus dorsi and trapezius respectively. 

It may be caused by the asymmetry in muscle activity before gait shown in Fig. 6. Increase of 

temperature difference of trapezius is shown in Fig. 5. Investigated posterior muscles are more activated 

on left side for loads below around 10% of body weight, because the temperature difference between 

right and left latissimus dorsi is -0.08°C and trapezius -0.05°C. Right side muscles activation dominates 

for greater loads. Obliquus abdominis presents reversed trend and right side muscles are stronger 

activated. 

For Subject 4 continuous growth in temperature difference after gait is observed for all attempts 

with load. Gait without load causes temperature difference to fall for latissimus dorsi and obliquus 

abdominis muscles. The decrease is 0.03°C for latissimus dorsi and 0.10°C for obliquus abdominis. 

Trapezius and obliquus abdominis muscles are continually more activated on right side of the body. 

The increase of temperature difference for trapezius is shown in Fig. 7. Latissimus dorsi on left side 

side is stronger activated for loads up to around 10% of body weight. With further increasing load right 

side side is dominant. The total increase of temperature difference between right and left latissimus 

dorsi, trapezius and obliquus abdominis is 0.15°C, 0.36°C and 0.09°C respectively. 
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Figure 5. Average temperature difference between right and left trapezius for Subject 3 

 

 

 

Figure 7. Average temperature difference between right and left trapezius for Subject 4 
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Table 1 Average temperature difference between right and left muscle in °C 

 

 

4. Discussion 

As a result of thermoregulation being activated, the average body temperature decreased after gait 

in all cases. Since the experiment is focused on the effects of an asymmetrical load on the specified 

muscles, temperature difference between left and right muscles after gait with different loads is 

considered and compared. Additionally, temperature difference between left and right muscles before 
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the gait is also taken into consideration, because the experiments with different load were done on 

separate days. One can observe fluctuation of the aforementioned temperature difference in many cases. 

As stated, skin temperature highly depends on external factors. For Subject 1 no significant 

difference is noticed in the temperature between left and right trapezius. This muscle is responsible for 

raising the upper limbs. Therefore, the volunteer does not raise the shoulder while carrying backpack 

on it. However, the center of gravity is changed during the gait with load on the right hand side and to 

keep the balance the body activates more the right latissimus dorsi and left obliquus abdominis. Similar 

testing procedure was applied by [18] but the measuring technique was electromyography. Results in 

presented study deny conclusions stated in the article which proves the significant difference only for 

trapezius and no changes in lower muscles (latissimus dorsi and obliquus abdominis). In our study such 

dependence is observed in all cases except of the cross body laptop bag. For Subject 2 it is visible that 

all left side muscles are more activated after the gait with no load, however, before gait those 

temperature differences were smaller. It may be caused by asymmetrical movement during gait. It 

would be reasonable to check the activity of leg muscles or feet pattern during gait. Such asymmetry 

may be caused by hip, knee or ankle injury that the body wants to compensate. Only when the load 

equal to 15% of body weight is applied the right latissimus dorsi and right trapezius are more active 

than left correspondent. According to the experiment carried by [19] the biggest differences should be 

visible for the volunteer carrying bag much lower than the level of the shoulder. In presented study this 

theory is not proven. The Subject 2 does not show any significant differences even for 15% of body 

weight. For Subject 3 it may be concluded that the posture is not exactly symmetrical according to the 

sagittal plane. From the numerical data it can be seen that before gait obliquus abdominis are more 

activated on the right side. At the same time the left trapezius is more activated. The volunteer admits 

that most of the time all the belongings are held in the bag on the right shoulder what may cause 

permanent spine curvature. The experiment carried by [20] proves the asymmetrical muscle activity 

among children with problem of scoliosis with one curve as well as double curve [20]. In presented 

study the temperature difference between right and left muscles before any activity is not near the zero 

value, therefore, it may be concluded that the Subject 3 suffers from one side scoliosis what was also 

proven by the Adams test. For Subject 4 as it was mentioned before, this is the only case where all 

examined muscles are more activated on the right hand side than those on the left side. Trapezius, the 

muscle responsible for elevation of the scapula, is more and more activated with increasing load to 

carry some part of the additional weight. If the load is not distributed bilaterally, there is an increased 

muscle activity of the trapezius muscle on the shoulder that the bag is worn on. The same conclusion 

was found in the paper written by [18]. In all examined cases where the additional load was distributed 

nonuniformly the trapezius was more activated on the side where the strap was held on. This is due to 

the Subject trying to maintain the proper scapula position to ensure the strap of the bag is kept over the 
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shoulder while the trunk is laterally flexed so that the centre of mass of the body remains over the base 

of support during gait. 

5. Conclusions 

Obtained results show that during gait with additional load held in asymmetrical manner, right and 

left muscle activity changes. With increasing weight of the carried load, the differences become larger 

in order to compensate the change of the centre of gravity. The compensation appears in some muscles 

only when the load reaches 10% of body weight, because for lower loads by other muscles. Different 

types of loading cause different patterns of compensation. Additionally, it was shown that for different 

type of carrying the bag/backpack subjects activate their muscles in a different way. The common 

phenomenon is increased right or left latissimus dorsi, trapezius and obliquus abdominis activity in the 

majority of cases. Since the thermal camera measures the temperature of the surface of the skin, it is 

impossible to assess from which muscle the heat comes from if there are two muscles overlapping one 

another. The temperature on the skin results from the heat conduction between the two aforementioned 

muscles. The results indicate that walking with the load in each of the four examined manners increase 

possibility of muscle injury as well as lead to or increase faulty posture. 
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Finding globally optimal combinations of cranes drive 

mechanisms by the method of exhausting alternative design 

structures of mechanisms  

 

 

 

Stefan Chwastek 

Abstract: During certain crane operations: hoisting or lowering the payload connected 

with a slewing jib, generated are Euler and Coriolis forces whose impacts should be 

minimized already at the stage of selection of the system parameters and mechanism 

structure. The Machine and Mechanism Theory provides a method of exhausting 

kinematic chains which involves identification of all possible alternatives of 

kinematic structures with respect to the required number of degrees of freedom and 

field of work. This article outlines a methodology of selecting optimal structure from 

a set of possible solutions. Optimization of a multi-drive machine, needs to take into 

account the interactions between cooperating  mechanisms  By introducing a certain 

quality criterion, a set of parameters optimized for the full range of motion is 

determined for each structure. Accordingly, each structure is assigned a value of the 

optimum quality index. The method was illustrated for a one-link crane with lever 

mechanisms, and comparison was made with ropes mechanisms. Optimization tasks 

were formulated assuming the ideal stiffness of the structure in quasi-static 

conditions. Effectiveness was verified under dynamic impact conditions, taking into 

account rope flexibility. Finding globally optimal design solution it comes to the best 

combination of different mechanisms allows the dynamic overload values to be 

significantly reduced at the stage of design of the steel structure. 

1. Introduction 

Similar issues were addressed in [4, 5]. In the work [4] the minimum deviation of the vertical load is 

sought for a finite number of boom positions, basing on the linearized form of the objective function. 

The study [4] summarizes the efforts to find the optimal position of blocks in a compensation 

mechanism such that the boom unbalance moment should be minimized. Optimization of the crane 

luffing mechanism based on Gray Fuzzy Optimal Model is described in [7]. The study [5] explores 

the trajectory optimization of a double-rocker four-bar mechanism with an objective to minimize the 

amplitude of its trajectory. After analyzing the sensitivity of the system, the number of decision 

variables was reduced from six to four. The searching method was applied to handle the set of 3
4
 

elements. A set of lengths of movable cells of the crane mechanism was obtained from the minimum 

deviation of the vertical load condition. An In fact the method presented in [3] gives a nearly identical 

solution. In order to ensure realizability of the movement within the assumed angular range, certain 
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restrictions arising from the Grashoff conditions were introduced in the optimization problem. 

However, none of the previously mentioned works explore the, potential use of alternative structures 

of mechanisms when searching for globally optimal solutions. Optimization of a multi-drive machine, 

needs to take into account the interactions between mechanisms. Tower cranes with the luffing boom 

are machines, where individual mechanisms: slewing boom, load lifting and counterbalance 

mechanisms can operate simultaneously. Multi-stage optimization consists in the best adjustment of 

parameters of the subsequent mechanism connected to the structure of previously configured 

mechanisms. The order in which the mechanisms are connected is of great importance. Parametric 

optimization involving the exploration of alternative design structures of mechanisms is aimed to 

yield the best combination of independent drive mechanisms from a previously selected set of 

structures with optimum parameters.  

2. Optimization by the method of exploring alternative design structures of 

mechanisms 

The primary focus in structural design of modern cranes is on minimization of forces acting in hoist 

ropes and reduction of energy consumption involved in crane operation. The method of exhausting 

kinematic chains which involves identification of all possible alternatives of kinematic structures with 

respect to the required number of degrees of freedom and field of work [1, 2]. Method of selective 

analysis of mechanism structures in this approach was be developed into the method of synthesizing 

globally optimal configurations of cooperating mechanisms. The structure and optimal parameters of 

the slewing mechanism were adopted on the basis of the work [3]. Optimization of slewing 

mechanism discussed in [3] in fact could be applied to the rope mechanism in a winch. The main 

objective in optimization of the luffing mechanism was to ensure such roping configuration so as to 

minimize the horizontal hook trajectory error for the full variability range of the angle of the jib 

horizontal inclination when the winch is blocked.  Apparently, for a crane with a pivoting boom, there 

is no good alternative for a luffing mechanism based on a roping system, yet as far as lifting jib 

mechanisms and counterweights are concerned, novel solutions can be sought among available 

mechanical structures. Consequently, the research task now will involve the search for globally 

optimal selection of crane mechanisms. And so for counterbalance mechanisms of any structure, the 

residual moment of imbalance depends on the angular position of the boom and the pi parameters 

(where i = 1, 2, ..., k) of the counterbalance mechanism. The set of optimal parameters is determined 

by the condition whereby the square functional J(p1, p2, …, pk) ought to be minimized. In the 

optimization procedure, pi –parameters become optimization variables belonging to a limited set of 

allowable solutions – Ω, where Ω  R
k+r

. Each structure was assigned a value of the optimum quality 

index – Lm. The optimum quality index represents the value of the slewing work of the unloaded  

boom which will be performed by the  mechanism with optimum parameters. Index – m represents 
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the number of the counterweight mechanism. Obviously, this will be the lowest value of work for a 

given structure, assuming the length and weight of the boom remain unchanged. Optimization of the 

boom lifting mechanism is carried out for a particular counterbalance mechanism. Thus we get some 

variants of solutions and optimization tasks are possible. When these are solved, the values of the 

optimum quality index – SWmn can be determined. Index n – represents the number of the boom 

lifting mechanism. The optimum quality index becomes the maximum value of the force acting in the 

lifting cable – SW at the full slewing cycle of the boom under the nominal load – Q. The indices m, n 

identify the correlation: m - th  counterbalance mechanism with the n - th boom lifting mechanism in 

the given crane structure variant. The set of optimal parameters is determined by the imposed 

condition that the square functional J(pk+1, pk+2, …, pk+r) be minimized. All parameters determined 

in previous sections remain constant throughout the entire optimization procedure. Parametric 

optimization in the enumeration of alternative structures of mechanisms is aimed to yield the best 

combination of different mechanisms in a given structure from a previously selected set of structures 

with optimum parameters ΩO. Where ΩO  Ω. The sets of decision variables for different 

optimization problems should be independent. If it is not possible, the combined criterion should be 

derived in the form of a functional with weighting factors 

3. Cranes with a pivoting jib as complex dynamic systems 

Material handling operations give rise to Euler and Coriolis forces whose impacts should be 

minimized already at the stage of selection of the system parameters and mechanism structure.  

 
 

Figure 1.   Physical model of a crane with a pivoting boom; a) with unilateral constraints (rope 

mechanisms), b) with bilateral constraints (eg. lever mechanisms) 

a) 
b) 
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Optimization of a multi-drive machine, i.e. a tower crane with a pivoting boom, needs to take into 

account the interactions between cooperating mechanisms. For each investigated crane mechanisms, 

the specific optimization task is formulated by defining the objective function, typically in the form of 

quadratic functionals. Thus, for the assumed lifting capacity and distance jaunt we get the structure of 

the crane mechanism that guarantees the minimal energy consumption. This study investigates the 

energy efficiency of the jib lift mechanism structures: that with unilateral constraints (rope 

mechanisms) – see Figure 1.a) and with bilateral constraints (eg. lever mechanisms) see Figure 1.b), 

so that they can be optimized together with the jib-balancing mechanism.  Thus obtained optimal sets 

of parameters for the mentioned mechanisms were optimized for the full range of the slewing motion. 

The angle variability range φ ∈ [15°÷ 75°]. Major parameters include the length and weight of the 

boom LOB = 30 m and GW = 45 kN and the weight of the load Q = 50 kN. Respective forces acting in 

ropes due to lifting load – SQ, jib lifting – SW, counterweight – SP act at acute angles to the jib: 

α = α(φ), β = β(φ), γ = γ(φ) - not indicated in Figure 1. The physical model of a one-link crane is 

governed by the following equations of motion:   
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SQcoscosLsinLLam

GcosSsinSsinScosSsinLJ
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where: εφ, ωφ – angular acceleration and angular velocity of the jib, ευ, ωυ – angular acceleration and 

angular velocity of the load Q, aBC, vBC – acceleration and velocity of the longitudinal motion of the 

load Q, aXP – vertical acceleration of the counterweight GP, κOE, κOF, κOS – normalized with respect to 

LOB distances: │OE│, │OP│, │OS│.  

The first equations govern the motion of the boom and the load respectively. For a fixed structure 

of the slewing mechanism, these equations remain unchanged. Changing the structure of the boom 

lifting mechanism does not alter the form of these equations. Changing the structure of the 

counterweight mechanism requires the alteration of equation of motion. The motion of the specific 

counterbalance mechanism, describes equations (4) and (5) in Table 1.  

4. Exhausting the alternative structures of counterweight mechanisms 

For the purpose of this study, two structures of counterbalance mechanisms are considered whose 

structures are shown in Table 1, together with the governing equations. Each structure was assigned a 

value of the optimum quality index - Lm. (index m – represents the number of the counterweight 

mechanism according to Table 1). The optimum quality index represents the value of the slewing 

work of the unloaded boom which will be performed by the mechanism with optimum parameters. 

Obviously, this will be the lowest value of work for a given structure, assuming the length and weight 

of the boom remain unchanged. 

(1) 

(2) 

(3) 
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 Table 1. Selected structures of counterweight mechanisms and they optimum quality indexes  

Nr 
Diagram of the counterbalance mechanism, equation of 

motion 

Optimal 

parameters Lm 

1 

Figure 2.   Rope counterbalance mechanism        

             PSPGPy
aPm                         (4) 

p1 = LOG = 7.065m  

p2 = LOF = 30 m 

p3 = ψG = 85.489º 

p4 = GP = 67 kN L
1
1
 =

 5
1

.4
3

 K
J 

p1 = LOG = 7.065m  

p2 = LOF = 30 m 

p3 = ψG = 85.489º 

p4 = GP = 76.5 kN 

 

L
1
2
 =

 0
.7

2
 k

J 

2 

Figure 3.   Counterbalance lever mechanism 

   WsinOFLPSKcosHKLPGPJ     (5) 

p1 = LOF  = 4 m 

p2 = LHK = 5 m 

p3 = ψK = 0º 

p4 = GP = 115.7kN 

LOH = LGF 

LOF = LGH 

L
2
1
 =

 4
4

.9
5

  
k

J 

p1 = LOF  = 4 m 

p2 = LHK = 5 m 

p3 = ψK = 0º 

p4 = GP = 103 kN 

LOH = LGF 

LOF = LGH 

L
2
2
 =

  
0

 k
J 

The optimum index can be calculated from the following dependence:   

  





max

min

m dML                                                             (6) 

Where M(φ) is the residual moment of the boom unbalance (for Q = 0): 

       .sinLScosLGM OFPOSW                                          (7) 
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The moment M(φ) = M(φ, p1, p2, .., pk) depends on the angular position of the boom and the pi 

parameters (where i = 1, 2, ..., k) of the counterbalance mechanism. The set of optimal parameters is 

determined by the condition whereby the square function ought to be minimized: 

      .dp,...,p,p,Mp,...,p,pJ
max

min

kk 





2

2121                          (8) 

Thus the limitations imposed on the parameters pi, need to be taken into account, as explained in 

more detail in [3]. Dimensions (GW, LOS) present in the dependence (7), as unrelated to the 

counterbalance mechanism – are considered as constant parameters in the optimization procedure. 

Rearranging the equation (4) or (5) (depending on the type of mechanism under consideration) we 

obtain a formula representing the force acting in the cable in equations (1). However, in the 

optimization procedure, the influence of the counterweight acceleration in equations (4) and (5) is 

neglected in order to determine its dependence on force – SP. Comparing the quality index of the two 

optimized mechanisms shown in Table 1, the choice of the lever counterweight mechanism is 

obvious. It should be noted, however, that the optimization procedure takes into account only the 

mechanical properties of each solution, without considering the involved costs. The rope mechanism, 

due to unilateral constraints, excludes the occurrence of compressive forces in the line and therefore 

the optimum quality index has a relatively high value. When costs are considered in the optimization 

model, the functional (8) can be transformed into a weight criterion.  

5.  Exploring the alternative options of the jib lifting mechanism 

Exploration of alternative design solutions of the boom lifting mechanisms was confined to two 

structures. It is worthwhile to mention that  optimization of the boom lifting mechanism is carried out 

for a particular counterbalance mechanism. Thus we get four variants of solutions and four 

optimization tasks are possible. When these are solved, the values of the optimum quality index –

 SWmn can be determined (index n – represents the number of the boom lifting mechanism according 

to Table 2). Table 2 shows the kinematic diagrams of boom lifting mechanisms: rope and rack 

mechanics, alongside the values of the optimum quality index – SWmn. The optimum quality index 

becomes the maximum value of the force acting in the jib lifting cable – SW at the full slewing cycle 

of the boom under the nominal load – Q. The indices: m, n identify the correlation: m – th  

counterbalance mechanism with the n – th boom lifting mechanism in the given crane structure 

variant. The set of optimal parameters is determined by the imposed condition that the functional be 

minimized: 

       .dp,...,p,p,Sp,...,p,pJ
max

min

rkkkwrkkk 




 
2

2121                              (9) 
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Table 2. Selected structures of counterweight mechanisms and they optimum quality indexes  

n Diagram of the boom lifting mechanism, optimal parameters  

1

1 

 
Figure 4.   Boom-lifting rope mechanism 

m Optimal parameters for a given configuration (m,1)    SWm1  

1 p4 = GP = 67 kN  p5 = LOE = 30 m,  p6 = LOW = 10 m,  p7 = ψW = 116.49º        17.67 kN 

2 p4 = GP = 103 kN  p5 = LOE = 30 m,  p6 = LOW = 10 m,  p7 = ψW = 116.879º        14.64 kN 

2

2 

 
Figure 5.   Boom lifting lever mechanism 

m Optimal parameters for a given configuration (m,2)     SWm2 

1 p4 = GP = 76.5  kN,  p5 = LOE = 3.75 m,  p6 = LOT = 3 m,  p7 = ψT = 5º        60.55 kN 

2 p4 = GP = 115.71 kN,  p5 = LOE = 3.75 m, p6 = LOT = 3.75m,  p7 = ψT = 13.5º        27.33 kN 
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The formula expressing the force SW in the optimization problem involving the boom lift mechanism 

is derived from equation (1) for zero angular acceleration, ie for ε = 0. The force 

SW(φ) = SW(φ, pk+1, pk+2, ..., pk+r) depends on the boom angle and parameters pj (where 

j = k+1, k+2, .., k+r) of the boom lifting mechanism. All parameters determined in previous sections 

remain constant throughout the entire optimization procedure. The total value of the nominal lifting 

work – LQmn depends on the type and parameters of the counterbalance mechanism, and is 

independent on the type and parameters of the boom lifting mechanism. For the counterweight 

mechanisms with optimum parameters according to Table 1, we will get: LQ11 = 58.7 kJ, 

LQ12 = 7.353 kJ, LQ21 = 44.9 kJ, LQ22 = 6.6 kJ. The value LQ21 = 44.9 kJ is associated with the need to 

reduce the weight of the counterweight to 103 kN in the ropes mechanism lifting the boom combined 

with lever mechanism of counterweight.  

 
Figure 6.   Forces acting in the cables of the jib-lifting mechanism during the slewing motion 

Figure 6 confirms that in the task involving the synthesis of crane boom lifting mechanism, SWmn - is a 

better indicator of the optimality than the value of lifting work - LQmn.  

Advantages of minimizing the force acting in the rope in the jib lifting mechanism are:  

 Small rope diameter  →   small pulley  →   low resistance during rope winding,  

 Low-power electric motors (approximately 8 kW) →  reduced energy demand, 

 Small force variations in ropes →  less overloading of electric motors →  little overheating of 

engines. 
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6. Verification of optimization results under dynamic conditions 

 To verify the optimization results in dynamic conditions it is required that flexibility in the system, 

including rope flexibility, should be taken into account. Rope flexibility is inversely proportional to 

its effective length (sag – l ). Assuming the averaged value of the Young modulus E = 125 GPa for 

ropes with a non-metallic core, in accordance with [8], the modulus of elasticity of the rope is 

obtained from the formula: 

  
l

ilk k
EA

                                          (10) 

where: A – effective cross-section area of the rope, ik – multiplicity of the pulley block. 

Rope cross-section areas in rope mechanisms are calculated basing on [9] and taken to be identical, ie. 

AP = ASW = AQ = 3.83 cm2. Damping in the ropes is assumed to be proportional to the modulus of 

elasticity through the dimensionless damping factor ζ0 (in this paper been assumed: ζ0 = 0). The 

effects of rope tension on its stiffness and damping are neglected. The duty cycle of each mechanism 

involves the following stages: start, steady-state motion and braking, yielding a trapezoidal 

characteristics of drive velocity.  

 

Figure 7.   Comparison of dynamic forces acting in ropes of the hoisting boom 

Basing on the catalogue data, the universal model of kinematic excitations is adopted differing in the 

steady-state velocity values for specific mechanisms. For the winch in the luffing mechanism steady-

state velocity values is VSw11 = VSw21 = 24 m/min, whilst for the rack-and-pinion lift mechanism 

combined with combined with lever mechanism of counterweight VSw22 = 9 m/min, but combined 

with rope mechanism of counterweight VSw21 = 7.2 m/min. The steady-state velocity for the cargo 

winch VQ = 27 m/min. The start-up and braking times are taken to be identical ts/b = 3 s. Solving the 

Matlab-Simulink system of differential equations (1) yields the rope tension variations. Of particular 

importance is comparison of forces acting in ropes and power consumption in the crane with the rope 

lifting mechanism and various counterbalance mechanisms under dynamic conditions. It appears (see 

Figure 7) that dynamic forces acting in ropes whilst lifting the boom in the entire motion range are 
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smaller in the variant solution incorporating a counterweight lever mechanism, i.e. Sw21(t) < Sw11(t) 

and Sw22(t) < Sw12(t) for T = 30 s. The global optimal solution provides the lever counterbalance 

mechanism correlated with the rope mechanism of boom lifting. In the context of energy 

consumption, of particular importance are bilateral constraints in the boom-lifting mechanism.                        

It is well demonstrated in Figure 8, indicating that that PW22(t) < PW12(t) < PW21(t) < PW11(t) for 

t ∈ [0; T]. In this study the load characteristics of the drive motors are neglected, and for the purpose 

of comparison a more universal kinematic model governed by trapezoidal characteristics of velocity 

in normalized form – VSw is considered. Multiplying the normalized speed values by the specific 

steady-state velocity – VSwmn, we obtain the drive characteristic for the relevant boom lifting 

mechanism. As shown in Figure 6, forces acting in the toothed rack in cranes incorporating a rack-

pinion lift mechanism are greater than forces acting in ropes. 

 
Figure 8.   Comparison of power demand in boom lifting mechanisms   

In terms of energy consumption, the optimal approach is to correlate the lever type counterbalance 

mechanism with the rack-pinion lifting mechanism, which is assumed to be self-locking.  

7. Conclusions 

Optimization tasks involving the two rope mechanisms and two lever mechanisms in a slewing jib 

crane lead us to the following  conclusions: 

 Parametric optimization in the enumeration of alternative structures of mechanisms is aimed to 

yield the best combination of different mechanisms in a given structure from a previously selected 

set of structures with optimum parameters ΩO. Where ΩO  Ω .  

 For the assumed lifting capacity and distance jaunt we get such combination of counterbalance 

mechanisms with the crane lifting mechanism that guarantees minimal dynamic force and 

minimal energy consumption.  

 By minimizing forces acting in ropes in the boom lifting mechanism, we improve the 

controllability of dynamic processes. This is particularly important in the context of  effectiveness 

of active vibration reduction methods. 
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 The extended method of exploring alternative structures of mechanisms for parametric 

optimization, outlined in this paper, allows for  finding  globally optimal design solution and the 

method is a universal.  

 Effective optimization, confirmed by dynamic analysis, allows the dynamic overload values to be 

significantly reduced at the stage of design of the steel structure, resulting in a lighter and cheaper 

structure.  

 Application of dedicated software (such as Mathcad) to solve variational problems such as finding 

a minimum of properly formulated quadratic functionals proves to be very effective and rapid 

solution to parametric optimization problems. 

 The main advantage of the presented method lies in its simplicity and universality, there is no 

need to simplify optimization criteria and the mathematical formulae are elegant and concise.  

 The presented methodology was used in the optimization of the mechanism relieving the load 

from the movable seat in a heavy machine operator seat simulator and in the project aimed at 

modification of the multi-support structure of the malt conveyor. 

8. Directions for future research 

Solving the parametric optimization task with regard to a crane mechanism (or mechanisms) actually 

involves the optimization of the materials handling process carried out in a given space and time.                   

If the optimization criterion in the luffing mechanism in the form of a quadratic functional is 

expanded to incorporate  the condition imposed on the derivative dy/dφ, vibrations of the payload 

suspended on the hook can be thus reduced [3], which is clearly our objective and not an accidental 

effect. In precise transport operations, when utmost care is taken to comply with very strict regimes 

regarding the position and orientation of the payload, passive vibration reduction methods, including 

parametric optimization, may prove insufficient. In these cases active vibration reduction methods 

have to be implemented alongside the optimal control strategies of the payload movement based on 

variation methods, the Hamilton principle or the Pontriagin maximum principle. Parametric 

optimization should always precede functional optimization (i.e. optimization of control strategy). 
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Adaptive fractional order control of a quadrotor 

 

 

Eva-H. Dulf, Cristina-I. Muresan, Daniel D. Timis 

Abstract: Due  to  their  exceptional  flying  maneuverability  and  simple  dynamics, 

multi rotor  systems  are  widely  used  for  various  applications.  Such  systems  vary  

overtime  due  to  external  disturbances  or  unmeasured  changes  to  which  they  are 

subjected. In this case, a simple PID controller cannot provide the desired response, 

unless   the   controller   parameters   are   re-tuned.   An   adaptive   control   

algorithm responds to this need. Moreover, to increase robustness, fractional order 

controllers are designed, being recognized for this property. Such control provides the 

entire process with good robustness and ensures good operation for major process 

changes. The present paper describes a comparison between such an algorithm and a 

classical PID applied in an adaptive scheme to a quadrotor system. 

1. Introduction  

In the last few year researchers have shown an increased interest in developing control algorithms for 

multi rotor systems, due to their multiple applications in both military and civilian domains. Such 

aerial vehicles are used in surveying objects and ground on the basis of orthographic photos to 

generate point clouds, volume calculations, digital height and 3D models; industrial inspection of 

solar parks, wind parks, power lines, engines and plants, industrial parks; bridge inspection, visual 

structure assessment and monitoring, inspection and survey of structures; aerial images and 

photography; aerial movies and videography; condition-analysis and target-analysis to document 

construction sites, structural monitoring, sound barrier and wall monitoring, excavation 

documentation, plant and wildlife preservation and conservation, or any kind of first-responder 

activities in crisis regions [1, 2]. This was the motivation for the present work: to design and 

implement a laboratory platform to simulate the operation of a quadrotor system and to perform 

experimental tests for evaluating different control strategies. There are a series of prototypes [3, 4], 

each of these having advantages and also some drawbacks. The available laboratory scaled systems 

are much too expensive and created for some particular behavior. The main challenge in the control 

of these equipments arises from their special features like strong coupling subsystems, unknown 

physical parameters, nonparametric uncertainties and external disturbances. Therefore, with the goal 

of finding the optimal solution, the researchers developed various, linear and nonlinear, control 

techniques, such as PID control, orientation by vision, sliding mode control, fuzzy logic, predictive, 

feedback linearization, adaptive control, etc. [5]. Very good results are obtained with fractional order 
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controllers [6]. An application of fractional order sliding mode controller and neural networks to 

attitude control of a quadrotor is proposed in [7]. A fractional order filter with two-degrees-of-

freedom PID controller for the pitch control of an UAV is presented in [8]. A fractional order 

proportional-integral controller design for the roll-channel or lateral direction control of a fixed-wing 

unmanned aerial vehicle is presented in [9, 10] and for the pitch control of a vertical takeoff and 

landing in [11]. Fractional order sliding mode controller is presented in [12] in path tracking, with an 

adaptive correcting coefficient in mass parameter of quadrotor.  No results are reported with 

fractional order adaptive attitude control of quadrotors. 

The present paper describes the quadrotor prototype realized by our team and the designed 

fractional order adaptive control, based on the experience gained in our previous research [13-16]. 

The paper is structured in five sections. After this short introductory part, section 2 describes the 

quadcopter prototype. Section 3 discusses the proposed control strategy, while the obtained results are 

presented in Section 4. The work ends with conclusions. 

2. The quadrotor prototype 

The simplified scheme of the quadcopter is presented in Fig.1, while the prototype is in Fig.2. The 

purpose of this experimental stand is to design and simulate, on physical equipment, the performance 

of certain algorithms and control methods. That was the main criteria in choosing the dimensions and 

the components.  

 

Figure 1.   The simplified scheme of the designed quadrotor 
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Figure 2.   The prototype of the quadrotor 

The framework of the quadcopter was purchased from a specialized manufacturer, type DJI F450 

[17], having a total weight of 282g. The used rotors are DJI 2212, whit a diameter of 28mm, voltage 

of 11,1-14,8V, weight 56g. The propeller is a DJI 9450 type, having a diameter of 240mm, pitch of 

127mm and 13g weight. The battery is DJI – PTM12 [17], with a capacity of 2200 mAh and a 

nominal voltage of 11.1V, which guarantees a flight time of about 15 minutes. The main advantage of 

the battery is the 176g weight. The electronic speed control element is DJI E300 [17], with a voltage 

of 11,1 – 14,8V, 15A current, frequency of 30 – 450Hz and 30g weight. As radio control kit a Hobby 

King model was selected, with 6 channels, model HK T6A V2 [17]. As sensors, a 9-axis sensor, type 

MPU 9150 [17], was chosen, which contains an accelerometer, a gyroscope and a magnetometer. The 

control unit is an Arduino UNO development board [17]. 

3. The proposed control strategy 

For the constructed experimental quadcopter , the corresponding nonlinear mathematical model is 

established, based on general equations from [18]: 

   
    

   
   

    

   
    (1) 
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where (ϕ), (θ) and (ψ) represents the angular positions around the axes x, y and z; (Ui), with i=1,2,3,4 

are the rotor voltages, while (Ixx), (Iyy) and (Izz) are the inertia moments around the three axes. Due to 

the fact that the quadcopter is symmetric, both in terms of geometry and mass distribution, it can be 

stated that Ixx=Iyy. 

The proposed control structure is depicted in Fig.3. The main elements are: the identification block, 

establishing the process parameters at each sampling period, the adaptation block establishing the new 

parameters of the controller and the recursive equation of the controller with adapted coefficients. 

 

Figure 3.   The adaptive control structure. 

 

The used controller is a fractional order PID (FO-PID) controller, being recognized for their 

superiority over classical PID controllers [19]. The used form is: 

                       
  

  
  (4) 

where           are the derivative and integral order, kp, kd and ki are the proportional, derivative and 

integral gains. 

The controller tuning is based on the cost function expressed to satisfy the criteria of gain 

crossover frequency (ωgc), phase margin (φm) and iso-damping property [16]:  
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where with (HP) is the process model,       is the gain crossover frequency and (     represents the 

phase margin. Additionally, in the cost function control signal minimization is introduced. 

                              (8) 

where                   
    is the system of nonlinear equations and 

              are the controller parameters.  

The resulting nonlinear equation system is solved using a modified Particle Swarm Optimization 

(PSO) algorithm based on a technique developed by Eberhart and Kennedy [20]. 

The corresponding Simulink/Matlab® scheme for a single rotor is given in Fig.4. 

 

Figure 4.   The control structure for a single rotor in Simulink/Matlab®. 
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4. Simulation results 

In order to highlight the advantages of the proposed control strategy, a comparison between the 

results obtained with an adaptive PID controller and the fractional order adaptive controller was 

made. The classical controller was designed with approximately the same performances as the 

fractional order, but having less degree of freedom, the control signal minimization is not realized. 

In Fig.5 –Fig.8 the obtained experimental results for a square reference signal are presented. The time 

scale is expressed in number of sample times. It can be observed that both adaptive PID and adaptive 

fractional order PID controllers presents good results for pitch and yaw motion of the quadrotor. This 

is an expected result, the controllers being designed for the same performances. The main difference 

is in the control signal. Using classical PID controller in the adaptive structure the control signal 

reaches 180 units for the pitch motion and 165 for the yaw, while the fractional order controller, due 

to the additional degree of freedom, ensures a control value of 48 unit for pitch and 43 for yaw 

motion.  

 

Figure 5.   Output and control signal for pitch motion with adaptive fractional order PID controller 

 

Figure 6.   Output and control signal for yaw motion with adaptive fractional order PID controller 
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Figure 7.   Output and control signal for pitch motion with adaptive PID controller 

 

Figure 8.   Output and control signal for yaw motion with adaptive PID controller 

The next research step consisted in analyzing the performance measures in case of disturbances. 

Fig.9-Fig. 12 presents these results. Are highlighted the same good performances for both controllers, 

the fractional order one having the advantage of small control effort.  

 

Figure 9.   Output and control signal for disturbed pitch motion with adaptive fractional order PID 

controller 
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Figure 10.   Output and control signal for disturbed yaw motion with adaptive fractional order PID 

controller 

 

Figure 11.   Output and control signal for disturbed pitch motion with adaptive PID controller 

 

Figure 12.   Output and control signal for disturbed yaw motion with adaptive PID controller 

The control peak occurring in the transient of the control signal is another concern of the authors. 

With this regard next research step consist in implementing a constrained optimization algorithm 

using fractional order controllers. 
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With these good results the first step toward autonomic system, vehicle that do not require human 

interactions, is done. Flight planning and image processing features will be added in order to obtain a 

surveillance application.  

5. Conclusions 

The paper presents a designed, laboratory scale prototype for an unmanned aerial vehicle. The control 

strategy is implemented in a microcontroller in order to test real life behaviors. As control strategy an 

adaptive structure using fractional order controllers is proposed. These are designed to ensure 

robustness to gain variations and to minimize the control effort, while the adaptive structure 

eliminates the inherent disturbances between the pitch, roll and yaw motions. The effectiveness of the 

proposed adaptive fractional order control structure is investigated by experimental results. In order to 

highlight the advantages of fractional order controllers, comparison with a classical PID controller in 

the same adaptive structure is provided. Future works include testing different fractional order control 

strategies and applications of the unmanned aerial vehicle. 
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The use of mechanical resonance for the reduction of torque 

pulsation and energy demand in machines with crankshaft 

systems 

 

Wiesław Fiebig  

Abstract:. In the crankshaft system without spring the inertia forces are steady 

increasing by increase of the rotational speed, what cause higher amplitudes of the 

dynamical torque on the driving wheel of the motor. With use of mechanical resonance 

the amplitudes of the dynamical torque in the crankshaft systems can be significantly 

reduced. The experimental results have confirmed the reduction of the dynamic torque 

amplitudes and energy demand in the crankshaft system at the resonance conditions. 

1. Introduction 

Resonance in mechanical systems is in most cases an unwanted phenomenon. Increased vibrations lead 

to higher dynamic loads acting on components of mechanical systems. The related overload and fatigue 

may strongly affect the integrity of structures and systems such as suspension bridges (cf. the Tacoma 

Narrows Bridge collapse) or shafts rotating at critical speeds. In contrast to mechanical systems, 

positive effects of resonance are used in many other applications such as acoustics, medical science 

(magnetic resonance), electrical machines, radio communication, laser technology, etc. [1].  

An interesting example of the use of mechanical resonance is a new drilling technique called the 

resonance hammer drilling (RHD) [2] as an alternative to increase the rate of penetration in hard rocks 

drilling. The technique uses the axial vibration due to the cutting process to generate a harmonic load 

on the bit and an excitation in a steel mass (hammer). When the excitation frequency is near to the 

natural frequency of the steel mass, the bit is subject to cyclic impacts.  

Mechanical resonance is used in vibratory conveyors [3]. Experimental results show that the 

resonant mode of a vibratory conveyor with electromagnetic excitation is very advantageous since then 

it consumes the least energy to maintain the system in the state of oscillation.  

 Pick-and-place robots [4], for example, should be accelerated and decelerated not by means of 

large strong actuators but rather by an exchange between kinetic and potential energy. In such robots, 

savings of up to 56% due to the use of resonance energy have been observed. Positive effects of 

mechanical resonance are also used for establishing optimal parameters of micro-propulsion systems 

to drive flying objects [5].  
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The energy flow at resonance conditions has been investigated in a number of publications [12–

14] in which it has been stated that the absorbed average mechanical power evolution could be used to 

describe the dynamical behavior of the vibratory system. 

In reciprocating machines with crankshaft systems, there are inertia forces from the unbalance of 

the first and second order which cause vibrations and variable loads. These loads can be partially 

reduced by applying counterweights [??]. Such counterweights do not need to be used in resonant 

reciprocating machines in which the piston would be connected to the spring element. Results of 

experiments carried out on a dedicated test bench confirmed a reduction of energy demand of the 

resonance press in comparison with the conventional eccentric press and a reduction of dynamic torque 

amplitudes in the crankshaft system at resonance conditions. 

2. The crankshaft system with and without resonance 

The basis of the theory of hydrodynamic lubrication (HD) is Reynolds equation [4, 5] that describes the 

flow of a viscous fluid in an arrow gap between the surfaces of a regular curvature.  

In sliding bearing the journal 1 slides on the bearing surface 2.  The crankshaft systems in machines are 

used for the transformation of the linear motion into the rotational motion. It can be considered that the 

mass representing piston will be attached to the spring element. This has an significant influence on the 

torque pulsation on the drive shaft of the motor at resonance conditions. In Fig. 1 the schematic views 

of a crankshaft system with and without the spring element are shown. In a crankshaft system without 

spring (Fig 1b) there is a damper, which represents the forces due to the friction.  

In the arrangement shown in Fig. 1a, the resonance takes place when the frequency resulting from 

the crank rpm is equal to the natural frequency resulting from the reduced piston mass and spring 

stiffness. During resonance, a compensation of the inertial force due to the piston mass by the force in 

spring occurs that contributes to a reduction of the amplitude of the torque pulsation on the crankshaft. 

The spring absorbs energy and gives it back in the same way as in the oscillator. At the resonance 

conditions, the force amplitude in the connecting rod as well as the torque pulsation in the crankshaft 

system will be minimal, depending on damping in the system. 

Technical solution based on the above-described phenomena can be used in various piston 

machines working at constant rotational speed. The possibility of eliminating the inertia forces in the 

connecting rod systems is very important because these forces reach high values, especially at higher 

rotational speeds, and in some applications are comparable to those resulting from working loads. This 

makes a huge difference compared to conventional crankshaft systems in which counterbalance masses 

and flywheels are needed to reduce the dynamic forces and the torque pulsation [ ]. 
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Figure 1.   Schematic view of:  a) crankshaft with a spring, b) crankshaft without a spring. 

 

Authors of [18] deal with dynamics of the connecting rod. Their paper presents the dependencies 

of forces acting on this component and the resulting kinematic relationships, as well as the distribution 

of forces in its individual parts during the working cycle. In order to verify the above-presented 

formulae, the crankshaft model was implemented in Adams simulation software. The analysis of the 

crankshaft systems in Adams environment has been presented in [??, ??, ??–??]. The crankshaft-slide 

model was imported to Adams from a CAD model. Between base and the crank, a revolute joint was 

created, while between the rod and the crank journal, a revolute joint was defined. Further, between the 

rod and the pin, a revolute joint was used, a fixed point between the pin and the slide, and a translational 

joint was created between the mass and the slide. The model was ran at different angular velocities and 

load forces. A view of the model in Adams can be seen in Fig. 2.  
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Figure 2.   A model of the crankshaft system in Adams. 

 

Fig. 3 shows a comparison of the torque courses to both the crankshaft system with a spring (Fig. 

1a) and without a spring (Fig. 1b). It should be noted that the presented analytical model does not take 

into account possible non-linearities occurring in the system, e.g. non-linear friction between the guide 

and the mass. These non-linearities, however, occurring in real-life systems should not be expected to 

reach magnitudes large enough to change the behavior of the system during resonance.  

Fig. 3 shows a comparison of the torque waveforms for the crankshaft system with and and without 

a spring. The following values of system parameters were adopted for simulation: 

m =1 kg — mass of the piston; 

r = 0.30 m — the crank radius; 

c = 3 Ns/m — the damping coefficient; 

k = 1000 N/m — the stiffness coefficient of spring elements.  
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Figure 3.   Torque vs. rotational speed for the crankshaft with and without a spring.  
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In the waveforms in Fig. 3 can be seen that for the crankshaft system with a spring, for which 

resonance occurs at 452 rpm, the torque amplitude will be reduced by around 5 times. For the crankshaft 

system without a spring there is an constantly increasing of torque amplitude in the investigated rpm 

range.  

Due to the phenomenon of resonance, the energy in the crankshaft system without load is only 

used to overcome frictional forces. For crankshaft systems without resonance, an increase in mass leads 

to increase of torque amplitude. This increase is several times smaller for crankshaft systems with a 

spring at resonance than in the system without a spring.   

In Fig. 4 the influence of the frequency on torque amplitude is shown. It can be seen that the 

influence of the frequency is similar to the influence of the crank radius.  

 

 

 

Figure 4.   Torque amplitude vs. frequency, 

 

From Fig. 4 it can be seen that with an increase of frequency, differences between the torque 

amplitudes for the respective systems are increasing. For a frequency of 10 Hz, differences between the 

crankshaft system with and without resonance are 4,18 times higher than for the crankshaft system 

without the spring. 
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In Fig. 5 the influence of the load on the torque amplitude is shown. The load in form of half sine 

has been considered. The ratio of the amplitude of excitation force to the amplitude of spring force will 

be defined as: 

kF=FL/Fs                                                                                                                                         (1) 

where 

FL- amplitude of excitation (load) force  

Fs- amplitude of spring force. 

 

 
Figure 5.   Torque amplitude in crankshaft loaded with half sine wave force. Resonance at 1500 rpm 

(25 Hz), mass 5kg, spring stiffness 123 kN/m , damping ratio 3 Ns/m.  

 
It can be seen, that the torque amplitudes without resonance at ratio kF=1 (amplitude of load force is 

equal the spring force) are 3 times higher than with resonance. These differences are lower at higher 

values of load coefficient kF. It should be noted that at higher loads, the effect of resonance becomes 

percentage lower and is higher at lower frequencies (rpm).   

3. An experiment with physical model 

Figure 6 presents the schematic view of the physical model in which both crankshaft systems were 

investigated. The physical model consists of the oscillating mass connected with the crankshaft system 

and with the set of 4 springs. The rpm of the AC asynchronous motor was controlled with the frequency 

inverter. The force in the crankshaft was measured with the force sensor. The mass is mounted on the 

slide with a low friction. 
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Figure 6.   Schematic view off the test bench. 

 
A view of the test bench is shown in Fig 7. 

 

 

Figure 7.   View of the test bench. 
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In Fig. 8 the measured time waveforms of the displacement of the mass and the force in the crankshaft 

are shown. It can be seen that the amplitudes of the force on the crankshaft with spring decrease with 

increasing of rpm and reach their minimum values at the resonance, where the inertial forces of the 

masses are compensated by the spring forces and by absence of load the driving force is needed to 

overcome the friction force only. For the crankshaft without spring the steady increase of the amplitudes 

of the force in the crankshaft is observed, due mainly to the inertial forces and  friction forces. 

 

 

 
Figure 8.   The measured waveforms of: a) displacement of the mass, b) force with the spring, c) force. 
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Compensation of inertia forces at resonance should have an impact on efficiency of machines of 

that type. The effect of the torque pulsation amplitude reduction in resonance was confirmed 

experimentally. The use of mechanical resonance in machines with crankshaft systems can thus 

eliminate flywheels in some applications where reduction of the torque pulsation in crankshaft drives 

is required. 

Measurements of the power absorbed by the drive motor in the crankshaft system (on the test bench 

of Fig. 7) with a spring and without spring were carried out.  

 

 

Figure 9.   Comparison of power demand in the crankshaft system with and without spring. 

 

Comparison of results shown in Fig. 9 proves that due to resonance at around 10 Hz, reduction of 

power consumption in the drive system by about 13% occurred. 

 

4. Conclusions 

The paper presents the possibilities to use the mechanical resonance to minimize the torque pulsation 

in the crankshaft systems of machines like piston compressors, combustion motors and other machines 

in which translational motion is transferred into rotational motion. The torque amplitudes of crankshaft 

systems with and without resonance have been analyzed and compared.  
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It was found that under conditions of resonance in the crankshaft system occurs a significant 

reduction of the amplitudes of the dynamic torque on the motor. The influence of oscillator mass, 

damping factor, displacement amplitude (radius of crank), frequency and load forces on the amplitude 

of torque has been shown.  

Measurements of the force in the crankshaft system based on a physical model have been carried 

out. The results of experimental investigations have confirmed the reduction of the amplitudes of the 

dynamic force and dynamic torque in the crankshaft system.  

The use of mechanical resonance in crankshaft systems has the following advantages: 

the mass of the oscillator is smaller than the mass of the flywheel, especially at lower frequencies. This 

ability can be used for resonance systems can be used for mass miniaturization in drive systems, 

in resonance systems, the load from the inertia forces is compensated by the spring force and the 

power supplied is used to overcome the work load and the friction resistance. For this reason, the 

dynamic forces in the individual components of the crankshaft system will be smaller, particularly the 

forces present in the bearings, which may affect the durability of the system. 

To determine how the reduction of the torque amplitudes at resonance conditions leads to a 

reduction of power demand of the electric motor further investigations will be carried out.  
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Finite element analysis of magneto-rheological fluid embedded 

on journal bearings 

 

 

Gustavo de Freitas Fonseca, Airton Nabarrete 

Abstract: In this work, the influence of magneto-rheological fluid embedded on 
journal bearings in the dynamic behavior of rotors is considered. The modified 
Reynolds equations for Bingham viscoplastic materials are used for determination of 
the nonlinear hydrodynamic forces. Flexible rotors are modeled by the finite element 
method. The proper weight of the structure, unbalance and bearing hydrodynamic 
forces are included in the equation of motion as external excitations. Non-linear 
hydrodynamic forces calculation depends on the relative position between the shaft 
and the journal bearing. For this reason, the system response is determined by the 
modified Newmark method, which contemplates the determination of the equilibrium 
at any time step by the incorporation of the Newton-Raphson method. The whole 
model was developed in the MATLAB® programming environment. The results of 
the case studies are presented as orbital graphs, displacements versus time and 
frequency responses. 

1. Introduction 

Rotating systems are invariably subjected to high vibration level, which can reduce the components 

durability, increase downtime and elevate the operation and production costs. The vibrations sources 

can be related to foundation problems, weak design, shaft friction, unbalance, misalignment and many 

others. For many years machines have required the development of vibration control, either with 

passive or active devices. Recently smart materials have been developed and applied to different 

dynamic systems withstanding different load conditions and variations to diminish the vibrations 

caused during their operation. In one of these cases magneto-rheological (MR) fluids have been 

developed and incorporated directly in journal bearings that support rotating shafts. Experimental 

tests of different conceptions have been presented in the literature [1,2]. 

For more than one decade, researchers have demonstrated the nonlinear vibration of rotary shafts 

supported by squeeze film journal bearings [3,4]. Wang et al. proposed an iterative method that 

depends on the circumferential mass flow to determine the pressure distribution [5]. On the other 

hand Irannejad and Ohadi have produced an expression of pressure distribution considering the 

effects of the squeeze film [8]. He has determined the hydrodynamic forces by the use of numerical 
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integrations in the axial and circumferential directions. In the recent past Castro employed direct 

equations for the determination of nonlinear hydrodynamic forces [4], representing a significant 

reduction in time to process the numerical analysis. 

This research aims at the nonlinear vibration control of a rotating shaft supported by squeeze film 

journal bearings. To show this effect a numerical analysis of a rotating shaft supported by journal 

bearings with magneto-rheological squeeze film damper (MRSFD) is demonstrated. The modified 

Reynolds equations for a viscoplastic Bingham material are derived to determine the fluid film 

pressure distribution [5]. The behavior of the squeeze film damper described by Tichy is used to 

calculate the magnetic pull force [6]. A finite element model considers beam elements in the 

discretization of the rotary shaft. A disc is placed at the end of the shaft and unbalance forces appear 

during the shaft rotation. Time responses are obtained by the Newmark integration method. This 

method has been modified because of the nonlinear behavior and the position dependence of the 

MRSFD journal forces. As in a previous work, the Newton-Raphson method is incorporated to 

guarantee the equilibrium of forces at each time step [3]. 

2. Mathematical model of the magneto-rheological squeeze damper 

Reynolds equations of conventional viscous fluid have been modified in velocity profile and pressure 

distribution by treating the MR fluid as Bingham viscoplastic fluid [7]. Another work was developed 

based on the previous paper. It has detailed a rigid rotor mathematical model considering the short 

bearing approach embedded by MR fluid [8]. The author has provided the transient response for 

different electric currents setups induced in the bearings. WANG et al. presented the whole Reynolds 

equation deduction and the particularization to a viscoplastic Bingham material problem [5]. The 

pressure distribution expressions were deduced, concerning the short and long bearing approaches. 

The authors presented a simulation of a flexible rotor, using the finite element method to model a 

rotating system supported by the foundation and a single MRSFD journal bearing. The time responses 

of the system were obtained by the Newmark classic integration method. In this work the pressure 

distribution expression is expressed as presented in [5] but neglecting the cavitations’ effects. 

The fluid film thickness can be expressed by 

    (1) 

 

 

(1 cos )h c ε θ= +
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According to [5] and [6], the MR fluid viscosity can be considered as a Bingham viscoplastic 

material, as shown in Fig. 1. 

 

Figure 1.   Bingham fluid biviscosity model. Adapted from [5]. 

Thus, the two dynamic viscosity of the MR fluid can be written as 

 

  (2) 

 

 

where μp is the plastic viscosity and μf is the Newtonian viscosity, after the yield shear stress τ0 is 

achieved. It is remarked by [5] that μp ≫ μf . During the simulations performed by [2], μp = 100 μf  has 

been adopted. In this paper, it is assumed that μp = 20 μf . The yield shear stress depends on the 

electromagnetic field in the journal area. According to [6], this quantity can be estimated by 

 (3) 

where A is the electromagnetic induction device performance coefficient. It is suggested by [7] a 

range between 10−10~10−9𝑁𝑁/𝐴𝐴2. The electromagnetic intensity can be calculated by 

 (4) 

 

where I is the electric current and N is the number of coil turns.  
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Then, the pressure distribution in a MRSFD journal bearing is expressed in the form 

 

 (5) 

 

The cavitation effects are neglected by adopting the Gumbel boundary condition. It was 

concluded by [8] that the cavitation area equals the atmospheric pressure, whilst the dynamic pressure 

presented in (5) is considered in the remaining region 

 (6) 

 

Next, the hydrodynamic forces in radial and tangential directions are determined by integrating 

the pressures distribution through the axial z and circumferential θ directions  

 

 (7) 

 

Fig. 2 shows the pressure distribution in the circumferential direction, neglecting the cavitation 

effects, the coordinate system x-y of the journal bearing and the forces scheme, considering radial, 

indicated by N, and tangential, indicated by T. 

 

Figure 2.   Pressure distribution in journal bearing. Adapted from [5]. 
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In addition, the magnetic pull force appears due to eccentricity between the two magnetic poles: 

the rotating shaft and the bearing [6]. The magnetic pull force direction aligns with the radial 

hydrodynamic forces, as shown in Fig. 3. 

Then, the expression of the magnetic pull force is written 

 (8) 

 

where μf  is the relative permeability of MR fluid and Um the magnetic motion force.  

 

Figure 3.   Acting forces in a MRSFD forces. Adapted from [6] 

Neglecting the magnetic field outer the journal bearing, this quantity can be calculated by 

 (9) 

Besides, the eccentricity eB is a function of the relative position between the shaft and the 

bearing, which can be determined by 

 (10) 

Thereby, the radial effective force can be calculated by subtracting the hydrodynamic radial force 

and the magnetic pull force 

 (11) 
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Putting the radial effective force and the tangential hydrodynamic forces in a convenient 

coordinate system (i.e. x-y directions in Fig. 2) 

 (12) 

 

where,  

 (13) 

 

3. Nonlinear rotor model 

A finite element model of a flexible shaft supported by two MRSFD journal bearings is 

developed. The model has five beam elements, each one having eight degrees of freedom, i.e. four per 

node. The model supports a rigid disk at the end. Fig. 4 shows the structure idealization.  

 

Figure 4.   Finite element model of the rotary shaft. 

 

The rotary shaft properties are presented in Table 1.  
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Table 1. Properties of the model 

Property Value Unity 

Young Modulus. 𝐸𝐸 206.7 GPa 

Density. 𝜌𝜌 7800 kg/m³ 

Poisson Coefficient. 𝜈𝜈 0.3 - 

Damping Coefficient. 𝛽𝛽 2.5 × 10−5 - 

Shat Diameter. 𝐷𝐷s  50.8 ×  10−3 m 

Shaft Length. 𝐿𝐿s  1.25 m 

Disk Mass. 𝑚𝑚d  200 kg 

Disk Diameter. 𝐷𝐷d  1.0 m 

Disk Length. 𝐿𝐿d  0.2 m 

Imbalance Mass. 𝑚𝑚u  2.5 kg 

Imbalance Eccentricity. 𝑒𝑒 0.01 m 

Journal Diameter. 𝐷𝐷b  55.9 ×  10−3 m 

Journal Length. 𝐿𝐿b  40.0 ×  10−3 m 

Radial Clearance. 𝑐𝑐 1.0 ×  10−3 m 

MR Newtonian Viscosity. 𝜇𝜇 0.09 Pa.s 

Coil Number of Turns. 𝑁𝑁 570 - 

Electric Current. 𝐼𝐼 0.0 to 1.0 A 

 

After assembling the stiffness, mass, gyroscopic and damping matrices of each beam element, 

the governing motion equation of the full model is shown 

 (14) 

 

where, [M] , [C] , [G], [K] are the mass, damping, gyroscopic and stiffness matrices, 

respectively. The vectors {𝐹𝐹𝑀𝑀𝑀𝑀𝑀𝑀𝐹𝐹𝐷𝐷 } and {𝐹𝐹𝑑𝑑} represent the MRSFD journal bearing hydrodynamic and 

the unbalance forces, respectively, and {𝑊𝑊} represent the rotor weight. 

 

 (15) 
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4. Dynamic response to the disc unbalance 

The waterfall diagram in Fig. 5 has been determined for the Bearing 2, where the position is 

depicted in Fig. 4. Over the 1.0X line there is a peak at 1600 rpm or 27 Hz, corresponding to the 

critical speed of the system. However, the 0.5X line presents higher displacements above 3600 rpm 

with values at least 3 times the ones observed in the critical speed. 

For a better understanding of the dynamic behavior of the rotor it has been done a runup 

simulation, when the angular speed is increased systematically. Fig. 6 shows the vertical displacement 

in Bearing 2 as a function of the rotation speed. The first peak occurs at 27 Hz (1600 rpm) 

approximately, which is the critical speed previously demonstrated in the waterfall diagram. After 

that, the system stabilizes in a rotation speed window corresponding 40 Hz to 70 Hz. However, when 

the rotation speed reaches 70 Hz (4200 rpm) the vertical displacements starts to increase, reaching the 

whip instability above 80 Hz (4800 rpm). 

 

Figure 5.   Waterfall without any current applied – Nonlinear effects. 
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Figure 6.   Run-up response without any current applied – Nonlinear effects. 

The time response has been determined at 800 rpm for 1.0 A of electric current. The vertical 

displacements of bearing 2, which represent the MRSFD journal bearing is shown in Fig. 7. The 

response represents a nonlinear behavior, since presents a variable period. On the other hand, the 

displacement amplitude demonstrates stabilization in 0.8 × 10-6 m after 0.3 seconds. 

 

 

Figure 7.   Time response on node 4 @ 1.0 A and 800 rpm. 

159



For the same bearing operating at zero electric current, the orbit is concentrated in the fourth 

quadrant (Fig. 8) and it assumes a quasi-elliptical shape. Activating the electric current at 1.0 A the 

orbit takes a circular shape with the center at the origin. 

 

Figure 8.   Orbit @ 800 rpm – 0.0 A and 1.0 A – Node 4. 

Finally, it has been done a run-up simulation at an electric current of 1.0 A and increased 

unbalance of 10 kg.m. The electric current activation increases the system critical speed to 33 Hz or 

2000 rpm, which is 23 % higher when no electric current is activated. Thus, it can be assumed that the 

electromagnetic induction resulted in higher system stiffness. Moreover, there is no longer oil whip 

instability corresponding to 0 to 100 Hz frequency range. 
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Figure 9.   Run-up simulation at an electric current of 1.0 A. 

5. Conclusions 

The rotary shaft operating supported by MRSFD journal bearings is analyzed without electric 

current to take as reference. The cascading diagrams show the critical speed at 1600 rpm and the 

emergence of whip instability at 3200 rpm. The presence of gravity acceleration delays the onset of 

fluid-induced instability. The simulations performed considering the electromagnetic induction in 

MRSFD bearings showed the systematic reduction of the displacement amplitudes. In addition, the 

shape of the orbits is no longer elliptical as in the current-free case, but circumferential after the 

actuation of electric currents. Finally, the simulation of the run-up shows that current of 1.0 A 

provides an increase in critical rotation (33.3 Hz). In addition, this actuation provides a reduction in 

response amplitudes.  
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Influence of control system parameters and it’s  

disturbances on lane change process 

 

 

Mirosław Gidlewski, Leszek Jemioł, Dariusz Żardecki 

Abstract: Automatic control of lane change is a key to automate more complex 

maneuvers. According authorial concept the lane change controller has a mixed 

structure. In the open-loop structure it works as a set-point signal generator which 

generates three variables determining the lane change maneuver: a set-point input 

signal of steering system angle, and two set-point output signals describing desirable 

vehicle’s trajectory (lateral and angular shifts of the car). In the closed-loop structure 

it works as a steering signal corrector which corrects on-line (by two Kalman 

regulators) the steering system angle signal. Error signals are calculated by 

comparison of reference (generated) and real (measured) signals expressing vehicle’s 

trajectory. The set-point reference signals, as well as regulators are based on a simple 

linear reference model (simplified "bicycle model"). For validation of the controller 

algorithm extensive simulation investigations have been executed. In these 

investigations, as the virtual object of control – the very detailed (MBS-type, 3D, 

nonlinear, and verified experimentally) mathematical model of medium-duty truck 

has been used. The authors’ model of a conceptual control system and extensive 

simulation investigations were presented at several authors’ papers. This paper 

presents unpublished results of the studies, which are concerned on sensitivity of the 

control system to it’s delay of data processing.  

1. Introduction 

Many researches is engaged on works on control system which automate car’s manoeuvres. 

Especially difficult seems to be the manoeuvres performed with high speeds (e.g. obstacle avoidance 

or overtaking) Usually, the road manoeuvres may be treated as a sequence of elementary lane 

changes. Therefore, the automation of the lane change is a fundamental problem of the automation of 

the car.  

Steering wheel control is a subject of numerous scientific papers (examples in [1], [3]). The 

control algorithms and control systems are usually based on a concept that includes the designation of 

the path and the execution of the trajectory in the tracking process using the appropriate sensors and 

regulators. Trajectory planning is then considered as a parametric optimization task for the assumed 

geometric form of a path shape function. Controllers proposed in these works are based on well 

known regulation structures and algorithms. 
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The authors’ conception (details in [4], [5], [6]) is based on the optimal control theory 

implemented to the simplest version of the “bicycle model” describing the vehicle lateral dynamics. 

Such simple motion model (reference model) enables analytical forms of reference signals, as well as 

analytical forms of regulators' algorithms to be used to correct a steering signal with using real 

trajectory measurements. Thanks to analytical forms of reference signals and regulators, the automatic 

lane change control process can be computerized in real time. 

This conception requires a lot of simulation investigations for sensitivity analysis of the control 

system. Sensitivity investigations have been reported in several authors’ papers due to vehicle 

parameters changes (masses, wheel-road friction coefficients, vehicle speed), due to simplification of 

the reference model (neglected inertia parameters in a steering system), due to disturbances (noise, 

offset) of signals measured in the system.). In such studies, as a control object occurred a medium size 

lorry modeled with many details as automatically controlled multibody system. For sensitivity 

analysis special indexes were used. This paper continue sensitivity investigations of elaborated 

control system and fragmentary unpublished results of the studies are presented. Here, they concern 

the sensitivity of the lane-change controller to time delay of data processing. 

It is well known, that delay effects are especially pernicious (possible instability !) in feedback 

systems and very important for control systems with regulators working in real time. Literature on 

control systems with delay is very rich (extensive lists in [2]). For synthesis control algorithms 

dedicated to systems with delay special methods have been elaborated. Generally, they are based on 

the concept of predictor (eg. Smith predictor) joined in the control system. But in many cases, if the 

time delay is small, a control with delay effects neglected (as in our case) turns out enough to ensure 

stability and good steering action. Of course, this requires a lot of simulation investigations. 

Fragments of such calculations are presented in the paper.  

2. Automatic control of lane change process 

Suppose that a car moves with a significant speed on a straight even road and suddenly an obstacle 

springs up in front of it. The driver or the Automatic Cruise Control (ACC) system applies brakes. If a 

collision cannot be avoided by braking and the automatic dodging system may be used, the lane-

change control system is automatically operated by means of an active steering system. In result of 

the system operation, the vehicle dodges the obstacle with a preset speed resulting from the braking 

process. The analysis of the situation and the instant of operating the steering system constitute a 

complicated optimization problem, which is not covered herein. The scope of this analysis is 

narrowed to controlling the lane-change process. 

The plane vehicle motion in the lane-change process is described by two variables: position of 

the centre of vehicle mass relative to the road centreline Y(t) and angular position of the vehicle body 
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relative to the road centreline (yaw angle) ψ(t). According to drivers’ experience, as well as to the 

control theory, the steering wheel angle curve minimizing the manoeuvre time should be close to the 

“bang-bang” curve (according to the terminology used in the theory of time-optimal systems) and the 

control process may be decomposed into two phases, i.e. transposition and angular stabilization 

(Fig.1) 

 

Figure 1. Two-phase lane change control process. 

The lane change controller is composed by a reference signal generator and two regulators acting 

in a switchable structure (fig.2). The generator provides three reference signals HR(t) (bang-bang type 

waveform signal of the steering system angle), YR(t) and R(t) (waveform signals of the linear and 

angular vehicle positions computed for HR(t) signal) which describe the lane change maneuver 

according to a simple reference model of the vehicle motion. The signals YR(t), R(t) are set-point  
 

 

Figure 2. Block diagram of the automatic control system. 

signals for two Kalman - type regulators which correct the real steering angle signal H(t) to minimize 

errors between measured and desired waveforms of the variables. In the first phase of the control 

process, the transposition system is ON (activated) and the angular stabilization system is OFF 
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(deactivated); in the second phase, these connections are reversed. The switching strategies can be 

also more sophisticated. 

 

 

Figure 3. The concept of the lane change control system synthesis. 
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The concept of synthesis of controller’s algorithms (reference signal generator for δHR(t), YR(t), 

ΨR(t), as well as both regulators for (t)) is expressed in Figure 3. 

A special feature of the developed controller algorithm is an analytical linking of its parameters 

with the parameters of the reference model and lane-change description. So, changing the parameters 

like Y0, V, …, the controller can changes its parameters like 0, T, … automatically. 

3. Delay-type disturbances in control system  

The conceptual control system is a base for elaboration of real mechatronic system containing real 

sensors, real data processing, real actuators. These mechatronic devices can treated as ideal elements 

working with disturbances. Disturbances in the system can be different, and not only due to signals’ 

noises and offsets but also due to time delays in transmission, and generally to time delay in data 

processing.  

It is interesting that delay effects in data processing can be caused by actions of non-linear 

elements having characteristics with “dead zone”. In mechanical systems such behaviour is well 

known as “clearance” or “backlash”. Transmission of signals through dead zone element can result 

not only in their distortion but also in their delay. Delay effects are especially visible for signals 

which appear suddenly. This is expressed in fig. 4.  

 

Figure 4. The effect of time delay for signal x(t) which is processed to the form y(t) in 

the element having characteristics y(x) with dead zone described by a parameter a. 

Analytical description [7]: x(t) = kt1(t), y(t)= kt1(t-τ), 1(t) – Heawiside function, τ = a/k  

Therefore delay effects seem to be especially important for analysis of disturbances in our 

conceptual control system. In such studies block diagram of the automatic control system presented in 

fig.2 is modified to more realistic form presented in fig. 5. 
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Figure 5. Block diagram of the automatic control system with delay. 

4. Example simulation investigations 

Examinations of the control system have been worked on simulation tests where the controller model 

controlled a lane-change manoeuvre of virtual vehicle modelled in detail (3D multi-body non-linear 

mathematical model of a two-axle motor truck of medium load capacity.The object’s model requires 

about 200 parameters (note, that the reference model in the controller demands only 7 parameters). 

Thank to many investigations the model was verified with success, for many datasets describing the 

controller, vehicle, and road conditions (including “difficult” cases). 
 

                      

  

Figure 6. The concept of sensitivity studies basing on simulation investigations. 

For simulation tests an authorial package of programs has been elaborated. This software is 

useful for sensitivity studies, because it ensures also calculations of special sensitivity indexes (fig. 6). 

In the studies reported in the paper, the nominal model concerns the system without delay 

effects, and the model changed – with delay τ⊂{0.03, 0.06, 0.09}s in the regulators’ action. Example 

results of investigations are presented below (fig.7). In all these simulations operation conditions have 

been rather difficult for the car (speed about 70 km/h, wet asphalt road). 

Example sensitivity index:  
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τ [s] Unloaded vehicle τ [s] Loaded vehicle 
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Figure 7. Results of simulations when measured signals have been delayed. 

Notation: solid lines for the system without delays, dashed lines for the system with delays. 
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5. Summary 

The presented simulation results show that the lane change maneuver has been successfully carried 

out, in spite of the measurement delay-type disturbances of signals. Satisfying results have been 

observed when the delay parameter τ was small (τ⊂ {0.03, 0.06}). Of course increasing the delay 

worsens the quality of the control. The area of stability depends on vehicle parameters, and road 

conditions, Especially difficult for stability were extreme difficult operating conditions (lightly loaded 

lorry and very wet road). For τ>0.2 the system was instable practically in all conditions. 

Finally, it can be stated that the proposed control system have proven to be enough robust to the 

measurement delays and varying operating conditions when the differences between nominal and 

changed model are not too large.  
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Experimental nonlinear localisation in a system of two coupled
beams

Aurélien Grolet, Zein Shami, Sadaf Arabi, Olivier Thomas

Abstract: This study presents results showing experimental non-linear localisation in
a (macro) system of two coupled beams. First a reduced order model of the system
is introduced, using the so called STEP method, leading to a two dof model with
cubic non-linearity. This model allows to shows that non-linear localisation is possible
through a 1:1 internal resonance mechanism. Moreover, one can show, using Harmonic
Balance Method, that the forced localised solution stems from the principal resonance
curve through pitchforck bifurcation, and the numerical model allows to compute the
amplitude of bifurcation as well as the bifurcated branch. The experimental results are
presented and compared to the numerical ones showing very good agreements.

1. Introduction

This study deals with the non-linear vibration of structural systems. The objective is to

present both numerical and experimental results related to non-linear localisation. Local-

isation corresponds to vibration states where the energy is localised to a spatial subset of

the structure, and is related to symmetry breaking bifurcation. Many studies have demon-

strated numerically that localisation can occur in system of coupled non-linear oscillators

(e.g. [7]). Some experimental results related to localisation are available for nano/micro

system of beams array (e.g. [8, 1]), but a small amount of experimental results are available

for macro structure. In this study, we design a macroscopic plate structure that can be

considered as two coupled non-linear beams. Considering numeric and experimental results,

we show that the structure allows for a non-linear modal interaction leading to symmetry

breaking bifurcation and localisation.

2. Two beams system and reduced order model

2.1. Description of the system

The system considered here consists of a circular plate that has been machined in order to

create to parallel beams as indicated on Fig. 1. In this study, we will consider only transverse

vibrations. The body of the circular plate provides a coupling between the beams, and it

also restrains the axial displacement of the beams ends, so that the behaviour of the beams

is similar to clamped-clamped beams, i.e. non-linearity occurs due to a coupling between

axial and transverse motions.
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To observe non-linear localisation, we will consider two particular eigen-modes of the

structure depicted on Fig. 1. For those modes, the beams vibrate over a first bending mode

shape (in phase or out of phase) and the rest of the plate remains at quite low amplitude.

The idea is to design the structure such that both mode interacts non-linearly to give a

localized mode (i.e. with broken symmetry). Indeed, if one looks only at the mid-beam

amplitude, both modes can be described with the shape φ1 = (1, 1) and φ2 = (1,−1). The

idea is to generate a modal interaction of the form q1(t)φ1 + q2(t)φ2, where q1 and q2 are the

time varying modal amplitudes. If q1 and q2 are in phase, then the interaction will lead to a

shape of the form (a1 +a2, a1−a2) which tends to the localised shape (1, ε) as the amplitude

of the first mode a1 tend to the amplitude of the second mode a2.

In order to prevent interaction with other modes, we set the structure dimension such

that the two previous modes are consecutive (i.e. there is no other modes in between).

This can be achieve to a certain extend by increasing the distance between the beams.

The structure was also designed such that the vibration amplitude for symmetry breaking

bifurcation is quite small (about 0.23 mm at the center of the beams) in order to be observed

with reasonably low forcing amplitude. The design was realized in an iterative way using a

reduced order model presented briefly hereafter.

364Hz 367.5Hz

Figure 1. Linear mode shapes of interest (magnitude of the displacement) and their FEM

natural frequencies

2.2. Reduced order model for plate structure

In theory, the system could be modelled by finite element method, but in practice the

resolution time for non-linear computations would be prohibitive. An approximation of the

system behaviour can be obtained by a so called Reduced Order Model (ROM). Here, only

the form of the ROM equation for plate structure will be given, more details about the ROM

procedure can be found in [3].

We consider that the solution to the FEM plate model is expanded over the linear mode
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shapes basis computed with free boundary conditions. We denote qj (reps. pk) the modal

amplitude of the j-th transverse mode (resp. the k-th in-plane mode). Neglecting in-plane

inertia and using a condensation procedure (so that the pk’s can be expressed as a function

of the qj ’s, [3]), it can be shown that the reduced set of equation for the FEM plate model

can be put under the following form (i.e. only considering modal amplitudes of transverse

modes) [3]:

q̈j + ω2
j qj +

Nt∑
k,l,m=1

Γjklmqkqlqm = fj(t), ∀j ∈ [1, Nt] (1)

where ωj is the natural angular frequency of the j-th transverse mode, Nt is the number

of transverse modes kept in the reduction basis and fj is the j-th transverse modal force.

The Γjklm are coefficients that can be evaluated using the so called STiffness Evaluation

Procedure (STEP) which is based on a series of static non-linear FEM computations [6, 3].

In this study we are interested in the interaction between the two modes described on

Fig.1, so that only those two modes are kept in the reduced order model. Based on Eq.(1),

the reduced set of equation have the following form:

q̈1 + ω2
1q1 +G1q

3
1 + E1q

2
1q2 + C1q1q

2
2 +D1q

3
2 = f1(t)

q̈2 + ω2
2q2 +G2q

3
2 + E2q1q

2
2 + C2q

2
1q2 +D2q

3
1 = f2(t)

(2)

When computing the values of the coefficient, one finds that some of them are order of

magnitudes smaller than the others, and are therefore neglected (see table 1).

coeff. G1 Ci Ei Di

i = 1 9.26 1010 3.46 1011 ≈ 0 ≈ 0

i = 2 1.09 1011 3.46 1011 ≈ 0 ≈ 0

Table 1. Non-linear coefficients for the reduced order model of the final design

3. Analytic and numeric results

3.1. Equation of motion and solution methods

Based on the previously presented ROM, we consider the following equation of motion (with

periodic forcing):

q̈1 + 2ξ1ω1q̇1 + ω2
1q1 +G1q

3
1 + C1q1q

2
2 = f1 sin(Ωt)

q̈2 + 2ξ2ω2q̇2 + ω2
2q2 + C2q

2
1q2 +G2q

3
2 = f2 sin(ωt)

(3)

where qi is the modal amplitude of the i-th transverse mode (i = 1: in phase mode, i = 2 out

of phase mode, see Fig.1), ξi’s are the modal damping ratio, ωi’s are the natural frequencies,
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fi’s are the the modal forces amplitude and Ω is the excitation frequency. G1, G2 and C are

the non-linear coefficients obtained through the reduced order model procedure.

In this study, approximated solutions to the system in Eq.(3) are obtained using the

Harmonic Balance Method (HBM), coupled with a numerical continuation procedure based

on the Asymptotic Numeric Method (ANM) [2]. The solution is searched for as a truncated

Fourier series, and the coefficients of the Fourier series are obtained by solving an algebraic

equation depending on a parameter (here the frequency). The use of the MANLAB package

[4] allows to compute the solution as the parameter is varied, along with its stability.

In addition, in order to design the structure, a single harmonic approximation has been

used to derive analytical conditions resulting in the appearance of a modal interaction, which

will be presented hereafter.

3.2. Non-linear modal analysis

In this section, we consider the undamped, unforced version of the equation of motion (3). We

search for a single harmonic solution under the form qn(t) = Ane
iωt + c.c. (where c.c. stands

for complex conjugate). The following polar representation is introduced: An = ane
iγn .

The derivatives q̇n and q̈n are computed and substituted into (the unforced and undamped

version of) (3) leading to the following (after separation of real and imaginary parts):

a1
(
−ω2 + ω2

1 + 3G1a
2
1 + C1a

2
2(cos(2γ2 − 2γ1) + 2)

)
= 0

a2
(
−ω2 + ω2

2 + C2a
2
1(cos((2γ1 − 2γ2) + 2) + 3G2a

2
2

)
= 0

a1a
2
2C1 sin(2γ1 − 2γ2) = 0

a21a2C1 sin(2γ2 − 2γ1) = 0

(4)

The free HBM solutions can be separated into uncoupled and coupled solutions.

The uncoupled solutions are obtained by setting a2 = 0 (mode 1) or a1 = 0 (mode 2) in

Eq.(4), leading to the expression of the backbone curves for the first and the second mode:

ω2
nl,1 = ω2

1 + 3G1a
2
1, and a2 = 0

ω2
nl,2 = ω2

2 + 3G2a
2
2, and a1 = 0

(5)

The coupled solutions are obtained by setting sin(2γ2− 2γ1) = 0 in Eq.(4). There is two

cases to be considered, namely cos(2γ2 − 2γ1) = ±1, referred to as ”linear coupling” (+1,

the modes interact in phase, or in phase opposition) and ”elliptic coupling” (-1, the modes

interact in phase quadrature).

• For the linear coupling, the following equation can be obtained from Eq.(4):

3(G1 − C2)a21 + 3(C1 −G2)a22 = ω2
2 − ω2

1 (6)
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It shows that a linear-coupled solution can bifurcate from mode one only if G1−C2 > 0,

and from mode 2 only if C1 −G2 > 0. The amplitudes of bifurcation are respectively

a21 =
ω2
2−ω

2
1

3(G1−C2)
and a22 =

ω2
2−ω

2
1

3(C1−G2)

• For the elliptic coupling, the following equation can be obtained from Eq.(4):

(3G1 − C2)a21 + (C1 − 3G2)a22 = ω2
2 − ω2

1 (7)

It shows that a elliptic-coupled solution can bifurcate from mode one only if 3G1−C2 >

0, and from mode 2 only if C1−3G2 > 0. The amplitudes of bifurcation are respectively

a21 =
ω2
2−ω

2
1

3G1−C2
and a22 =

ω2
2−ω

2
1

C1−3G2

Different behaviour may happen, based on the values of the non linear coefficients (see

e.g. [5]). In this study, the structure has been designed to allow both modes to interact

in order to generate localisation. Indeed, using the coefficients of the reduced order model

given in table 1, one has the following:

• G1 −C2 < 0 and C1 −G2 > 0, so that a linear-coupled mode can bifurcate only from

the out-of-phase mode when the mid-beam amplitude is close to 0.23mm.

• 3G1 − C2 ≈ 0 and C1 − 3G2 ≈ 0 so that the ”eliptic-coupled” bifurcation points are

at very high amplitude (considered here as infinity)

The summary of the non-linear analysis is given on Fig.2. The backbone curve of both

modes are represented, along with the bifurcated solution stemming from the out-of-phase

mode. A stability analysis, similar to the one use in the multiple scale method, allows to

draw an instability zone for the out-of-phase mode, defined by the following:

(2ωξ1ω1)2 +
(
ω2
1 − ω2 + 2C1a

2
2

)2
= (a22C1)2 (8)

As soon as the second mode enter the instability zone, it bifurcates to a coupled solution

where the first mode gets more and more activated though non-linear interaction. In the

physical domain, this correspond to a solution where both beams vibrate out-of-phase with

(increasing) different amplitude (see Fig.2, left panel), indicating the break of symmetry and

the localisation.

3.3. Forced response

In order to evaluate the structure of the forced response the MANLAB package is used [4].

In order to see clearly the non-linear interaction with the first mode, only the second mode

is excited (i.e. f1(t) = 0 in Eq.(3)). Fig.3 shows the forced response of the second mode
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Figure 2. Backbone curves for the two uncoupled modes (◦: in-phase mode, ·: out-of-phase

mode) along with the bifurcated solution (×) and the unstability zone of the out-of-phase

mode (shaded area). left panel: physical representation, right panel: modal representation

for several amplitude of forcing (for f2(t)), along with the instability zone presented in the

previous section. As the forcing amplitude increase, the response becomes more and more

non-linear, and turning points appear. As the amplitude increases even further the response

enters the shaded area and becomes unstable.

MANLAB allows to compute the bifurcated branch as depicted on Fig.4 (for a forcing

amplitude of f2 = 2). It turns out that, for this forcing amplitude, the bifurcated solution

is stable, then experiments a Neimark-Saker bifurcation, then gets stable again until the

turning point to the right. This stability analysis indicates that the bifurcated solution

could be observed in practice, as will be demonstrated by the experimental measurements.

The right panel of Fig.4 depicts the same forced response results using the physical

representation, i.e. the amplitude at the middle of each beam. It clearly shows that the

bifurcated branch corresponds to a non-symmetric state, which gets more and more localised

as the amplitude increases.
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Figure 3. Numerical forced response for an excitation on the second mode only, for several

amplitude of modal forcing (f2 = 0.1, 0.25, 0.6, 1.0, 2.0). Solid lines: stable, dotted lines:

unstable. The stars indicate the changes of stability.
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Figure 4. Numerical forced response for an excitation on the second mode with an ampli-

tude of f2 = 2.0). Solid lines: stable, dotted lines: unstable, the stars indicate the change of

stability. The dashed lines represents the backbone curves obtained in the modal analysis.

Right panel: modal representation, Left panel: Physical representation

4. Experimental set-up and protocols

4.1. Description of the experimental setup

The plate structure depicted on Fig.5 has been machined out of a stainless steel plate (thick-

ness e = 1.5 mm, density ρ = 7850kg.m−3, Young modulus E = 190GPa) using wire cutting.
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For the experiments, the structure is hanged using four nylon wires, which allows to be close

to free boundary conditions.

beams

magnets

coil

current clamp

aquisition

and control 

current clamp

amplifier

laser

vibrometer

PC

coil and

magnet

intensityvelocity

excitation signal

Figure 5. Picture of the experimental setup and scheme of the measurement chain

In order to provides excitation to the structure, a small magnet (about 6 grams) is stuck

at a given excitation point, and a coil is then placed around it. Sending periodic current

thought the coil allows to transmit a force without having an actual physical contact with the

structure (Lorentz/Laplace forces). The amplitude of the force is controlled by the intensity

of the current sent to the coil, which is monitored using a current clamp.

Velocity measurements are carried out using a laser vibrometer, which allows to measure

the transverse velocity at each user-defined points on the top surface of the structure (most

of the time at the middle of the beams).

4.2. Measurement protocols

In this study, the measurement are made using swept sine excitation. The scheme of the

experimental set-up is depicted on Fig.5. For the analysis, a sinusoidal current with fixed

intensity is send to the coil, and the velocity amplitude is measured at the center of a

particular beam. Then the excitation frequency is slightly increased (or decreased) and the

velocity measurements is repeated, until a given excitation frequency has been reached. For

a given excitation level, this allows to plots the amplitude of the displacement at the middle

of each beam as as function of the excitation frequency (forced response).

Note that since only one laser vibrometer was available, the measurements are done one

after another (i.e. for a given level of excitation, the measurements is done for beam 1, then
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the experiment is reset and the measurement is done for beam 2).

4.3. Location of the excitation

Following the numerical analysis of the previous section, the excitation point is chosen such

that it excites only the out-of-phase modes. This is done by positioning the magnets at

a node of the in-plane modes. In order to keep the structure symmetric, the magnet is

positioned on a node of the in-plane mode belonging to the horizontal axis of symmetry, and

a second magnet (without coil) is positioned in a symmetrical position with relation to the

vertical axis (see Fig.5).

5. Results and discussion

5.1. Linear modal analysis

An experimental modal analysis is conducted on the structure in order to evaluates its

symmetry. The experimental natural frequency are approximatively 364Hz and 367Hz, which

is in good agreement as compared to the FEM frequencies given in Fig.1. The modal damping

ratios are estimated approximatively using the -3dB bandwidth, leading to ξ1 = ξ2 = 10−4.

The experimental mode shapes of the the out-of-phase mode is evaluated by sending

a low intensity sinusoidal current to the coil (at the natural frequency) and scanning the

velocity over the structure. The results is depicted on Fig.6. The mode shape is very close

to the FEM mode shape presented in Fig.1. The maximum amplitudes at the middle of the

beam are respectively 2.2 10−3 and 1.9 10−3 mm (about 10% difference), which indicates a

small disturbance in the symmetry, mainly due to the magnet positioning.

Figure 6. Experimental mode shape for the out-of phase mode (top view and 3D view),

only the velocity amplitude of the beams have been depicted

5.2. Forced response

The results of the sweep-sine analysis are presented on Fig.7, where the mid-beam amplitudes

are plotted as a function of the excitation frequency for several current amplitudes.
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Figure 7. Mid-beam amplitude as a function of frequency for several current intensity

(solid line: beam one, dashed line: beam 2)

It can be observed that the response of the first mode (around 364Hz) is very low, which

indicates that the magnets are well positioned, and that the coil excites mainly the out-of-

phase mode. Since each measurement is carried out one after another, over time, it might

happen that the natural frequencies of the structure change a bit (about 0.5Hz) due to

temperature variations or other reasons (as observed for the resonance peak of the in-phase

mode in the zoom of Fig.7).

For low intensity currents (I=0.1A and I=0.25A), only the mid-beam amplitude of beam

1 is depicted on Fig.7 (solid lines). For I=0.1A, the behaviour of the structure is linear, and

both beams vibrates with the same amplitude. For I=0.25A, the non-linearity starts to be

activated, and a jumps occurs as the excitation frequency is increased.

For higher intensity, both the amplitude of beam one (solid lines) and two (dashed

lines) are depicted. For the three cases (I=0.6A, I=1A and I=2A) the behaviour is similar

and can be interpreted as follows. When the mid-beam amplitude is below 0.2mm, both

beams vibrate out-of-phase with roughly the same amplitude. However, when the vibration

amplitude increases, there is a break of symmetry in the vibration shape of the structure,

both beams vibrates with clearly different amplitude. As the current increases, the difference

in the beam amplitude increases as well leading to a localisation. For the highest excitation

current, one can see that the first beam vibrates with an amplitude 7 times greater than the
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second beam.
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Figure 8. Comparison between experimental and numerical results for a current of 2A

(left: beam 1, right beam 2). The thick lines represent experimental sweep-sine responses

(upward and downward sweep). The thin lines represent numerical responses (solid: stable,

dotted: unstable). The stars indicate the stability changes

A comparison to the numerical results obtained using the reduced order model is given

on Fig.8. The current in the coil is fixed to the maximum tested amplitude (i.e. I = 2A). In

the experimental case both an upward and a downward sweep-sine analysis is carried out for

both beam (thick lines). In the numerical case, the solution to Eq.(2) is computed using the

HBM and the ANM (thin lines). In order to take into account the fact that magnet is not

exactly positioned at a node of the in-phase mode, we consider that the in-phase mode is also

forced, with an amplitude ten times smaller than the out-of-phase modes. This perturbation

leads to the destruction of the branching points, and the localisation appears in a continuous

way, as in the experimental data. One can see that the numerical simulations agree very

well with the experimental results, which validates the reduced order model procedure and

the theoretical analysis.

6. Conclusion

In this paper, we considered the transverse non-linear vibration of a system of coupled

beams. Numerical simulations based on a reduced model of the structure have shown that

a non-linear modal interaction can occur, leading to symmetry breaking bifurcation and

localisation. Experimental measurements using swept sine excitation were carried out, and

demonstrate that the modal interaction can be observed in practice (with good repeatability),

if the excitation amplitude is high enough. The numerical and the experimental results

agree very well, showing that the reduced order model procedure is able to generate a good

representation of the physical system with only a few degree of freedom. Further study
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should consider systems with more than two beams, in order to generate travelling waves

and/or breathers.
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Stability and control of a hybrid walking robot on planar, unstable 

and vibrating terrain 

 

 

Dariusz Grzelczyk, Jan Awrejcewicz 

Abstract: In this study we developed and investigated numerically a general kinematical 

model of a hybrid robot consisting of both crab-like and mammal-like legs. The 

simulation model implemented in Mathematica allowed us for virtual experiments and 

visualization the control process of the robot. We especially considered more precisely 

possibility of control the position and the orientation of the robot body on planar, 

unstable and vibrating ground. The used control algorithm is suitable to simultaneous 

control of all robot's legs in order to control of all six spatial degrees-of-freedom of the 

robot's body, i.e. three rotations and three linear displacements, respectively. 

Especially, this method can be successfully used for coordination and control all robot's 

legs on a planar, vibrating and unstable ground, for instance during stabilization of the 

robot's spatial position. Since the used version of the Mathematica computer program 

allows to communicate with different modern microcontrollers, the developed control 

algorithm can be simply adopted to control real constructions of different multi-legged 

robots. 

1. Introduction 

Different type of multi-legged robots were extensively investigated in the last years by numerous 

researches. These mobile machines can reproduce animals or humans movements and substitute 

humans in different activities [1]. Among numerous robots met in the literature, especially we can 

distinguish constructions with leg structure inspired on the basis of the anatomy of mammals and 

insects. Large numbers of the robot’s limbs with different kinematic structures are suitable to overcome 

complex obstacles found in natural environment, without loosing stability of the robot. 

Walking robots were the subject of our investigations in the last years (for instance, see papers [2-

9]). Recently, also different control strategies of the walking robots were commonly tested by other 

researches, employing different commercial software [10-16]. It shows that studies on walking robots 

are still challenging for researches. Therefore, in this paper we developed and implemented in 

Mathematica a general full parametric simulation model of a hybrid walking robot, i.e. the robot with 

different numbers of the limbs biologically inspired by insects or mammals. Especially, we considered 

the problem of control all six spatial degrees-of-freedom of the robot's body (i.e. three linear 

displacements and three rotations along and around three different axes, respectively) and control of all 

robot's legs on planar, unstable and vibrating ground. Such control possibilities can be especially 
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suitable in a natural environment of the robot, when it comes to both obstacle avoidance and the 

navigation process. 

2. Prototypes of crab-like and mammal-like hexapod robots 

In this study we designed two types of hexapod walking robots, with different leg’s structures, i.e. 

crab-like robot (Fig. 1 on the left) and mammal-like robot (Fig 1 on the right). The presented designs 

were created in Inventor Professional 2019 software. As can be seen, each robot consists of the main 

body part (i.e. trunk) and six (hexapod) legs. In order to avoid mutual collisions, the robot's legs are 

symmetrically distributed on the robot’s body. Each joint of the robot’s leg is actuated by Power HD 

AR-1201MG servomotor controlled by the pulse-width-modulation (PWM) technique. These 

servomotors have inner closed loop feedback of the position control. 

           

Figure 1.   CAD models of bio-inspired walking robots created in Inventor Professional 2019 software: 

crab-like hexapod robot (on the left), and mammal-like hexapod robot (on the right). 

In this study we focused especially on a mathematical formulations regarding full control of the 

robot on a planar, unstable and vibrating ground. To do it, we developed and implemented in 

Mathematica a general, three-dimensional, fully parametric simulation model of a hexapod robot. This 

model can be suitable to visualize kinematic behavior of the investigated robot and control the 

correctness of the simulated results, i.e. the spatial position of individual elements of the robot and the 

configurations of its legs. Moreover, through the appropriate choosing of the parameters, dimensions 

and different configurations of the robot’s limbs, we are able to quickly generate also other types of 

walking machines, including four- or eight-legged walking robots. 

3. Kinematic model of the robot 

Figure 2 shows the example of a generated simulation model of a hybrid hexapod robot. In the presented 

case, four of its legs (two front and two hind) have mammal-like structures, whereas two middle legs 

have crab-like structures. The considered model of the robot is located in a global coordinate system 

Oxyz . The local coordinate system ' ' ' 'O x y z  is fixed to the robot, which is associated with the center 
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of the robot's trunk. In turn, other local coordinate systems are fixed to robot's limbs (here is presented 

only one local coordinate system " " " "O x y z  fixed to a single leg). 

 

Figure 2.   Simulation model of a hybrid hexapod robot implemented in Mathematica. 

In our study we considered irregular/unstable ground of the robot, where a height (z – component 

of the ground) is a function of the coordinates x and y as well as the t, and have the following general 

form: 

( , , )Gz z x y t . (1) 

The angles G , G , G  describe rotations of the ground, whereas Gx , Gy ,
Gz  denote linear 

deviations of the ground, with respect to x-, y- and z- axes of the global coordinate system, respectively. 

In turn, the angles R , R , R  describe rotations of the robot’s body, whereas Rx , Ry ,
Rz  denote 

linear deflection of the robot, with respect to x-, y- and z- axes of the global coordinate system, 

respectively. Then, the vectors Gr  describing positions of all points on the ground in the global 

coordinate system Oxyz  can be calculated as follows: 

 , , init

G G G G G G G     r R r r , (2) 

where  
T

, ,G G G Gx y z    r , 
init

Gr  are vectors describing positions of points of the ground in the 

initial time, and 

       ( ) ( ) ( ), , z y x

G G G G G G G G G G       R R R R  (3) 

is the rotation matrix, whereas 
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R , (6) 

are elementary rotation matrices of the ground, respectively. All vectors Rr  of the robot in the global 

coordinate system Oxyz  can be expressed by the formula: 

 , , init

R R R R R R R     r R r r , (7) 

where  
T

, ,R R R Rx y z    r , 
init

Rr  are vectors describing positions of points of the robot in the 

initial time, and 

       ( ) ( ) ( ), , z y x

R R R R R R R R R R       R R R R  (8) 

is the rotation matrix, whereas 

 ( )

1 0 0

0 cos sin

0 sin cos

x

R R R R

R R

  

 

 
 

 
 
  

R , (9) 
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cos 0 sin

0 1 0

sin 0 cos

R R
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R R

R R

 



 

 
 


 
  

R , (10) 

 ( )

cos sin 0

sin cos 0

0 0 1

R R

z

G R R R

 

  

 
 


 
  

R , (11) 

are elementary rotation matrices of the ground, respectively. The computation of all coordinates 

describing positions of the feet of all the robot's legs requires consideration of the vectors Gr  of the 

ground in contact points between the robot's feet and the ground, and the inverse matrix 
1

R


R . Finally, 

the appropriate articulated variables for all joints of the robot's legs can be calculated. 
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4. Simulation results 

4.1 Control of the robot walking on a planar ground 

First, we considered the robot standing on a planar, stable and not vibrating ground (i.e. 

( , , ) 0Gz x y t  , 0G G Gx y z       and 0G G G     ). In turn, we applied non-zero 

excitations of all six degrees-of-freedom of the robot's body, i.e. 0Rx  , 0Ry  , 0Rz  , 

0R  , 0R  , 0R  . Configurations of the robot and its legs captured in regular time intervals 

are depicted in Fig. 3. 

 

Figure 3.   The chosen configurations of the investigated hexapod robot standing on a planar surface, 

controlled independently by linear deviations Rx , Ry , Rz , and rotations R , R , 

R  of the robot's body. 

In the presented case, linear deviations Rx , Ry , Rz , as well as rotations R , R , R  of the 

robot controlling all six degrees-of-freedom of the robot are accurately reflected based on the predefined 

functions Rx , Ry , Rz , R , R , R , respectively. Moreover, it should be emphasized that at 

any time the robot is supported by all six legs. The presented simulations show that the analyzed 

construction can be used as a fully controlled Stewart platform. As a result, we solved the control 

problem of the robot, including all six spatial degrees-of-freedom of the robot's body, i.e. independent 

controlling of three deviations and three rotations along and around three different axes of the robot. 

4.2 Control of the robot on unstable ground 

In this subsection we considered the control problem of the robot on unstable ground. Figure 4 

presents configurations of the robot standing on unstable ground (i. e. ( , , ) 0Gz x y t  ), captured in 
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regular time intervals. To better illustrate the process of controlling individual legs of the robot on 

unstable ground, we assumed first that 0R R Rx y z       and 0R R R      (i.e. full, both 

linear and angular spatial stabilization of the robot's trunk). 

 

Figure 4.   Configurations of the investigated hexapod robot on unstable ground, captured in regular 

time intervals for , , 0R R Rx y z     and , , 0R R R    . 

 

Figure 5.   Configurations of the investigated hexapod robot on unstable ground, captured in regular 

time intervals for , , 0R R Rx y z     and , , 0R R R    . 

In this case we can observe the process of stabilizing both linear and angular positions of the robot, 

when the supporting ground is unstable. As we can see, at any time the robot is supported by all six 

legs, through the appropriate changing of the configurations of its legs, depending on the changes of 

the ground. Of course, it has a positive effect on the robot's stable position. Concluding, it should be 

noted that the presented control algorithm also works for , , 0R R Rx y z     and , , 0R R R     (see 
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Fig. 5). As a result, the considered construction can play a role of a Stewart platform, also on unstable 

ground. 

4.3 Control of the robot on vibrating ground 

Here we considered the control problem of the robot on vibrating ground. As in previous 

subsection, to better illustrate the process of controlling individual legs of the robot, first we taken into 

account that 0R R Rx y z       and 0R R R      (i.e. full, both linear and angular spatial 

stabilization of the robot's trunk). In turn, we taken into account non-zero harmonic excitations of the 

ground, i.e. 0Gx  , 0Gy  , 0Gz   and 0G  , 0G  , 0G  . Simulation results 

captured in regular time intervals are reported in Fig. 6. As in previous cases, in each time the robot is 

supported by all six legs, thanks to the appropriate changing of the configurations of its all legs, 

depending on the vibrating ground. The robot keeps its position and orientation in the global coordinate 

system, regardless of the vibrating ground. The presented control algorithm also works for 

, , 0R R Rx y z     and , , 0R R R     (see Fig. 7). As a result, this construction can play a role of 

a Stewart platform, also on vibrating ground. 

 

 

 

Figure 6.   Configurations of the investigated hexapod robot on vibrating ground, captured in regular 

time intervals for , , 0R R Rx y z     and , , 0R R R    . 
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Figure 7.   Configurations of the investigated hexapod robot on vibrating ground, captured in regular 

time intervals for , , 0R R Rx y z     and , , 0R R R    . 

5. Concluding remarks 

In this paper we developed and numerically investigated a model of a multi-legged robot. As an 

example we considered six-legged hexapod robot with both crab-like and mammal-like legs. Using the 

simulation model implemented in Mathematica, we conducted some virtual experiments regarding 

stabilization and control of the position and orientation of the robot on planar, unstable and vibrating 

ground. 

 

Personal Computer  

 

Arduino Uno 

 

Servomotor  

 

Arduino Shield 

Figure 8.   A general scheme of the control the robots' servomotors of a robot prototype using a 

simulation model implemented in Mathematica. 
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The possibilities of the Mathematica concerning 3D animation of simulated objects are available in the 

recent versions of this environment (in this paper we used Mathematica 11.2 version). Thanks to the 

developed visualization, we can observe exactly the configuration of all robot legs at any time, and this 

can be treated as a virtual experiment. The most recent versions of the Mathematica program also allow 

to relatively simple operation and communications with different modern microcontrollers connected 

to a computer such as Arduino Uno or Raspberry Pi. In addition, simpler versions of Mathematica 

software can also be installed, for instance, in the internal memory of the above mentioned Raspberry 

Pi microcontroller. As a result, using both the appropriate microcontroller and motor drivers, it is 

possible to directly apply the calculated articulated variables into all robot's joints, in order to real 

verification of the proposed algorithms controlling individual limbs of the robot. The obtained results 

show that the presented control possibility can be employed for full control of the robot position and 

orientation in space. As a result, the robot can be used as a fully control walking Stewart platform. The 

developed simulation model can be relatively simple and successfully adopted to control the 

constructed prototypes of different kinds of multi-legged machines. It is schematically shown in Fig. 8. 

This task will be the goal of our further research related to the problem of control the robot's legs, using 

real constructions made on the basis of the designs shown in Fig. 1. 
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A rotational energy harvester for propulsion systems: design and
experimental validation

B. Gunn, S. Theodossiades, S. J. Rothberg

Abstract: Modern control systems in propulsion applications can ensure the
smooth and efficient operation and assist in detecting failures at early stages.
The implementation of these control systems is restricted by the availability
of sensor data, such as the stress experienced by a rotating shaft. Wireless
sensor technology could be mounted to rotating components but nevertheless
powering these sensors is a technical challenge. Traditionally batteries or slip
rings would be used but these have a relatively short service life, which could
lead to unacceptable maintenance demands. Energy harvesters may solve this
issue by utilising vibration energy and converting it to useable electrical energy.
In the present work, the prototype of a duffing-type rotational electromagnetic
energy harvester is designed and tested, based on a previously published model
of the authors. The harvester takes energy from the torsional speed fluctuations
of a rotating shaft, commonly found in propulsion systems. The experimental
results show a broadband response of the energy harvester to achieve useful
power generation across a wide range of shaft speeds, which agrees well with
the numerical model predictions.

1. Introduction

Rotating shafts in automotive, aeronautical and industrial applications regularly encounter

torsional fluctuations about a mean speed. In many cases, these unavoidable fluctuations

have speed dependent frequency content. Typically, the torsional oscillations are undesirable

and represent waste energy lost from the system. In addition, there is a growing demand

for wireless sensors in a variety of applications. Sophisticated control and health monitoring

systems require an ever increasing amount of data in the internet of things. Often these

sensors need to be in inaccessible places where maintenance (e.g. of batteries) would be too

costly for wireless sensors to be viable. Vibration energy harvesters address these issues by

extracting small amounts of ambient (otherwise waste) energy to power low consumption

wireless sensor nodes.

Several examples of energy harvesters for rotating environments can be found in the

literature. Commonly, a piezoelectric cantilever is mounted to the shaft pointing radially

outwards [5, 2, 15]. As the shaft speed increases, the centripetal acceleration on the tip mass

has a stiffening effect on the system which can be used to broaden the resonant frequency
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range. However, the beam’s stiffness properties mean that the harvester cannot be exactly

at resonance throughout the whole operating speed range of the shaft. To combat this, Gu

and Livermore used a highly flexible beam to strike a piezoelectric transducer [3]. Zhang

et al [14] added a magnetic tip mass which repelled a fixed magnet resulting in a bistable

oscillator which improved performance at low frequencies.

Another approach seen in the literature is to use offset pendulum dynamics to power

wireless tyre pressure monitoring systems [13, 10]. These pendulums are tuned to the domi-

nant frequency of the host at all speeds. However, they can experience non-linearity at high

displacements.

So far, most of the mentioned harvesters extract their energy from the mean speed of

the rotating host as opposed to the torsional fluctuations. Oil drilling rigs have been studied

with both piezoelectric patches [9] and electromagnetic harvesters [12] used to power wireless

sensors.

Kim [6] used the cantilever beam mentioned above to harness the torsional speed fluc-

tuations of an internal combustion engine. This was tuned to a broad frequency range but

was deemed insufficient to power the sensor of choice.

This paper is a continuation of a previous paper published by the same authors [4]. In

that paper, a numerical model was presented for an energy harvester which used an electric

motor with a cubic non-linear stiffness. In the present work, a physical realisation of the

energy harvester is modelled, manufactured and tested. Conical springs are used to provide

the non-linear stiffness and a new method of electromechanical coupling is used.

2. Overview of design

Figure 1 shows a 3D rendering of the intended prototype design and the constituent parts

are labelled in the exploded view of figure 1. Working from left to right, two stator fins

are mounted rigidly to the rotating shaft such that they rotate with the shaft’s motion.

Between these two stator fins are two pairs of conical springs which have non-linear stiffness

characteristics as described in section 3.1. Sandwiched between the coil springs are the rotor

fins. These fins stick through a slot in the back of the rotor and are held in place by small

screws. The magnets then fit into recesses in the rotor and stick to the steel fins by magnetic

attraction. Each magnet has opposing polarity to the one directly adjacent to it so that

as the rotor rotates, the flux flowing through the coil alternates between North and South

and the net flux through the coil is zero when the rotor is in its neutral position. The coil

bobbin is also rigidly mounted to the shaft at a desired distance from the rotor. Coils of

wire are wrapped around protrusions in the plane of the magnet surfaces. The rotor is made

from aluminium rather than iron or some ferromagnetic steel to prevent the attractive forces
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affecting the motion of the rotor. Finally, the motion of the shaft and rotor will be measured

using laser Doppler vibrometers. To enable the rotor motion to be accurately measured, a

collar made from acrylonitrile butadiene styrene (ABS) is glued to the rotor. Reflective tape

is then wrapped around the collar to reflect the laser beam.

Figure 1. 3D rendering of the prototype energy harvester exploded view

The energy harvester equation of motion is given by [4]

Jϕ̈ = −k1ϕ− k3ϕ3 − cmechϕ̇+ Θ̂I + Jα̈ (1)

Where ϕ denotes the relative displacement of the rotor with respect to the stator and

an overdot denotes differentiation with respect to time. J is the mass moment of inertia of

the rotor, k1 and k3 are the linear and cubic components of the non-linear spring stiffness

respectively. The mechanical damping coefficient is denoted by cmech. Θ̂ is the electrome-

chanical coupling factor and the electrical current flowing through the circuit is given by I.

The angular acceleration of the host structure is denoted as α̈.

The acceleration of the shaft is assumed to be accurately described by Eq. (2)

α̈ = Aω2 cos (ωt) (2)

where A is a scalar, ω is the frequency of oscillation which in this case is assumed to be

195



twice the shaft speed. Such an acceleration is present in a shaft driven through a universal

joint by a motor with constant rotational velocity.

3. Experimental prototype

Figure 2. Photograph of experimental rig

A prototype model of the design described in section 2 was manufactured. In the pub-

lished literature [4], part of the optimisation process required a physical prototype to be made

to determine an approximate mechanical damping coefficient for the design upon which the

optimisation is based. Therefore, parameters used for this prototype are not optimal; how-

ever, they can be used to validate the numerical models and improve the design accordingly.

Figure 2 shows a photograph of the apparatus used to test the energy harvester. A

three phase electric motor drives an unloaded shaft to which the energy harvester is mounted.

Between the motor and the energy harvester shaft sits a universal joint which is intentionally

offset at an angle to induce second order speed fluctuations in the shaft [11]. These speed

fluctuations are approximately sinusoidal with an amplitude that increases with shaft speed,

similar to the vibrations of a four cylinder internal combustion engine.
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3.1. Spring stiffness

The spring force is calculated using the MITCalc tool [7]. Figure 3 shows a comparison

between the force calculated using the MITCalc versus the force measured using an Instron

compressive test machine with a 1kN load cell. At low deflections, the spring stiffness is

linear until a critical force is reached. Beyond this load, the stiffness becomes non-linear and

progressively stiffer.

Figure 3. Comparison between predicted and experimental spring force

In the original model, it was assumed that the stiffness could be accurately described by

a cubic polynomial resulting in a duffing type frequency response. Whilst the experimental

and numerical results agree well, the progressing stiffness seems to be piecewise linear rather

than smoothly stiffening as assumed in the cubic stiffness polynomial.

3.2. Constant speed test

Based on the results of section 3.3, the experimental test rig was run at a mean speed of 1600

rpm. The test was run for approximately 30 seconds to allow any transients to be eliminated

before a sample of data was taken for 6 seconds. A restoring force surface method was used

to determine the stiffness coefficients, k1 and k3 and the mechanical damping coefficient,

cmech. The mechanical damping ratio, ζmech is then calculated using Eq (3). The parameters

calculated using this method are summarised in table 1.

ζmech =
cmech

2
√
k1 J

(3)
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Table 1. Results of system identification at 1600 rpm

Parameter (units) k1 (Nm/rad) k3 (Nm/rad3) ζmech

Value 10.203 44.803 0.0351

When these parameters were fed into the numerical model of Eq (4), the resulting time

series data for the open circuit harvester are shown in figure 4. The results show good

agreement for the full cycle of the rotor.

Figure 4. Comparison of time series data for numerical model and experimental relative

velocity of rotor

3.3. Shaft speed sweep

Using the experimental apparatus of figure 2, a new test was conducted to assess the fre-

quency response of the harvester. The motor was accelerated linearly from rest to 2500 rpm

in 60 seconds, then decelerated linearly back to zero in another 60 seconds. Two Polytec

OFV 400 laser vibrometers were used to measure the rotational velocity of the shaft and

the rotor. These measurements were then used to calculate the relative velocity which was

integrated numerically to get the relative displacement of the rotor with respect to the shaft.

Figure 5 shows how the maximum relative velocity varies with shaft speed. This plot was

obtained by extracting all the peaks of the relative velocity time series data and plotting

against the mean shaft speed. The figure shows a clear non-linearity in the behaviour of

the rotor with the experimental jump down occurring at 1877 rpm on the up-sweep and
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experimental jump up at 1772 rpm on the down-sweep.

Figure 5. Frequency response of the energy harvester through a sweeping manoeuvre.

Solid lines show numerical predictions, dashed lines show experimental results.

The solid lines represent the numerical model results and the dashed lines show the

experimental results. The numerical model is run using the measured shaft speed as input

and results in a jump-down speed 1903rpm on the up-sweep and jump up at 1748rpm on

the down-sweep.

Furthermore, the numerical and experimental results follow the same curve from 1600rpm

to 1877rpm showing excellent agreement between the numerical and experimental models.

The deviation below around 1500 rpm is likely due to the unavoidable linear region of the

conical spring. The rotor must first reach resonance to achieve a high enough displacement

for the non-linearity to initiate.

3.4. Coupling factor

In the previous work [4], the electromechanical coupling mechanism was assumed to be a

permanent magnet motor. However, as shown in figure 1, this prototype uses magnets with

axial facing poles. Thus, a new model for the electromagnetic coupling is now needed. The

same approach is used as Owens and Mann [8] except the equations for the magnetic flux

density are different because, in the present work, rectangular magnets and coils are used.

Faraday’s law states that an electromotive force (e.m.f.) is generated in a coil of con-
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Figure 6. Comparison between numerical and experimental coupling factors

ductor when the magnetic flux flowing through it changes.

ε =
dΦ

dt
(4)

The flux through a single coil turn is found by integration of the magnetic flux density,

B, through the area it encloses. Since the furthest turns of the coil are at a large distance

relative to the size of the magnet, it cannot be assumed that the flux is constant through the

whole coil. Only the magnetic field component perpendicular to the coil area contributes the

the generated e.m.f. Hence, only the z component of the magnetic field is calculated. The

magnetic flux density at any point in space around a rectangular bar magnet (perpendicular

to its face) is given by [1]:

Bz(x, y, z) =
µ0Ms

4π

2∑
k=1

2∑
m=1

2∑
n=1

(−1)k+n+m arctan
[ (x− xn)(y − ym)

(z − zk)
g(x, y, z;xn, ym, zk)

]
(5)

where g(x, y, z;xn, ym, zk) is given by

g(x, y, z;xn, ym, zk) =
1

[(x− xn)2 + (y − ym)2 + (z − zk)2]1/2
(6)

where (x, y, z) is the infinitesimal point on the coil that is of interest and (xn, ym, zk) is

the point defining the boundaries of the magnet.
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Eq. (5) is integrated over a single coil turn to give

Φ =

∫ xmax

xmin

∫ ymax

ymin

Bz dx dy (7)

The average flux per turn for a uniform coil is given by

Φmean
1

Ac

∫ x2

x1

∫ z2

z1

Φ dx dz (8)

Finally, the total flux through the coil is found by multiplying the total number of coil

turns by the mean flux

Φtotal = NtotalΦmean (9)

Differentiation of Eq. (9) with respect to time shows that all parameters of Eq. (5) are

constant with respect to time except the position of the coil relative to the magnets. Hence

Eq. (4) can be written

ε =
dΦ

dt
=
dΦ

dϕ

dϕ

dt
= Θ̂(ϕ)ϕ̇ (10)

This model was tested experimentally by extracting the relative displacement, voltage

and relative velocity at each point in the time series data where the relative velocity was

within a small range (53 − 54 rad/s). The experimental coupling factor was calculated

by dividing the voltage by the velocity at these points in accordance with Eq. (10). The

numerical model was calculated by integrating Eq. (5) as described and taking account of

the rotation of the coil with respect to the magnets. Discrepancies between the numerical

model and the physical prototype are thought to be caused by poor coil formation in the

physical prototype.

3.5. Voltage

Using results given in table 1 and the coupling factor as demonstrated in figure 6, the time

series integration was run again and the predicted voltage compared to the experimental

results in the highest resonant range around 1850 rpm.

Based on sections 3.2, 3.3 and 3.4, the main cause of error in the prediction of the voltage

arises because of the inaccuracy of the coupling factor. This is mostly due to limitations in

the manufacture of the physical coil which was wound by hand on a flat bobbin. In future,

if coil winders with more accurate and repeatable winding can be used, the coupling factor

will be greatly improved.
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Figure 7. Comparison of time series voltage data for numerical model and experiment

4. Conclusions

This report presents an experimental validation of a previously published model for an energy

harvester. It has been shown that conical spring stiffness can be approximated by a cubic

polynomial to appropriately model the behaviour of the energy harvester except for at low

speeds where it is thought that the springs operate in their linear regimen.

The electromechanical coupling mechanism has been modified (since the last published

work) and an updated calculation of the coupling factor has been validated experimentally.

Limitations in coil formation are thought to be the reason behind discrepancies between the

physical prototype and the numerical model.

Also, a mechanical damping ratio of ζmech = 3.51% has been measured using experi-

mental data and the force surface restoration method. This damping ratio could be used

to better optimise the next iteration of the design with a view to designing a coil that will

maximise the power transferred to the electrical circuit by matching the mechanical and

electrical damping ratios.

Future work will require a new energy harvester to be designed using the experimentally

determined mechanical damping ratio. New springs and optimised inertia will help broaden

the resonant frequency range to include the whole shaft operating range. The next prototype

will also include a better wound coil for improved coupling factor which will be connected

to an electrical load to get a power measurement and verify the effect of electrical damping.
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A new analytical approach to nonlinear free vibration of 

microtubes 

 

 

Nicolae Herisanu, Vasile Marinca 

Abstract: Based on Hamiltonian principle and a modified couple stress theory, a 

nonlinear differential equation of motion is presented. The analytic approximate 

solution to nonlinear free vibration is obtained by means of the Optimal Auxiliary 

Functions Method (OAFM). The influence of internal material length scale parameter, 

outer diameter, flow velocity and Poisson’s ratio on the dynamic behaviour is 

considered. 

1. Introduction 

Microtubes have been widely used and studied in different applications such as capacitive switches, 

signal filtering, biology, information technology and semiconductor technology, cancer therapy, 

resonant sensors and so on. In the last years, there has been a great deal of interest in dynamic 

behaviour of micro-pipes or microtubes. Younis and Nayfeh [1] investigated the response of a 

resonant microbeam to an electric actuation. A nonlinear model is used to account for the mid-plane 

stretching a DC electrostatic force and an AC harmonic force. Also, Zand et al. [2] studied nonlinear 

oscillations of microbeams actuated by suddenly applied electrostatic force. Effects of electrostatic 

actuation, residual stress, midplane stretching and fringing fields are considered in modelling. Large 

amplitude flexural vibration behavior is presented by Shen [3] for microtubes embedded in an elastic 

matrix of cytoplasm. The mocrotube is modeled as a nonlocal shear deformable cylindrical shell 

which contains small scale effect. Formulation are based on shell theory with a von Karman-Donnell-

type of kinematic nonlinearity. Zeverdejani and Beni [4] analysed the free vibration of protein 

microtubes embedded in the cytoplasm by using Euler-Bernoulli model based on modified strain 

gradient theory. The protein microtube is modeled as a simply suported or clamped-clamped beam 

and the elastic medium is modeled with Pasternak support foundation. The microflui-induced 

nonlinear free vibration of microtubes is studied by Yang et al. [5]. Based on Hamilton’s principle 

and a modifies couple stress theory and taking into consideration the geometric nonlinearity, a 

derivation of the nonlinear equation of motion is obtained. A mathematical formulation is proposed 

by Semnani et al. [6] to investigate the nonlinear flow-induced dynamic characteristics of a 

cantilevered pipe conveying fluid from macro to micro scale. Hosseini and Bahaadini [7] investigated 

the size dependent stability of cantilever nocro pipes. They used the modified strain gradient theory in 
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conjuction with the Bernoulli-Euler beam model when two of three length scale parameters or all of 

them are zero. The micro Coriolis flow meters are extensively used by Ghazanu et al. [8] in fluidic 

micro-circuits. The out-of-plane vibration and stability of curved microtubes are investigated to study 

the dynamic behaviour of curved Coriolis flow meters. The structural analysis of microtube vibration 

modes calculated by an atomistic approach is reported by Havelka et al. [9]. Molecular dynamics was 

applied to refine the atomic structure of a microtube including its anisotropy. A size-dependent 

Timoshenko beam model is used by Bahaadini et al. [10] for the study of free vibration and instability 

analysis of a nanotube conveying nanoflow. To capture the size effects, nonlocal strain gradient 

theory and Knudsen number are applied.  

In the present study, starting to an elastic pined-pined Euler-Bernoulli beam resting on an elastic 

foundation with a linear torsional spring at one end, we will determine an analytical approximate 

solution of nonlinear free vibration. The influence of internal material, outer diameter, flow velocity 

and Poisson’s ratio are considered. 

2. Problem formulation 

The system under consideration is a pined-pined straight and slender microtube with length L, 

flexural rigidity EI, and mass per unit length m, as shown in Fig.1. The internal flow in the microtube 

is due to an incompressible fluid of mass per unit length M, flowing with velocity Vf. 

 

Figure 1.   Schematic view of a fluid-conveying microtube. 

The displacement of the Bernoulli-Euler beam can be assumed to be: 

),(,0,),( txWWVtxZU   (1) 

where U, V and W are the displacement components in the x-, y-, and z-directions, respectively. ψ is 

the rotation angle of the central axis of the microtube given by 
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 Based on the Hamilton’s principle [5] 
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where I is the area moment of inertia, A is cross-sectional area and P is the additional axial force 
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 Applying the variational technique, the dynamic equation of motion of this microbeam can be 

derived as 

0
2

2)()(
0

2
2

2

22

2

2

4

4
2















































 

L

f dx
x

W

L

EA
MV

x

W

tx

W
MV

t

W
mM

x

W
GAlEI  (9) 

 The boundary conditions for the pinned-pinned microbeam are 
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 Defining the following dimensionless variables and expressions: 
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and omitting the star, Eq.(9) may be written in dimensionless form 

 





































1

0

2

2

2
2

2

2
2

2

2

2

4

4

2

1
2)1( dx

x

y

x

y
k

x

y
v

tx

y
v

x

y

x

y
 (12) 

 Then the boundary conditions (10) are: 
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3. Free vibration of the microtube 

In what follows, the free vibration of a pined-pined straight and slender microtube will be analyzed. 

Galerkin-Bubnov decomposition method is used to convert the nonlinear partial differential equation 

of motion (12) into a nonlinear ordinary differential equation. Assuming that the displacement 

expression is of the form 

)()(),( tTxXtxy   (14) 

where X(x) is the eigenfunction of the free undamped vibrations of a beam which satisfies the 

boundary conditions (13). In this paper, we consider xxX  sin)( , and T(t) is the generalized 

coordinate of the discretized system. Multiplying Eq.(9) with X(x) and then integrating this new 

equation on the domain ]1,0[x and taking into account the identities 
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where the dot defines the derivative with respect to t, we obtain the nonlinear ordinary differential 

equation 
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where  
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 The corresponding initial conditions for Eq.(16) are 

208



 

 

0)0(,)0(  TaT   (18) 

We mention that Eq.(16) is a well-known Duffing nonlinear differential equation, with strongly 

or weakly nonlinear cases, depending on the value of the parameter k. In our work, we will obtain an 

approximate analytical solution for Eq.(16) and (18). For this purpose, we apply a novel approach, 

namely the Optimal Auxiliary Functions Method in a proper manner, completely different in 

comparison with other methods. 

4. Basics of the Optimal Auxiliary Functions Method (OAFM) 

The Eqs.(16) and (18) can be rewritten in the more general form [11-15] 

    0)()()(  tgtTNtTL  (19) 

in which L is a linear differential operator, N is a nonlinear operator and g(t) is a known function, t 

being the independent variable and T(t) is an unknown function. The boundary/initial conditions are 

0
)(

),( 












t

tT
tTB  (20) 

 Henceforward, )(
~

tT will be the approximate analytical solution of Eq.(19) and (20) and assume 

that 

),...,,,()()(
~

2110 pCCCtTtTtT   (21) 

in which T0(t) is the initial approximation and T1(t,C1,C2…,Cp) is the first approximation which will 

be determined as described in what follows. Inserting Eq.(21) into Eq.(19) one obtain 

      pitgCtTtTNCtTLtTL ii ,...,2,1,0)(),()(),()( 1010   (22) 

  Obviously, we should choose the initial approximation T0(t) to be solution of equation 

  0)()(0  tgtTL  (23) 

with the corresponding boundary/initial conditions 

0
)(

),( 0
0 













t

tT
tTB  (24) 

 We propose that the first approximation T1(t,Ci) be determined from the nonlinear differential 

equation 
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    piCtTtTNCtTL ii ,...,2,1,0),()(),( 101   (25) 

with the boundary conditions 

0
),(

),,( 1
1 













t

CtT
CtTB i

i  (26) 

where Ci are p unknown parameters at this moment. The nonlinear term in (25) can be expanded as 

     




1

0
)(1

010 )(
!

)(),()(

j

j
j

i tTN
j

T
tTNCtTtTN  (27) 

 To avoid the difficulties that can appear in solving the nonlinear differential equation (25) and to 

accelerate the convergence of the first approximation T1(t,Ci) and implicitly of the approximate 

solution )(
~

tT , instead of the last term arising in Eq.(25), we propose another expression, such that 

Eq.(25) can be rewritten in the form 

  0
),(

),,(,0)(),( 1
1

1

1 










dt

CtdT
CtTBCtfCtTL i

ii

p

i

ii  (28) 

where fi are known auxiliary functions depending on the initial approximation T0(t), on the functions 

which appear in the composition of N[T0(t)] or are combination of such expressions. The auxiliary 

functions fi are not unique and it should be emphasized that we have a great freedom to choose these 

auxiliary functions. After using the previous considerations we can read that for example if T0(t) and 

N[T0(t)] are polynomial functions, then fi are sums or quotient of polynomial functions; if T0 and 

N[T0] are exponential functions, then fi are sums or quotient of exponential functions; if T0(t) are 

trigonometric functions and N[T0(t)] are polynomial functions, then fi are sums or quotient of 

combinations of trigonometric and polynomial functions, and so on. As a conclusion, the auxiliary 

functions fi are of the same form as T0(t) and N[T0(t)]. In other words, T0(t) and N[T0(t)] are sources 

for the auxiliary functions fi. It is very important to remark that if N[T0(t)]=0, then it is clear that T0(t) 

is an exact solution for Eqs.(16) and (17).  

 Now, the unknown parameters Ci can be optimally identified via rigorous mathematical methods, 

such as the least square method, Ritz method, collocation method, Galerkin method, Kantorovich 

method, and the preferred approach would be to minimize the square residual error by computing 

dtCCCtRCCCJ

D

pp 

)(

21
2

21 ),...,,,(),...,,(  (29) 
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where 

)()](
~

[)](
~

[),...,,,( 21 tgtTNtTLCCCtR p   (30) 

and )(
~

tT is given by Eq.(21). The values of the parameters Ci are obtained from the system: 

0...
21
















pC

J

C

J

C

J
 (31) 

 By this novel procedure, the approximate analytical solution )(
~

tT is well determined after 

identification of the optimal values of the initial unknown convergence-control parameters Ci. It will 

be proved that our procedure is a very powerful tool for solving nonlinear problems without small or 

large parameters into initial Eqs. (19) and (20). 

5. OAFM for Eqs. (16) and (18) 

If Ω is the frequency of the system (21) and making the transformation τ=Ωt into (16), we obtain 

0)()()(
3

22










 TTT n  (32) 

where prime denotes derivative with respect to τ. For (32) we choose linear and nonlinear operators 

)()()]([  TTTL  (33) 

)()(1)]([
322

2



























T
TTN n  (34) 

We assume that the approximate analytical solution )(
~
T for Eqs. (32) and (18) is 

),,,,()()(
~

432110 CCCCTTT   (35) 

in which the initial approximation )(0 T and the first approximation 1T will be defined as follows: 

0)0(,)0(,0)()( 0000  TaTTT  (36) 

 The solution of Eq.(36) is 

 cos)(0 aT  (37) 

 Substituting Eq.(37) into Eq.(21), one can get: 
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 Taking into consideration the form of Eqs.(37) and (38), we define the auxiliary functions as 

 6cos2)(,4cos2)(,2cos2,)( 44332211 CfCfCfCf  (40) 

such as the first approximation ),,,,( 43211 CCCCT  is obtained from the equation 

0)0()0(

)3coscos)(6cos24cos22cos()()(
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21433111
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 (41) 

where C1, C2 and C3 are unknown parameters at this moment. The Eq.(41) can be rewritten as 





11cos9cos7cos5cos])(
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 Avoiding the presence of secular a term in Eq.(42) needs 

21

432
2

222

44

3

CC

CCCa
an







  (43) 

 Taking into account Eq.(43), from Eq.(42) we find the following solution: 
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 From (35),(37),(44) and t , one can get the first-order approximate solution. 
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 (45) 

where Ω is given by Eq.(43) and the optimal values of the convergence-control parameters will be 

determined by minimizing the residual of the initial differential equation. 
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6. Numerical example 

To show the validity of our technique, we consider a particular case, when 

0.38= 3,= v20,= 0.8,=h 0.1,= 0.03,=a   (46) 

the optimal values of the convergence-control parameters and the frequency are: 

3.933145Ω,00129626830

001810500500005173432000375108680

4

321





.-C

, .-, C.-, C.-C
 (47) 

 It is easy to verify the accuracy of the obtained results by plotting the approximate analytical 

solution given by Eqs. (42) and (44). Fig.2 show the comparison between the present solution and the 

numerical integration results obtained using a fourth-order Runge-Kutta method. 

 

Figure 2.   Comparison between the approximate solution (45) with the parameters given by (47) and 

numerical integration results of Eqs.(16) and (18): _____numerical; _ _ _ _analytical. 

 From fig.2 it can be seen that the solution obtained by OAFM is very accurate being nearly 

identical with the numerical integration results. 

7. Conclusions 

The main goal of the present work has been to construct an explicit analytical approximation to the 

solution of the generalized coordinate T of the considered discretized system. Our approach is based 

on a new construction of the solution and especially on the involvement of the convergence-control 

parameters Ci via auxiliary functions fi. The optimal values of these parameters lead to an excellent 

agreement between our approximate analytical solution and numerical results. The proposed 

procedure leads to very accurate results for the generalized coordinate and also for the frequency of 

the system under investigation with a moderate number of convergence-control parameters. It was 

proved that OAFM is very effective and rapidly convergent to the exact solution using only the first 

iteration. The construction of the first iteration is different from any other approaches, especially 

referring to the linear operator L and the auxiliary convergence-control functions fi which ensure a 
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fast convergence. The main advantage of the proposed technique is a simple but rigorous way to 

control and adjust the convergence of the solution. 
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Dynamics and vibration analysis of a spatial linkage model with 

flexible links and joint friction subjected to position and velocity 

motion constraints  

 

Elżbieta Jarzębowska, Krzysztof Augustynek, Andrzej Urbaś 

Abstract: In the paper a spatial linkage composed of rigid and flexible links subjected 

to work dependent velocity programmed constraints is analysed. The friction in joints 

is taken into account. The key tool for the spatial linkage dynamics derivation is an 

automated computational procedure for constrained dynamics generation. It serves 

systems subjected to holonomic and first order nonholonomic constraints and proved 

its effectiveness to open chain models. The distinction between this procedure and 

others, usually Lagrange based, is that final equations are in the reduced state form, 

i.e. constraint reaction force are eliminated during derivation. This is the essential 

advantage of the procedure. It provides the smallest set of dynamic equations, which 

may serve motion analysis and control. The paper presents extension of the procedure 

on linkages composed of flexible links with closed-loop kinematics, for which a 

spanning tree can have a serial or tree structure. Also, analysis of dynamics and 

vibrations of the linkage motion subjected to programmed constraints is presented. 

Motions and vibrations caused by adding the programmed constraints, enable 

designing proper velocity ranges for the linkage in its work regimes and assessing 

kinematic parameters needed to follow these motions. The theoretical development of 

automated generation of constrained dynamics is illustrated by an example of the 

linkage model. 

1. Introduction 

Generation and analysis of constrained system dynamical models are used in so many engineering 

applications, e.g. in ground, space and underwater robotics, control and performance analysis of 

industrial mechanical systems and many others, that methods, mostly computational, for their 

derivations and solutions became separate research areas, see e.g. [1-3] and references there. 

Definitely most of derivation methods of motion equations for mechanical systems serve these 

systems subjected to position and first order material constraints and these methods are based upon 

the Lagrange approach and its modifications, i.e. upon classical mechanics approaches; see e.g. 

[1,3,4] and references there. The task based constraints, control and performance constraints and, in a 

more general sense, motion requirements are not merged into these models and as such are not 

handled in a general manner. There are also specialized computational packages for the generation of 

constrained system dynamic models. Generally, they are either Newton-Euler or Lagrange equations 
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based; see e.g. [1,3]. Some of these packages are developed for specific classes of constrained 

systems like the one presented in [4] dedicated to nonholonomic wheeled systems. Also, there are 

many methods that use specific derivation approaches like in [2,5,6]. The consequences of application 

of these derivation methods to constrained system models are that the resulting equations of motion 

are not convenient for many applications directly, e.g. Lagrange multipliers need to be eliminated for 

most motion analysis and control applications. The same problems are related to constrained flexible 

system models, for which classical modeling methods are applied.  

For constrained rigid component multibody systems, subjected to variety of control goals specified by 

algebraic or differential constraint equations, the dynamic models derivation method is developed in 

[7,8]. The method is referred to as the generalized programmed motion equations (GPME) method 

and it enables generating constrained dynamics for models subjected to programmed or task based 

constraints of an arbitrary order. The dynamics is referred to as reference dynamics and its solutions 

provide the system behavior when the task based constraints are on. It may serve two main purposes 

[8,9]. The first one enables assessment of velocities and accelerations needed by the system to follow 

the desired motion. It enables verification whether the desired motion is feasible for the given system, 

e.g. if possible power sources needed for reaching desired velocities are available. The second one 

serves control. The GPME provides the so called reference dynamics, whose outputs are inputs to a 

model based controller [9]. Tracking control architecture developed in [8-10] for systems constrained 

by first order and higher order constraints proved to be effective, however, algorithms for generation 

reference and control dynamics models presented there are based upon analytical based scheme what 

is a disadvantage when a complex multibody mechanical system is to be modeled.  

An automated Computational Procedure for Constrained Dynamics (CoPCoD) generation, for which 

the constraints may be first order, material and nonmaterial, i.e. programmed, is developed in [11,12]. 

The CoPCoD is based upon the GPME method and may be applied to system models that consist of 

rigid and flexible components with open kinematic chains. The essential distinctions between the 

GPME method and the CoPCoD based upon it and methods presented in the literature are that the 

constraints may be first order material or nonmaterial, holonomic or nonholonomic, and the final 

equations of motion are derived in the reduced state form, i.e. constraint reaction forces are eliminated 

at the derivation level. This is the essential difference in the final form of the motion equations, since 

the one CoPCoD may serve reference and control oriented dynamics.  

In the paper a spatial linkage (SL), i.e. a serial closed-loop kinematic chain composed of rigid 

and flexible links with friction in joints subjected to work regime velocity programmed constraints 

(VPC) is analyzed. The key tool for the SL dynamics derivation is the CoPCoD, extended to rigid or 

flexible close chain models. The contribution of our research is twofold. Firstly, it extends the 

CoPCoD on SL models composed of rigid-flexible links with closed-loop kinematics, for which a 
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spanning tree can have a serial or tree structure. The SL is converted into two open-loop kinematic 

chains by using the cut-joint technique. Such approach requires adding closing constraint equations 

for a joint at which a closed-loop kinematic chain is separated. Secondly, it analyzes dynamics and 

vibration of the SL motion with VPC that come from work regime or requirements on it. The 

CoPCoD provides the smallest set of dynamics equations, which may serve for motion analysis and 

planning. Analysis of desired motion and vibrations caused by adding VPC, enable designing proper 

velocity ranges for the SL in work regimes and assessing kinematic parameters needed to follow these 

motions. The theoretical development of automated CoPCoD generation is illustrated by an example 

of the SL model. 

The paper is then organized as follows. After Introduction, Section 1 delivers a short report on the 

background for the presented computational scheme. Section 2 presents the CoPCoD generation for 

the SL structure subjected to position and first order constraints. The CoPCoD is applied to a selected 

SL model in Section 3. The paper ends with conclusions and the list of references. 

2. Constrained dynamics model of the 2 degrees of freedom SL 

The two-dof SL as presented in Fig. 1, is considered. The linkage is formed of five links. It is 

assumed that link (2,3) can be treated as rigid or flexible. The cut-joint technique is used in order to 

derive the dynamics equations. The SL is cut at the spherical joint S  and two open-loop kinematic 

chains ( 2)cn = , built of two and three links are obtained. The motion of the considered linkage is 

limited by kinematic constraints resulting from geometry as well as regime velocity programmed 

constraints of link (2,1) . 

(1,1)l

cut-joint S
chain 1

chain 2

(1,2)l

(2,3)l(1,1)link (1,1) m−

(1,2)link (1,2) m−

(2,1)link (2,1) m−

(2,2)
link (2, 2) m−

link (2,3)

(flexible -RFEM)

(2,3)link (2,3)

(replacement model)

m−

(2,3)
lumped mass Sm−

(2,3)
lumped mass Rm−

(1,1)
C

(1,2)
C

(2,1)
C

(2,2)
C

(2,3)C

 

Figure 1.   Model of the SL 
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2.1. Generalized coordinates and homogeneous transformation matrices 

The kinematics of the model considered is described by the formalism of joint coordinates and 

homogeneous transformation matrices (Fig. 2) [13].  

(1,1)y
(1,1)z

(1,1)x

(1,0) (2,0)
,x x

(1,0) (2,0)
,y y (1,0) (2,0)

,z z

(1,2)
x

(1,2)z

(1,2)y

(2,1)
x

(2,1)
y (2 ,1)z

(2,2)z

(2 ,2)x

(2,2)
y

(2 ,3,0)z
(2,3,0)x

(2,3,0)y

(1,1)ψ

(1,2)
z

(2,1)
z

(2,2)ψ

(2,3,0)
ψO

(1,1)O

(1,2)O

S

(2,1)
O

(2,2) (2,3,0),O O

chain 1

chain 2

sde (2,3, )s

(2,3, 1)r−x
(2,3, )rz

(2,3, 1)r
l

−

sde (2,3, 1)s −

sde (2,3, 1)s +

rfe (2,3, 1)r −

(2,3, )r
x

(2,3, 1)r−z

(2,3, )ry

(2,3, 1)r−
y(2,3, )rl

(2,3, )rψ

(2 ,3, )rφ

(2,3, )r
θ

rfe (2,3, )r

sde (2,3, )s

(2,3, ) (2,3, ),s s
ψ ψs d

(2,3, ) (2,3, ),s s
θ θs d

(2,3, ) (2,3, )
,

s s
φ φs d

(2,3, 1)rO −

(2,3, )r
O

(2 ,3, 1)rO +

 
Figure 2.   Local frames and joint coordinates assigned to the SL 

Vector of the generalised coordinates is defined as follows: 

( ) (1) (2)

1, ,

T T

dof

T

i i n
q

=
 = =
 

q q q , (1) 

where: 

– chain 1: ( ) (1)

(1) (1) (1,1) (1,2)

1, ,
dof

T

i i n
q ψ z

=
 = =  q , 

– chain 2: ( ) (2)

(2) (2) (2,1) (2,2) (2,3,0) (2,3)

1, ,

T

dof

T

i fi n
q z ψ ψ
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q q , 

( 2,3)

(2,3) (2,3, ) (2,3, ) (2,3, )

1, ,
rfe

T
r r r

f
r n

ψ θ φ
=

 =  q  

The transformation matrices to the global reference system 
1,2

{ ,0}
c

c
=

 are calculated using the following 

formulas: 
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R  is the rotation matrix of rfe (2,3,0)  with respect to the system 

{2,2} , ( 2 ,3,0 )
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O
r  is the position vector of point 

(2,3,0)O  in the system {2,2} , 
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(2,3, )r
R  is the rotation matrix of rfe (2,3, )r  with respect to the 

system {2,3, 1}r − , ( 2 ,3, )

(2,3, 1)
r

r

O

−
r  is the position vector of point 

(2,3, )rO  in system {2,3, 1}r − . 

2.2. The Generalized Programmed Motion Equations for the SL 

The GPME equations for the position constraints take the form [8,9]: 
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 are kinetic energy and potential energy of gravity forces, 
(1)

frf  is friction force, 

(2) (2)

, ,
l lp f fE R  are potential energy of spring deformation and the Rayleigh function of the flexible link. 
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In order to derive the GPME equations, it is required to choose the independent and dependent 

coordinates, as well as defining the kinetic energy, potential energy of the gravity force of the system, 

quantities describing the flexibility of the link (2,3) and friction in joint (1,2). 

2.3. Selection of independent and dependent coordinates 

The vector q contains independent and dependent coordinates:  

( )  ,
i d c cc c

i i i i i dq  = q q q , (4) 

The selection these coordinates can be carried out arbitrarily, but the number of the dependent 

coordinates is equal to the number of constraint equations. 

It is assumed that coordinate partitioning is performed as follows:  

  (1,2) (2,3)3, ,
c c

T

i dof i fi n z  → =  q q , (5.1) 

  (1,1) (2,1) (2,2) (2,3,0)1,2
c c

T

d di ψ z ψ ψ  → =  q . (5.2) 

2.4. Kinetic energy and potential energy of gravity forces 

The kinetic energy of the chains can be expressed as: 
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where: 
( )

H  is a pseudo-inertia matrix. 

The potential energy of the gravity force of the chains can be defined in the following forms: 
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where: 
( )m 

 is mass of link, ( )

( )

C 


r  is a position vector of the mass centre of link and 

1

2

3

1 0 0 0

0 1 0 0

0 0 1 0

   
   

= =
   
      

j

J j

j

. 

2.5. Modelling the flexible link (2,3)  

The rigid finite element method is applied to discretize the flexible link [13]. The potential energy of 

spring deformation and a dissipation function of the flexible link are expressed by: 

( 2,3)

(2,3, ) (2,3, ) (2,3, )

,

1

1

2

sde
T

l

n

s s s

p f

s

E
=

=  q S q , (8.1) 

( 2,3)

(2,3, ) (2,3, ) (2,3, )

1

1

2

sde
T

l

n

s s s

f

s

R
=

=  q D q , (8.2) 

where: ( ) ( ), 
S D  are matrices containing stiffness and damping coefficients of spring-

damping elements. 

2.6. Modelling friction in the slider link (1,2) 

The friction phenomenon is modelled in the sense of the LuGre friction model [14]. This model 

requires to determine state variable (2,1)s  in each integration step from the following state equation: 

( )

( )

(2,1) (2,1) (2,1)

0(2,1) (2,1)

2
(2,1)

(2,1) (2,1) (2,1)

(2,1)

sgn
1

expk s k

S

s z
s z

z

v

 
 
 
 = −
   

  + − − 
     



  

, (9) 

where (2,1) (2,1),s k   are static and kinetic friction coefficients, respectively, (2,1)

Sv  is the Stribeck 

velocity and (2,1)

0  is the stiffness coefficient of the bristle.  Having the value of the state variable 

(2,1)s  at a given integration step, the friction coefficient can be calculated as follows: 

(2,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)

0 1 2s s z= + +    , (10) 

where (2,1) (2,1)

1 2,   are damping and viscous damping coefficients, respectively. 

The normal force acting on the slider (1,2) is determined according to the model presented in [15]. 
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2.7. Kinematic and programmed constraints 

The kinematic constraints are formulated for the cut-joint located at the spherical joint S and can be 

written in the following form: 

( ) ( )
( 2,3) ( 2,3)

(2,3, 1) (2,3, 1)(1,2) (1,2)0 rfe rfe
n n

k S S

− −
  − =Φ q J T r T r 0 , (11.1) 

( ) (1) (1) (2) (2), 0k k k  − =Φ q q C q C q 0 , (11.2) 

( ) (1) (1) (2) (2), , 0k k k k  − + =Φ q q q C q C q d 0 , (11.3) 

where ( )
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r  are position vectors of the cut-joint S  in local frames {} , 
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It is assumed that the velocity of the slider (2,1) has to change according to the assumed function of 

time (2,1) ( )Az t . The programmed constraint equations and their time derivatives take the form: 

( ) (2) (2) (2,1), 0 ( ) 0p p At z t  − =Φ q C q , (12.1) 

( ) (2) (2) (2,1), 0 ( ) 0p p At z t  − =Φ q C q . (12.2) 

where 
(2) 1p =   C 0 . 

Having constraint equations, the relation between independent and dependent velocities can be 

formulated as follows: 

1

c c c cd d i i

−=q K K q . (13) 
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where 
ci

K , 
cdK  are matrices obtained the from constraint matrix 

(1) (2)

(2)

k k

p

 
=  
  

C C
K

0 C
 by selecting 

rows and columns corresponding to positions of independent and dependent coordinates in the 

generalized coordinates vector q . 

2.8. Reference motion dynamic equations for the SL 

The  GPME equations supplemented by the kinematic and programmed constraint equation can be 

written in the following matrix form: 

1 1 ,

dof dof

ic
d dc c

n n
j jk k

i j i i k j j ki i
j i i k j i ki j i

q q
q q

q q q q
 =  =

     
+  + + + + +     =       

  
    

   
Q Q

M M h Q h Q
q

K Γ

 (14) 

 where: 

( )i   is i-th row of the matrix/vector ( ) , M  - mass matrix, h - vector of dynamic forces, 

( )fl fr dr= − + + +Q g f f t , g  - vector of the gravity forces, flf - vector of generalized forces resulting 

in deformation of the flexible link, frf  - vector of generalized force resulting from the friction in 

joints, 
drt  - vector of driving torques/forces, (2,1)

T
T

k Az = − Γ d  - vector of the second time 

derivatives of the constraints. Formulas for determining the components of the dynamics equations of 

motion are described in detail in paper [11]. 

3. Numerical studies – the SL programmed motion analysis 

It is assumed that crank (1,1) is driven by a driving and resistance torque (Fig. 3).  The assumed 

velocity of slider (2,1) is described by the function shown in Fig. 4. 
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Figure 3.   Driving and resistance torque 
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Figure 4. The assumed time course  

of velocity of slider (2,1) 
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The static analysis is performed before dynamics 

to obtain deformation of the flexible link due to 

gravity forces. After this step, dynamic equations 

of motion are integrated using 4-th order Runge-

Kutta scheme with the constant step size 

55 10 sh −=  . The flexible links is divided into 4 

rfes. The Baumgarte method with constants 

100= , 50=  is applied to compensate 

constraint violations at the position and velocity 

levels. In simulations, the influence of the friction 

phenomenon in slider (2,1) and flexibility of  the 

coupler on motion of linkage is analysed. Fig. 5 and 6 show time courses of the displacement and 

velocity of the crank and slider (1,2). Analyzing the plots, it can be observed that the friction has 

significant impact on the motion of the linkage, while the impact of links’ flexibility is negligible. 

Lateral deformations of the point located in the middle of the beam length and time course of 

amplitude of the resultant reaction force at the spherical joint S are shown in Fig.  7. Analyzing 

deformations, it can be noted that they grow with time and they not exceed 6 mm. Additionally, it can 

be observed that deformations and reactions forces are smaller when the friction in slider (1,2) is 

taken into account. 

 

 

Figure 5.   Time course of the displacement and velocity of the crank 
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Figure 6.   Time course of the displacement and velocity of slider (1,2) 

 

Figure 7.   Time course of lateral deformation of the middle point of the coupler and amplitude  

of the resultant reaction force at the spherical joint 

4. Conclusions 

The mathematical model the two-dof SL with flexible coupler and friction in joints was presented. 

Motion of the linkage is limited by kinematic constraint equations formulated for the spherical cut-

joint and programmed constraints at the velocity level that represent task based requirements. The 

CoPCoD based on the GMPE algorithm and joint coordinates with homogeneous transformation 

matrices is applied to generate dynamic equations of motion. Numerical studies demonstrate that for 

the considered linkage friction has significant influence on motion of the SL and it reduce level of 

deformations of the flexible link and as result reaction forces acting joints. Also, the effects of the 

programmed constraints on the overall SL motion suggest the appropriate desired motion parameter 

selection.  
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A simple pattern generator for biped walking 

 

 

Olga Jarzyna, Dariusz Grzelczyk, Jan Awrejcewicz 

Abstract: The paper proposes a simple model of a central pattern generator for bipedal 

walking. The model approximates the angular positions of hip, knee and ankle joints 

during walking considered in the sagittal plane. The proposed mathematical 

representation of the walking pattern generator is based on experimental observations 

of healthy volunteer’s gait. It consists of three piecewise-defined continuous and 

smooth sine-squared-based functions approximating the angular positions of particular 

joints within a gait cycle. The model can be potentially employed to generate signals 

controlling motion of an exoskeleton for rehabilitation of lower limbs. It can be easily 

modified by changing the values of model parameters. The proposed model can be also 

potentially implemented in control of bipedal robots in the future. 

1. Introduction 

According to the World Health Organization, about 15% of the world population has some form of 

disability [1]. As far as the situation in Poland is concerned, the most recent report of the Central 

Statistical Office of Poland clearly states that the vast majority of the disabled Poles suffer from 

problems related to the locomotor system [2] – see Fig. 1. 

 

  

Figure 1.   Disabilities in Poland (graph prepared based on [2]). 

Irrespectively of the reasons, such as different diseases, ageing, or traffic accidents and sports injuries 

[3], dysfunctions of the locomotor system bring severe consequences not only in medical, but also 

social aspects since they limit the mobility and living activity of a vast group of the society. 
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The most common form of rehabilitation of patients with mobility impairment is the work of 

physiotherapists. However, it is labour-intensive and leads to occupational conditions such as lower-

back problems. Therefore, we should aim to develop devices that can both restore motor functions of 

the disabled and help physiotherapists, which would improve the overall rehabilitation outcomes. For 

instance, devices such as so-called lower limb exoskeletons (LLEs) can be used for this purpose. 

Although many research centres have been working on exoskeletons, still much needs to be done before 

these devices become affordable and broadly available for the public. 

The main goal of the present study was to develop a model of a human gait pattern that can be 

potentially used to control the movement of an exoskeleton. The general idea was to implement a bio-

inspired algorithm, called a central pattern generator (CPG). Generally, CPGs are neural circuits that 

exist in animals’ spinal cord and regulate various rhythmic functions such as respiration or locomotion 

even without receiving sensory feedbacks or brain inputs. 

The study is based on a prototype of a lower limb exoskeleton constructed at authors’ Department. 

Although the device allows for rotation in 11 joints, which is supplemented with the ability of moving 

toes and the trunk, from the point of view of rehabilitation of gait, one should focus on sagittal 

movements in hips, knees and ankles as they are most significant in the therapy. 

2. Simulation model of the LLE 

The simulation model of the exoskeleton is shown in Fig. 2. The limb consists of the hip joint A, 

the thigh of the length l1, the knee joint B, the shank of the length l2, the ankle joint C, and the foot 

element CEDF, where E corresponds to the heel, F to the big toe, D is the projection of C on the “sole” 

EF, l3 is the height of the foot (equal to the length of CD), l4 is the length of ED and l5 is the length of 

DF. The global coordinate system is fixed on the ground and the local coordinate system is placed 

between hip joints (see Fig. 2). 

Here we consider only the most important movements, which are sagittal movements such as 

bending and extension in the hip joint (described by the angle 𝜑1(𝑡)), bending in the knee (described 

by the angle 𝜑2(𝑡), which is the angle between the extension of the thigh and the shank), and bending 

in the ankle (described by 𝜑3(𝑡), which is the angle between the shank and the element l3). These 

movements are also accompanied by anterio-posterior pelvic tilt beta. 

228



 

Figure 2.   CAD model (left); simulation model developed in Mathematica (middle); kinematic model 

of a mechanism corresponding to one lower limb (right). 

To develop a model that would represent the gait pattern, gait experiments were conducted with 

the motion capture system. Based on the positions of 37 reflective markers distributed on the volunteer's 

body, the system reconstructed the human body segments and visualised their movement during the 

walking process. Then, the changes in the hip, knee and ankle angles for one full gait cycle (this is for 

the time between two consecutive hits of the heel of the left foot to the ground) were extracted – they 

are presented in Fig. 3. In all cases, solid lines correspond to the left leg and dashed lines to the right 

one. 

For simplification purposes, it was assumed that the gait is symmetrical, i.e. the patterns of 

movement of the left and the right lower limb are identical but shifted in phase (they are in antiphase). 

Hence, solid curves presented in Fig. 3 were obtained experimentally while dashed curves were 

obtained by shifting the solid signals by 180 degrees (in other words, solid and dashed curves have the 

same envelopes, but their phases are opposite). Red lines present patterns in the hips, green – in the 

knees, and blue – in the ankles. 
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Figure 3.   Sagittal plane joint angles during one gait phase – experimental results (red – hip joints, 

green – knee joints, blue – ankle joints). 

The obtained experimental patterns could be used to control the exoskeleton quite successively, 

but the goal was to model them to be able to modify their shape and adjust them to a particular person. 

This is particularly important in rehabilitation because at the beginning of the therapy, many patients 

have their range of motion limited and, for instance, too excessive bending in the knees could possibly 

damage muscles and tendons. 

3. CPG 

At first, motion in the hip was modelled. For this purpose, the experimental curve was divided into 

three intervals, and each of them was approximated with a sine-based function. The angle 𝜑1𝐿(𝑡) 

produces the signal for the left hip joint, while 𝜑1𝑅(𝑡) for the right one (the signals are identical but in 

antiphase): 

1L 1( ) ( )t t  , 
1R 1( ) ( 0.5 )t t T   , (1) 

where 

1 1 1( ) (mod[ , ])t t T T   , (2) 

T – duration of one gait phase, and 
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The best fit between the proposed approximations and the experimental curve (see Fig. 4) was obtained 

for the following values of the parameters: 
1 0.545T T , 

11 0.31t T , 
12 0.45t T , 

10 16.9 deg   , 
11 20.5 deg  , 

12 16.1 deg  . What is important from the point of view of 

control of a rehabilitation device, the pattern can be easily modified by changing these values. 

 

Figure 4.   Hip angles during one gait phase – experimental (dashed) vs. simulation (solid) results. 

Motion in the knee joints was modelled in the same way, but here, four intervals were 

distinguished: 

2L 2( ) ( )t t  , 
2R 2( ) ( 0.5 )t t T   , (4) 

where 

2 2 2( ) (mod[ , ])t t T T   , (5) 

and 
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 (6) 

The best fit between the proposed approximations and the experimental curve (see Fig. 5) was obtained 

for the following values of the parameters: 
2 0.435T T , 

21 0.30t T , 
22 0.55t T , 

23 0.70t T

, 
20 9.4 deg  , 

21 57.6 deg  , 
22 1.7 deg  , 

23 18.2 deg  . One can venture to say that the fit 

is satisfactory as gait patterns differ between people and even between particular gait cycles of an 

individual. 

 

Figure 5.   Knee angles during one gait phase – experimental (dashed) vs. simulation (solid) results. 

 

Figure 6 shows the output produced by the proposed CPG for the two joints mentioned above, for 

both left and right limbs. The signal was repeated 3 times. 
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Figure 6.   Sagittal plane hip and knee angles during one gait phase – CPG output for the left (solid) 

and the right limb (dashed), respectively. 

In the study, an attempt to model motion in the ankle joint was made, and this task turned out to 

be more complex than expected. When the simulation model was ran by experimental results, it could 

be noticed that the foot seem to hit the ground with the heel and then move to the toes immediately. 

However, in the gait cycle (Fig. 7), the foot should lie flat on the ground for some time. 

 

 

Figure 7.   The gait phases [4]. 

It turned out that different ways of defining the ankle angle can be found in the literature [5-7] (Fig. 8) 

and, most probably, the definition of the foot angle that we used in our study was different from that 

used in the software for motion capture system. 
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Figure 8.   Different exmplary definitions of ankle angle [5-7]. 

Therefore, the proposed model was modified so as to make the movement of the foot more realistic. 

For this purpose, the function describing the angle between the ground and the sole of the foot was 

proposed (see Fig. 9) first, and then, based on this function, the angular position of the hip and the knee 

as well as the anterio-posterior tilt of the pelvis, the ankle angle was calculated: 

3L 1L 2L 3( ) ( ) ( ) ( ) ( )t t t t t        , (7) 

3R 1R 2R 3( ) ( ) ( ) ( ) ( 0.5 )t t t t t T         , (8) 

where 

3 3( ) ( )t t  , (9) 

and 
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 (10) 

The signal presented in Fig. 9 was obtained for the following values of the parameters: 
31 0.10t T , 

32 0.25t T , 
33 0.5t T , 

30 10.0 deg    and 
31 30.0 deg  . 

Figure 10 shows the comparison of the obtained function and the experimental data. They are not 

similar, but this was expected because of the mentioned different definitions of ankle angles. 
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Figure 9.   Simulated foot angles in one gait phase. 

 

Figure 10.   Ankle angles in one gait phase – experimental (dashed) vs. simulation (solid) results. 

The introduced modification allowed to model the movement in the feet in a more realistic way. 

However, it influences vertical fluctuations of the entire structure of the exoskeleton – this effect can 

be observed in Fig. 11. Therefore, the model has to be subjected to further studies. 

 

Figure 11.   Comparison of vertical fluctuations of the hip joints of the exoskeleton’s structure in the 

global coordinate system; experimental results (on the left) vs. results obtained for the modified 

CPG model (on the right). 
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4. Conclusions 

To sum up, a simulation model of human gait has been developed based on experimental 

observations conducted with the motion capture system. A relatively simple gait model using a central 

pattern generator has been proposed. The model can be potentially used to control the lower limb 

exoskeleton in the future. It was impossible to obtain a close match between the simulation and 

experimental results in the entire range of the registered experimental data, which is caused primarily 

due to the non-repeatability of human movements, as opposed to the simulation model. Last but not 

least, further investigations related to the foot movement must be conducted. 
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Analytical and numerical study of piecewise linear Mathieu 

equation with non-zero offset 

 

 

K. R. Jayaprakash, Yuli Starosvetsky 

Abstract: The current work is primarily devoted to the analytical and numerical study of 

instability zones of piecewise linear Mathieu oscillator with a non-zero offset. In this 

study we invoke the method of averaging to analytically describe the interesting energy 

dependent instability zones. We show that the derived analytical model provides a fairly 

good first order approximation to the unstable regions emerging in the vicinity of 1: 1 

parametric resonance 

1. Introduction 

The bilinear systems frequently model various engineering structures comprising of moving elements 

with intermittent contacts. As a simplest bilinear model, one may think of a one degree of freedom (1 

DOF) oscillator mounted on the elastic spring with different stiffness characteristics in tension and 

compression. Theoretical understanding of the response regimes of bi-linear oscillatory models to 

various types of external loading is crucial in various engineering applications such as machine tool 

cutting and milling processes [1-2], dynamics of cracked structures [3-6], dynamics of suspension 

bridges [7], modelling of the topological interlocking structures [8] and more.  

Analysis of the response regimes of these special dynamical systems is quite challenging due to 

their essential nonlinearity and non-smoothness. Many computational and analytical attempts have 

been devoted to understanding the complex dynamics of a 1DOF bilinear oscillator (BLO) model 

subject to various types of external excitations such as harmonic and parametric forcing. It is worth 

noting that in the absence of external forcing - analysis of free vibrations of bilinear oscillator 

becomes rather simple as the system can be split into two separate linear systems for each state of the 

response and their solutions can be stitched at the points of transition. In contrast, the situation 

becomes more complex in the presence of external loading since stitching the solutions of each state 

(though they are apparently linear) is impossible, because the transition times cannot be calculated 

explicitly as they are defined through the transcendental equation. Shaw et al. [10] have considered a 

semi-analytical study of the harmonically forced BLO for the periodic orbits and the ensuing 

bifurcations. This study has been followed by Thompson et al. [11] who have considered a numerical 

study of the subharmonic resonances, bifurcations and chaotic regimes of BLO.  
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The study by Natsiavas  [12] considered the forced response of BLO with bi-linear damping and 

successfully derived a relatively simple, semi-analytic solution for 𝑛 −periodic orbits and analyzed 

their stability. Using a similar approach, the author has analyzed the 𝑛 −periodic response including 

stability analysis of BLO incorporating the Van-der-Pol type damping [13]. Interestingly, the analytic 

investigations of the various response regimes of BLOs has not only been confined to the harmonic 

external forcing. The works of Natsiavas et al. [14-15] present the parametric excitation of piecewise 

linear oscillator as a typical model of gear backlash and asymmetric stiffness. A thorough 

computational study by Chatterjee et al. [16] was performed on the model proposed by Natsiavas et 

al. [14] exploring the regions of stability in the parametric plane of excitation amplitude and 

frequency ratio. As it was shown by Chatterjee et al. [16], in contrast to the symmetric Mathieu 

equation, its asymmetric, piecewise linear counterpart may exhibit additional instability regions. 

However, the above-mentioned study by Chatterjee et al. has not provided any analytical estimates or 

description of these regions of instability. Some additional analytical studies have been devoted to the 

analysis of the response regimes of the parametrically and externally forced bi-linear oscillators in the 

vibro-impact limit [17-19] as well as the dissipative bi-linear oscillator with preload [20]. 

It is worth noting that all the recent works dedicated to the analysis of this type of dynamical 

models have applied numerical as well as semi-analytical techniques for the analysis of periodic 

solutions and assessment of their stability characteristics. Our recent work has shown that the 

application of some basic asymptotic techniques provides a relatively simple analytical model which 

adequately approximates and partially explains the complex mechanism governing the unbounded 

response of a parametric piecewise linear oscillator which essentially depends on the initial energy of 

the system. Such models can greatly reduce the complex computations and provide better insights of 

their dynamical behavior. Extension of this technique to a more complex, higher dimensional 

piecewise linear models subjected to various types of external excitation, opens another new and quite 

challenging domain of theoretical research. 

2. General formulation in terms of AA variables 

Let us consider a piecewise linear (PWL) oscillator with a non-zero offset (𝑎 > 0) subject to the 

parametric excitation, 

 

�̈� + 𝑓(𝑞) + 𝜀𝑃 cos(Ω𝑒𝑡) 𝑞 = 0 (1𝑎) 

𝑓(𝑞) = {
𝑞, 𝑞 < 𝑎

𝛿2𝑞 + (1 − 𝛿2)𝑎, 𝑞 ≥ 𝑎
 

(1𝑏) 

 

The above equation is scaled such that the stiffness coefficient is unity for 𝑞 < 𝑎, whereas the 

corresponding coefficient is 𝛿 ≥ 1 for 𝑞 ≥ 𝑎. In what follows 𝛿 will be referred to as the ‘asymmetry 
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parameter’ and 𝑎 as the ‘offset parameter’. The corresponding PWL force-displacement curve is 

shown in Figure. 1. In fact, Eq. (1) or its different variants have been previously considered in several 

theoretical works for the two important limiting cases. 

An asymmetric (𝛿 ≠ 1), piecewise linear, Mathieu equation with a zero offset (𝑎 = 0) has been 

previously considered by Chatterjee et al. [16]. The study is computationally exhaustive and the 

authors have demonstrated the formation of additional instability tongues, which are seldom 

observable on the stability diagram of a classical, symmetric Mathieu equation.  

In the other limit, an analytical study of a parametrically excited and damped piecewise linear 

oscillator has been performed by Babitsky et al. [19] considering the limit of 𝛿 → ∞ and analyzing 

the periodic solutions and their stability. 

It can be easily verified that the conservative PWL oscillator with zero offset exhibits 

isochronous oscillations and the frequency of free oscillations is energy independent and equals to 

Ω𝑝𝑙 = 2𝛿 (1 + 𝛿)⁄ .  However, in the non-zero offset case, the underlying conservative system of (1) 

exhibits non-isochronous oscillations. In Figure. 2 we illustrate the relations between the frequency of 

free oscillations and the total energy for the various values of the offset. It is interesting to note that as 

the total system energy increases the frequency of free oscillations reaches an asymptotic limit of 

Ω𝑝𝑙 = 2𝛿 (1 + 𝛿)⁄  which is essentially the frequency corresponding to the free oscillations of the 

conservative PWL oscillator with zero offset. 

 

 

Figure 1. 𝑓(𝑞) for an asymmetry parameter of 𝛿 = 4 and offset 𝑎 = 0.5 

 

To illustrate the dynamical behavior of PWL Mathieu equation, we provide some time histories 

corresponding to asymmetric parameter 𝛿 = 4 and 𝜀 = 0.1. As described previously, if the oscillator 

response is below the offset, the oscillator behaves as a classical linear Mathieu equation, which 

exhibits the well-known parametric resonances. Accordingly, once the frequency and amplitude of 

forcing are inside the resonance tongue (i.e. instability region of the Strutt-Ince diagram), the 
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response grows exponentially. One such scenario is considered in Figure. 3a wherein the initial 

displacement is considered below the offset 𝑞(0) < 𝑎 and the excitation frequency is equal to unity 

(Ω𝑒 = 1). Due to the 1: 1 parametric resonance, the response grows exponentially up to the point 

where the amplitude of the response breaches the offset. Thereafter, there is a sudden escape from 

resonance, which results in the bounded modulated response. Similarly, in Figure. 3b, we consider the 

initial displacement 𝑞(0) > 𝑎 and the excitation frequency equal unity (Ω𝑒 = 1). As it will become 

clear from further analysis, the amplitude of excitation considered in this case is below a certain 

threshold and as such, the system is quite off the instability zone. 

 

 

Figure 2. Frequency-energy dependence for PWL oscillator with non-zero offset for the 

asymmetry parameter 𝛿 = 4 

 

   

Figure 3. Time histories corresponding to 𝜀 = 0.1, 𝛿 = 4, 𝑃 = 5,Ω𝑒 = 1 for (a) 𝑞(0) = 0.0447 (b) 

𝑞(0) = 0.1414 

 

In the second set of simulations, we consider the excitation frequency to be equal to the natural 

frequency of the PWL oscillator with zero offset i.e. Ω𝑒 = Ω𝑝𝑙. It is observable that the response in 

Figure. 4a is bounded for 𝑃 = 3.2. In contrast, for the same initial conditions, an increase in the 

excitation amplitude to 𝑃 = 3.72 leads to unbounded response. 
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Figure 4. Time histories corresponding to 𝜀 = 0.1, 𝛿 = 4, 𝑞(0) = 0.1414,Ω𝑒 = Ω𝑝𝑙 for (a) 𝑃 = 3.2 

(b) 𝑃 = 3.72 

 

Despite the obvious difficulties in the analysis of the dynamics of parametrically excited PWL 

oscillator, we show that the analytical study of its resonant response regimes is still possible. This is 

done by the system reformulation in terms of the action-angle (A-A) variables, followed by deducing 

the averaged flow in the vicinity of a certain (1: 1) resonance manifold. Subsequent analysis of the 

averaged equations reveals the formation of quite interesting, energy dependent instability regions for 

some general resonance conditions (1: 1).  

To begin with, the equation of motion in terms of phase space variables are representable in the 

following form, 

 

�̇� = 𝑝 

�̇� = −𝑓(𝑞) − 𝜀𝑃𝑞 cos(Ω𝑒𝑡) 
(2) 

 

The unperturbed Hamiltonian (𝜀 = 0) takes the following form, 
 

𝐸 = ℋ𝑜(𝑝, 𝑞) =

{
 

 
𝑝2

2
+
𝑞2

2
, 𝑞 < 𝑎

𝑝2

2
+
𝛿2𝑞2

2
+ (1 − 𝛿2)𝑎𝑞 −

𝑎2

2
(1 − 𝛿2), 𝑞 ≥ 𝑎

 (3𝑎) 

 

whereas, the perturbed Hamiltonian reads, 
 

ℋ(𝑝, 𝑞, 𝑡) = ℋ𝑜(𝑝, 𝑞) +
𝜀𝑃𝑞2

2
cos(Ω𝑒𝑡) (3𝑏) 

 

The action-angle variables are defined as, 
 

𝐼(𝐸) =
1

2𝜋
∮𝑝(𝑞, 𝐸) 𝑑𝑞, 

𝜃 =
𝜕

𝜕𝐼
∫ 𝑝(𝑞, 𝐼)
𝑞

0

𝑑𝑞 

(4) 

 

Accordingly, we have, 
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𝐼 =
𝐸

2𝜋
{𝜋 + 2 sin−1 (

𝑎

√2𝐸
) + sin (2 sin−1 (

𝑎

√2𝐸
))}

+ (
2𝐸𝛿2 + (1 − 𝛿2)𝑎2

4𝜋𝛿3
){𝜋 − 2 sin−1 (

𝑎

√2𝐸𝛿2 + (1 − 𝛿2)𝑎2
)

− sin (2 sin−1 (
𝑎

√2𝐸𝛿2 + (1 − 𝛿2)𝑎2
))} 

(5) 

 

From the expression for the action given in (5), it is evident that inverting the expression to obtain 

ℋ0(𝐼) is seldom possible. However, this can be circumvented by transforming to the energy-angle 

variables in lieu of action-angle variables and will be considered subsequently. 

Proceeding with the computation of the angle coordinate we can separately consider the two 

intervals i.e. 𝑞 > 𝑎 and 𝑞 ≤ 𝑎. Accordingly, the original displacement coordinate represented in 

terms of energy-angle coordinates, reads 

 

𝑞(𝜃, 𝐸) = {
√2𝐸∗ sin(𝜆𝛿𝜗 + 𝜓) + 𝜙, 0 ≤ 𝜗 < 𝜑

√2𝐸 sin(𝜆(𝜗 − 2𝜋) + 𝜅) , 𝜑 ≤  𝜗 < 2𝜋
 (6) 

 

Where 𝜓 = sin−1(𝑎 𝛿2√2𝐸∗⁄ ) , 𝜙 = − (1 − 𝛿2)𝑎 𝛿2⁄ , 𝜆 = 𝜕𝐼 𝜕𝐸⁄ , 𝜅 = sin−1(𝑎 √2𝐸⁄ ), 𝐸∗ =
𝐸

𝛿2
+

(1−𝛿2)

2𝛿4
𝑎2 and 𝜗 = 𝑚𝑜𝑑(𝜃, 2𝜋), 𝜑 = 2𝜋 −

2

𝜆
{
𝜋

2
+ sin−1 (

𝑎

√2𝐸
)}. 

The perturbed Hamiltonian represented in terms of A-A variables takes the following form 

 

ℋ(𝐼(𝐸), 𝜃, 𝑡) = ℋ0(𝐼(𝐸)) + 𝜀
𝑃𝑞(𝜃, 𝐸)2

2
cos(Ω𝑒𝑡) (7) 

 

As we have already mentioned above, in the absence of perturbation, the system is conservative 

and in the case of a non-zero offset (𝑎 > 0) its frequency of oscillations is energy dependent as shown 

in Figure. 2. As evidenced from the numerical simulations, the system response regimes may exhibit 

either bounded or unbounded motion. In scope of the present study we are interested in establishing 

analytically the instability zones, which as it will become clear from the further analysis are energy 

dependent. 

By construction, 𝑞(𝜃, 𝐸) is a 2𝜋 – periodic function in terms of the angle variable (𝜃) and 

therefore  𝑞2(𝜃, 𝐸)  admits the following Fourier series expansion, 

 

𝑞2(𝜃, 𝐸) = ∑ 𝑓𝑚(𝐸)𝑒
𝑖𝑚𝜃

∞

𝑚=−∞

 (8) 

 

Introducing the above Fourier series expansion in (7), we have 
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ℋ(𝐼(𝐸), 𝜃, 𝑡) = ℋ0(𝐼(𝐸)) +
𝜀𝑃

2
∑ 𝑓𝑚(𝐸)𝑒

𝑖𝑚𝜃

∞

𝑚=−∞

cos(Ω𝑒𝑡) (9) 

 

The equations of motion in terms of the canonical action-angle coordinates are, 

 

𝐼̇ = −
𝜕ℋ

𝜕𝜃
; �̇� =

𝜕ℋ

𝜕𝐼
 (10) 

 

However, as described previously, the inversion of 𝐼(𝐸) is seldom possible and the appropriate 

energy-angle description is, 

 

�̇� = −
1

𝜆
{
𝑖𝜀𝑃

4
∑ 𝑚𝑓𝑚(𝐸)

∞

𝑚=−∞

(𝑒𝑖{𝑚𝜃+Ω𝑒𝑡} + 𝑒𝑖{𝑚𝜃−Ω𝑒𝑡})} 

�̇� =
1

𝜆
{1 +

𝜀𝑃

4
∑

𝜕𝑓𝑚(𝐸)

𝜕𝐸

∞

𝑚=−∞

(𝑒𝑖{𝑚𝜃+Ω𝑒𝑡} + 𝑒𝑖{𝑚𝜃−Ω𝑒𝑡})} 

(11) 

 

In scope of the present study we consider a 1: 1 resonance condition and introduce a resonance 

slow phase variable 𝜐, such that 𝜐 = 𝜃 − Ω𝑒𝑡. Here the frequency of excitation (Ω𝑒) is given by Ω𝑒 =

Ω𝑝𝑙. Further assuming a resonant state and proceeding with the straightforward averaging, we treat 𝜐 

as the slow variable and derive the following averaged equations  

 

�̇� =
𝜀𝑃

2𝜆
{𝛼 sin(𝜐) + 𝛽 cos(𝜐)} (12𝑎) 

�̇� =
1

𝜆
{1 +

𝜀𝑃

2
{𝛼′ cos(𝜐) − 𝛽′ sin(𝜐)}} − Ω𝑝𝑙  (12𝑏) 

  

 Where 𝛼 = 𝑅𝑒(𝑓1(𝐸)), 𝛽 = 𝐼𝑚(𝑓1(𝐸)), 𝛼
′ = 𝑅𝑒 (

𝜕𝑓1

𝜕𝐸
) , 𝛽′ = 𝐼𝑚 (

𝜕𝑓1

𝜕𝐸
), and 𝑓−1 = 𝑓1

∗ (complex 

conjugate of 𝑓1). It should be noted again, that the derived averaged model is valid only in the vicinity 

of a certain resonance under consideration. It can be easily shown that the averaged system possesses 

the following integral,  

 

𝐺 =
𝜀𝑃

2
{𝛼 cos(𝜐) − 𝛽 sin(𝜐)} + 𝐸 − 𝐼(𝐸)Ω𝑝𝑙 (13) 

 

To illustrate the main mechanism of the formation of unbounded response in the strongly 

nonlinear model under consideration, we have chosen the 1: 1 parametric resonance of PWL Mathieu 

equation. Seeking further for the periodic solutions, we equate both time derivatives of the averaged 

flow (Eq. 12) to zero to obtain the following algebraic system defining the fixed point of the averaged 

flow, 
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𝜐 = tan−1 (−
𝛽

𝛼
) (14𝑎) 

1

𝜆
{1 +

𝜀𝑃

2
{𝛼′ cos(𝜐) − 𝛽′ sin(𝜐)}} − (Ω𝑝𝑙) = 0 (14𝑏) 

 

In fact, the above derived force - energy relation corresponding to the fixed point provides an 

absolute threshold for initial energy above which the system will exhibit the unbounded response for 

the arbitrary chosen initial phase. Correspondingly, the force as a function of the initial energy is 

presented in Figure. 5 for an asymmetry of 𝛿 = 4 for the condition of 1: 1 resonance and varying 

offset parameter 𝑎. As observable, with increase in the offset, the force required to induce instability 

increases. It is worth noting that this force threshold is specific to the initial phase corresponding to 

the fixed point which is given in Eq. 14a. As it will become clear from the phase portrait of the 

averaged flow brought below, the change in the initial phase will lead to a change in the critical value 

of initial energy (assuming the same excitation amplitude and offset) above which the system will 

exhibit the unbounded response. This behavior is better illustrated by the phase contours 

corresponding to Eq. (13) as shown in Figure. 6. One can observe a fixed point (saddle) 

corresponding to Eq. (14) and the phase plane is split into four regions (denoted by A, B, C, D) by the 

stable and unstable manifolds of the saddle point. If the initial energy is considered in the region A, 

the oscillator will have bounded, but modulated response. Whereas, the oscillator exhibits unbounded 

response for any initial energy in the other three regions. As such, for the same excitation amplitude 

and frequency, the response can be quite varied depending on the initial energy and phase of the 

oscillator. Thus, the manifolds of the fixed point actually define the unstable region. 

 In Table 1, we tabulate the threshold energy corresponding to the fixed point (Eq. 14) of the 

slow flow model. The corresponding threshold energy as observed from the numerical simulation of 

Eq. 1 is also tabulated considering appropriately transformed initial conditions. The correspondence is 

found to be extremely good for the lower values of the excitation amplitude of 𝑃 = 2. However, 

increasing the excitation amplitude further (e.g. 𝑃 = 4, and 𝑎 > 0.1 ), one starts observing a 

considerable deviation of the theoretical prediction of the unstable zone vs. the response of the full 

model. In this case, the mechanism which leads to unbounded response for the values of energy below 

the predicted threshold is essentially chaotic and cannot be described by the constructed averaged 

flow.  
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Figure 5. Threshold value of excitation amplitude 𝑃 as a function of initial energy 𝐸 

corresponding to 𝛿 = 4 
 

 

Figure 6. Phase contours corresponding to 𝑎 = 0.3, 𝛿 = 4, 𝑃 = 4.102 
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Table 1: Energy threshold for 1: 1 resonance corresponding to (𝛿 = 4 ⇒ 𝜔𝑝𝑙(𝑎 = 0) = 1.6) 

 𝑃 = 2 𝑃 = 4 

 Slow-flow (Eq. 14) Num (Eq. 1) Slow-flow (Eq. 14) Num (Eq. 1) 

𝑎 = 0.1 0.4564 0.449 0.1182 0.117 

𝑎 = 0.3 4.102 4.1 1.065 0.57 

𝑎 = 0.5 11.56 11.32 2.959 2.17 

𝑎 = 0.7 22.36 21.85 5.776 3.46 

𝑎 = 0.9 36.97 36.55 9.588 4.9 

 

3. Conclusions 

The current analytical and numerical study is devoted to the study of piecewise linear Mathieu 

equation with non-zero offset. The description of the instability boundaries of this class of systems is 

relevant in various engineering systems. However, the essentially nonlinear and non-smooth nature of 

the oscillator essentially complicates the analysis of the different response regimes arising in this 

model. To obtain some relatively simple analytical description of the instability zones of a PWL 

Mathieu equation, we introduce the action-angle variables and apply the method of averaging to 

deduce a slow-flow model corresponding to a specific resonance case. The study of the slow-flow 

model provides a clear description of the instability zones. As we have already shown above, these 

boundaries are not only dependent on the excitation amplitude but also on the initial conditions i.e. 

initial energy and phase of excitation. The numerical simulations of the full model match extremely 

well with the deduced slow-flow model for the lower values of the amplitude of parametric excitation. 

However, the presented analytical model is not devoid of its drawbacks in the sense that it fails to 

predict the instability boundaries for the higher values of the forcing amplitude. As we have already 

noted above, in that case the mechanism which leads to unbounded response for essentially low 

values of energy (i.e. initial energy level below the instability threshold), is strongly chaotic and 

cannot be described by the constructed averaged flow.  
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Optimization of the spindle speed during milling of large-sized 

structures with the use of technique of Experiment-Aided Virtual 

Prototyping 

 

 

Krzysztof J. Kaliński, Marek Galewski, Michał Mazur, Natalia Morawska 

Abstract: In the paper are presented considerations concerning vibration suppression 

problems during milling of large-sized workpieces with the use of innovative method 

of matching the spindle speed of cutting tool. It depends on repeatable change of the 

spindle speed value as soon as the optimal vibration state of the workpiece approaches. 

The values of dominant “peaks” in the frequency spectra and the Root Mean Square 

(RMS) values of time domain displacements are evaluated. The efficiency of the 

proposed approach is evidenced by chosen mechatronic design technique, called 

Experiment-Aided Virtual Prototyping (E-AVP). Thanks to the results of the 

identification of the modal subsystem obtained by the Experimental Modal Analysis 

(EMA) method, it can be stated that the parameters obtained from the experiment and 

delivered from the computational model have been correctly determined and constitute 

reliable process data for the simulation tests. 

1. Introduction 

The methodology of vibration suppression through spindle speed variation awaited a lot of successful 

applications. For example, the efficiency of the approach was confirmed in case of high-speed milling 

of rigid workpieces by slender tools even in the potentially unstable regions of spindle speeds, resulting 

from the position of stability lobes [1]. Vibration suppression using the method of spindle speed 

variation, however, is ineffective in the case of milling flexible structures [2]. That is why looking for 

favourable conditions of machining processes performance on a basis of computation of the constant 

value of optimal spindle speed would produce promising prospects, but it often results in 

underutilization of production and operating capabilities of modern production machines [3].  

 Due to the reason above the methods depending on choosing the optimal clamping conditions of 

the workpiece would be more advisable. Hence a variable stiffness holder in the direction perpendicular 

to the machined surface, can be installed on the machine table [4]. After appropriate calibration of this 

holder it is possible to obtain the required stiffness coefficients, depending on the natural frequency of 

the workpiece [5]. A more practical version of the device is a design with a stiffness coefficient 

adjustment in the rotational direction [6]. However, the latter means necessity of changing the clamping 

stiffness during the process which results in difficulty for determination of the optimal condition, 
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as well in theory as in case of practical applications. The more so that the repetitive change of clamping 

stiffness coefficients for large-sized workpieces may seem extremely inconvenient, and even – 

impossible.  

 To sum up, the only method of reducing level of vibration during as well rough as finishing 

operations depends on determination of optimal spindle speed. Moreover, the approach reflects its 

convenience in practical use, because of necessary interference with only technological parameters; 

all conditions of fixing the workpiece remain unchangeable. The subject of this paper is devoted to 

a method of searching for conditions of minimizing the vibration level of a tool-large sized flexible 

workpiece, at unchangeable the clamping stiffness coefficients. 

 The vibration reduction method, based on the spindle speed and assuming constant clamping 

stiffness of the workpiece, consists of adjusting the spindle speed to the optimal angle phase shift 

between subsequent tool passes [7].  

 Taking into account the influence of the dynamic properties of the workpiece on the amplitude and 

frequency of vibration implies the necessity of creating a "map" which determines optimal spindle 

speeds at various points of the clamped workpiece surface on the machine [8, 9], in accordance with 

the condition of minimum work of the cutting forces, i.e.: 

𝑧𝑛0

60
=

𝑓𝛼

0.25+𝑘
,  𝑘 = 0,1,2, … (1) 

where: n0 – subsequent sought spindle speeds, z – number of cutting tool edges, fα – natural frequency 

no.  of the workpiece (constant). 

However, the above concerns flexible workpieces having small dimensions. In the case of large 

workpieces, the so called basic optimal spindle speed map does not meet the assumed requirements and 

is only the first approximation; the optimum spindle speed should be sought under dynamic conditions. 

One such solution is the proposed authorial technique of the Experiment-Aided Virtual Prototyping  

(E-AVP), being described below. 

2. Hybrid model description 

The process of milling large-sized structures can be considered in the convention of a discrete system 

in hybrid coordinates [2]. Thus, in the hybrid model of the face milling process (Fig. 1) a structural 

subsystem (i.e. rotating cutting tool, modelled as rotating rigid body or Euler-Bernoulli Bar (EBB) [3]) 

and a modal subsystem (i.e. a flexible large workpiece idealised as a set of isoparametric finite elements 

(IFE)) are separated as linear stationary systems.  

 The main inconvenience of description of the modal subsystem in domain of generalized 

coordinates is a very large number of degrees of freedom. The structural subsystem has only 6 degrees 

of freedom, which does not affect too much time spent for computation. After the "synthesis" of both 
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subsystems, the derived computational model is a linear non-stationary system and has totally 21 hybrid 

coordinates [3]. The hybrid model also includes time variable position of the contact area between 

cutting edges and the processed material (CE – coupling elements). The proportional relationship 

between the cutting force and the instantaneous surface area of the machined layer (so-called 

proportional model [2, 3]) is used for its mathematical description. Clamping stiffness of the workpiece 

is idealised with the use of a set of massless spring-damping elements (SDE). 

Components of generalised displacements in the direction of Cartesian coordinates yl1, yl2, yl3 of CE 

no. l are related with the generalized coordinates vector qs of the structural subsystem and the vector of 

the modal coordinates am of the modal subsystem using time-dependent constraints equations, 

respectively described by the matrices Tl and Wl [3]. Finally, the dynamics equation of a non-stationary 

cutting process model in hybrid coordinates takes the form [2, 3]: 

 

[
𝐌 𝟎
𝟎 𝐈

] {
�̈�𝑠

�̈�𝑚
}

⏟
�̈�

+ [
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𝟎 2𝐙𝛀
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}
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] (2) 

where: 𝐌, 𝐋, 𝐊 – matrices of inertia, damping and stiffness of the structural subsystem, 𝛏 = {
𝐪𝑠

𝐚𝑚
} – 

vector of hybrid coordinates of the hybrid system, Ω – matrix of angular natural frequencies of the 

modal subsystem (the stiffness modal matrix); 𝐙 – matrix of dimensionless damping coefficients (the 

modal damping) of the modal subsystem; il –number of „active” coupling elements, i.e. cutting edges 

currently in contact with the workpiece. 
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Figure 1.   Hybrid model of a face milling process. 

3. Optimization of spindle speed during milling of large-sized structures using 

Experiment-Aided Virtual Prototyping (E-AVP) 

The presented procedure (Fig. 2) of changing the spindle speed of the cutting tool means to be more 

versatile in comparison with the procedure of changing the clamping stiffness, due to no restrictions of 

a possible use only for rough cutting of large workpiece. The presented procedure has potential use for 

either rough or finishing cutting of large workpieces. On the other hand, the procedure could be used 

also in the case of separating many subsystems from the hybrid model. 
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Figure 2.   Scheme for finding the optimal spindle speed with the use of the E-AVP technique. 

  

The procedure should begin with the definition of the modal subsystem, modelling it with the use of 

the finite element method (FEM), theoretical modal analysis (TMA), supported by relevant software 

MEDINA and PERMAS [3] and validation of the results with respect to real object installed on the 

machine. This applies in particular to the natural frequencies f of the dominant normal modes, 

dimensionless damping coefficients ξ and vectors of normal modes 𝚿. For a purpose of the latter, 

experimental modal analysis (EMA) is applied and Modal Assurance Criterion (MAC) is evaluated by 

the following formula [3]: 

𝑀𝐴𝐶𝑒−𝑎(𝛼, 𝛽) =
(𝚿𝛼

𝑎𝑇⋅𝚿𝛽
𝑒)

2

(𝚿𝛼
𝑎𝑇⋅𝚿𝛼

𝑎)⋅(𝚿𝛽
𝑒𝑇⋅𝚿𝛽

𝑒)
, (3) 
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whereas the index is the square of the directional cosine between the a

Ψ modal displacements’ vector 

no. α obtained from the calculation, and the e

Ψ vector no. β obtained from the experiment. The closer 

the MAC value is to 1, the more the two eigenvectors match themselves. 

The next step in this procedure is to estimate the cutting process parameters, i.e. the average 

dynamic specific cutting pressure 𝑘𝑑𝑙 and the coefficients of cutting forces 𝜇𝑙2 and 𝜇𝑙3. The selection 

of their values is iterative, through the implementation of the simulation of the cutting process for 

nominal spindle speed and comparison of the results with those of vibration measurement during test 

implementation of real machining for the nominal speed. After adjusting the machining parameters, the 

allowed range of the spindle speed to be tested is selected, and machining simulations are performed 

for the selected speeds in this range. After their completion, the spindle speed is selected as the optimal 

one for which the lowest vibration level or the lowest dominant amplitudes in the spectra, has been 

reached. 

4. Research object 

The object of the research was a large-sized workpiece installed on the MIKROMAT 20V portal 

machining centre at the HYDROTOR PLC in Tuchola (Fig. 3). Relative oscillation was investigated at 

a conventional contact point of the tool and the workpiece during face milling of the front horizontal 

surface (i.e. no. 1), length 1778.5 mm, along normal direction to the machined surface. 

 

  

Figure 3.   Scheme of test workpiece with marked 1-axis accelerometers positions 

 

In the first stage of the research the correlation of the FEM model with the real workpiece attached 

to the machine was assessed. In order to eliminate a danger of the results uncertainties, 3 various 

methods of the modal parameters’ identification are applied for this purpose. There were: Eigenvalue 

Realisation Method (ERA) [3, 10], polyreference Least Squares Complex Frequency Domain  

(p-LSCFD) [3, 11], and for the purposes of updating the computational model –  a new proprietary 

approach based on Particle Swarm Optimization (PSO) [12]. The results of all the methods really 
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converged with respect to each other. In the table 1 are shown the MAC coefficients’ values for the 

modal displacements’ vectors, identified during the process of EMA with the use of the ERA. 9 normal 

modes have been identified, although the number of the computed modes is much larger (i.e. 15). 

However, the latter entitles to conclude that the result of the MAC evaluation appears to be correct. 

 

Table 1. MAC values and natural frequencies for several modes of vibration. 

 

 

  

The next step of the procedure is simulation of the hybrid milling process along with the evaluation 

of workpiece vibration, based on the dominant values of amplitude “peaks” in the frequency domain 

and the Root Mean Square (RMS) values of time domain displacements. There was simulated a rough 

cutting by the Sandvik milling cutter having diameter D=44 mm and number of edges z=4, at milling 

depth ap=1 mm. 

5. Results of simulations 

In tab. 2. are presented for 11 simulations, the RMS values, frequency values f and amplitudes q 

of dominant “peaks” in the spectrum, observed at instant of time tp=10 s, in the case of rough cutting, 

spindle speed n0 in the range from 1300 to 1500 rpm and feed rate vf in the range from 600 to 

692 mm/min. 

 Analysis of the results of the simulated variants based on incremental change of spindle speed 

(Tab. 2) has allowed to determine the optimal state of cutting. Minimal vibrations were observed 

in simulation no. 5 (n0 = 1380 rpm, Tab. 2, bold value). Extremely adverse configuration was observed 

in case of simulation no. 3 (n0 = 1340 rpm, Tab. 2, value underlined). In Figs. 4a-5a are shown time 

plots of workpiece vibration and the amplitude spectrum for optimal spindle speed. There are observed 

the harmonics with successively decreasing amplitudes. In Figs. 4b-5b, in case of extremely 
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unfavourable configuration, harmonic vibrations with successively decreasing amplitudes are observed 

as well. However, their amplitudes are greater than in case of the optimal solution. 

 

 

Table 2. Values of RMS in the time domain and dominant amplitudes in the spectra. Bold value – 

optimal result. Value underlined – adverse result. 

Number of simulations n0  

[rpm] 

RMS  

[10-4 mm] 

f 

[Hz] 

q  

[10-5 mm] 

1 1300 4.4681 

86.6805 5.1014 

172.1402 2.5931 

258.8207 1.9629 

344.2803 4.1047 

2 1320 4.4602 

87.9014 6.3043 

175.8027 1.8731 

262.4832 2.0492 

350.3846 3.6023 

3 1340 4.4564 

89.1222 6.9172 

178.2444 2.8873 

267.3666 2.5430 

356.4888 2.7266 

4 1360 4.4617 

90.3431 6.3138 

180.6861 2.0148 

272.2500 2.4756 

362.5931 2.1975 

5 1380 4.4613 

92.7848 4.7775 

184.3487 3.1146 

277.1334 2.6066 

368.6974 1.7229 

6 1400 4.4620 

94.0056 6.8402 

188.0112 2.9943 

282.0168 3.2191 

376.0225 1.0758 

7 1420 4.4559 

94.0056 6.8532 

188.0112 3.1969 

282.0168 2.0043 

376.0225 0.9207 

8 1440 4.4620 

95.2265 6.0986 

191.1155 2.7757 

286.9003 2.1366 

382.1267 1.1042 

9 1460 4.4644 

97.6682 6.2591 

194.1155 3.0039 

291.7837 2.3184 

389.4518 0.9657 

10 1480 4.4614 

98.8890 6.3937 

197.7780 2.5276 

297.8879 2.5343 

11 1500 4.4564 

98.8890 6.4063 

197.7780 1.5484 

297.8879 2.9547 
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a)                                                                               b) 

Figure 4.   Simulated vibrations in time domain: a) optimal configuration, b) extremely adverse configuration 

 

a)                                                                            b) 

Figure 5.   Amplitude spectra, observation time tp=10 s: a) optimal configuration, b) extremely unfavorable 

configuration 

6. Conclusions 

Thanks to the obtained results the efficiency of the proposed vibration suppression method has been 

evidenced by optimizing the spindle speed during high-sized structures milling with the use of a 

dedicated Experiment-Aided Virtual Prototyping (EAVP) technique. 

Thanks to the results of the identification of the modal subsystem obtained by the ERA method, 

it can be stated that the parameters obtained from the experiment and delivered from the computational 

model have been correctly determined and constitute reliable process data for the simulation tests. 

The above is confirmed by 9 natural frequencies identified for the spectrum bandwidth up to 500 Hz. 
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Chaos-geometric approach to analysis and forecasting 

evolutionary dynamics of complex systems: Atmospheric 

pollutants dynamics 

 

 

Olga Yu. Khetselius, Andrey A. Svinarenko, Yuliya Ya. Bunyakova,  
Alexander V. Glushkov 

Abstract: We present  a generalized computational complex approach to studying and 

forecasting evolutionary dynamics of  complex geosystems (city's atmospheric 

pollution), based on the combined using the non-linear analysis methods and chaos 

theory such as the mutual information approach, correlation integral analysis, false 

nearest neighbour algorithm, Lyapunov’s exponents analysis, surrogate data method, 

stochastic propagators method, memory and neural networks, Green’s functions 

approaches.  We identify the concentration space-temporary evolution dynamics for 

the SO2 in the atmosphere of industrial cities in order to reveal the chaos in the hourly 

time series at several sites in the Gdansk and Odessa cities during the 2001-2006. We 

present an advanced computational model to forecasting the atmospheric pollutants 

evolutionary dynamics (the “Geomath” technology). To determine time delays, the 

concept of mutual information is used. To determine the attractor dimensions, it is 

used the correlation integral method and false nearest neighbours algorithm. The data 

on the Lyapunov’s exponents and other topological and dynamical invariants are 

listed. 

1. Introduction 

At the present time one of the most actual, important and fundamental problems of modern applied 

ecology, environmental protection is a problem of the quantitative treating pollution dynamics in the 

industrial cities and at whole regions and a search of new mathematical tools for analysis, modelling 

and forecasting a temporal dynamics of the air pollutant (dioxide of nitrogen, sulphur etc) 

concentrations in an atmosphere of the industrial cities and regions [1-13]. In Refs.  [1-3] the detailed 

review of the results of analysis, modelling and processing the measurement data in different 

laboratories is presented, in particular, it concerns to analysis of the CO, O3 concentrations time 

series. Also, it was shown that O3 concentrations in Cincinnati (Ohio) and Istanbul are evidently 

chaotic, and non-linear approach provides satisfactory results. In Refs. [6-10]  an analysis of the NO2, 

CO, O3 concentrations time series in a few industrial cities is presented. It has been definitely 

received an evidence of chaos elements in the corresponding concentrations time series. These studies 
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show that chaos theory methodology can be applied and the short-range forecast by the non-linear 

prediction method can be satisfactory.   

In this paper we present the results of an advanced analysis, modelling and forecasting a 

temporal dynamics of the air pollutant (dioxide of sulphur) concentrations in atmosphere of the 

industrial city (Odessa, Ukraine and Gdansk, Polland) using a chaos-geometric approach, which 

includes an advanced non-linear analysis technique and modern chaos theory and dynamical systems 

methods (in versions [5-20]). An accurate short-terminal forecast of the atmospheric pollutants 

temporal evolution is presented.  All calculations are performed with using “Geomath”, “Superatom” 

and “Quantum Chaos” computational codes [21-36]. 

2. Technique of analysis and computing atmospheric pollutants fluctuations temporal 

dynamics 

The key elements of the technique of computing atmospheric pollutants fluctuations dynamics are  

described in details in Refs. [5-13]. Here we are limited to presenting only the main elementss. Let us 

consider scalar measurements:    s(n)=s(t0+ nt) = s(n),  where t0 is a start time, t is time step, and n 

is number of the measurements. In our case  s(n) is the time series of the atmospheric pollutants 

concentration.  As processes resulting in a chaotic behaviour are fundamentally multivariate, one 

needs to reconstruct phase space using as well as possible information contained in s(n). The main 

idea is that direct use of lagged variables s(n+), where  is some integer to be defined, results in a 

coordinate system where a structure of orbits in phase space can be captured. Using a collection of 

time lags to create a vector in d dimensions,  

 y(n)=[s(n),s(n + ),s(n + 2),..,s(n +(d1))],   

(where d= dE is the embedding dimension) the required coordinates are provided.  

The goal of the embedding dimension determination is to reconstruct a Euclidean space Rd large 

enough so that the set of points dA can be unfolded without ambiguity. To analyse a measured time 

histories for the sulphur dioxide concentrations, the phase space of the system had been reconstructed 

by the delay embedding. Further the advanced versions of the mutual information approach, 

correlation integral analysis, false nearest neighbour algorithm, Lyapunov’s exponent's analysis, and 

surrogate data method are used for comprehensive characterization (c.g., [5,14-17]). The correlation 

dimension method provides a fractal-dimensional attractor. Statistical significance of the results was 

confirmed by testing for a surrogate data. The choice of proper time lag is important for the 

subsequent reconstruction of phase space.   

First approach is to compute the linear autocorrelation function CL() and to look for that time lag 

where CL() first passes through 0. This gives a good hint of choice for  at that s(n+j) and 
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s(n+(j +1)) are linearly independent. Alternative approach is given by a nonlinear concept of 

independence, e.g. an average mutual information (c.g., [5,14-17]). In order to compute an attractor 

dimension one should use the correlation integral analysis, which is one of the widely used techniques 

to investigate the signatures of chaos in a time series.  

     Further let us note that the spectrum of the Lyapunov’s exponents is one of dynamical invariants 

for non-linear system with chaotic behaviour. The Lyapunov’s exponents are related to the 

eigenvalues of the linearized dynamics across the attractor. For chaotic systems, being both stable and 

unstable, the Lyapunov’s exponents indicate the complexity of the dynamics. The largest positive 

value determines some average prediction limit. Since the Lyapunov’s exponents are defined as 

asymptotic average rates, they are independent of the initial conditions, and hence the choice of 

trajectory, and they do comprise an invariant measure of the attractor. An estimate of this measure is a 

sum of the positive Lyapunov’s exponents. The estimate of the attractor dimension is provided by the 

conjecture dL and the Lyapunov’s exponents are taken in descending order. To compute Lyapunov’s 

exponents, we use a method with linear fitted map (version [1]) , although the maps with higher order 

polynomials can be used too.  

     The principally important topic is development of an advanced approach to prediction of chaotic 

properties of complex systems. Our key idea is in the using the traditional concept of a compact 

geometric attractor in which evolves the measurement data, plus the implementation of neural 

network algorithms. The existing so far in the theory of chaos prediction models are based on the 

concept of an attractor. The meaning of the concept is in fact a study of the evolution of the attractor 

in the phase space of the system and, in a sense, modelling ("guessing") time-variable evolution.. 

From a mathematical point of view, it is a fact that in the phase space of the system an orbit 

continuously rolled on itself due to the action of dissipative forces and the nonlinear part of the 

dynamics, so it is possible to stay in the neighborhood of any point of the orbit y (n) other points of 

the orbit yr (n), r = 1,..., NB, which come in the neighborhood y (n) in a completely different times 

than n.  Of course, then one could try to build different types of interpolation functions that take into 

account all the neighborhoods of the phase space and at the same time explain how the neighborhood 

evolve from y (n) to a whole family of points about y (n+1). Use of the information about the phase 

space in the simulation of the evolution of some geophysical (environmental, etc.) of the process in 

time can be regarded as a fundamental element in the simulation of random processes.  

     These idea have been used in order to make more advanced the wide spread prediction model 

which is based on the constructing a parameterized nonlinear function F (x, a), which transform y (n) 

to y (n + 1) = F (y (n), a), and then using different criteria for determining the parameters a. As it is 

shown by Schreiber [18], the most common form of the local model is very simple :
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where  n - the time period for which a forecast . The coefficients )(k

ja , may be determined by a 

least-squares procedure, involving only points s(k) within a small neighbourhood around the reference 

point. Thus, the coefficients will vary throughout phase space. The fit procedure amounts to solving 

(dA + 1) linear equations for the (dA + 1) unknowns.  Further, since there is the notion of local 

neighborhoods, one could create a model of the process occurring in the neighborhood, at the 

neighborhood and by combining together these local models to construct a global nonlinear model 

that describes most of the structure of the attractor. In order to get more advanced prediction of 

chaotic dynamics we have applied the polynomial model [5-9,19,20].   

3. The advanced data for the sulphur dioxide concentrations time series of the 

industrial cities and conclusions 

We studied the concentration space-temporary evolution dynamics for the SO2 in the atmosphere of 

industrial cities in order to reveal the chaos in the hourly time series at several sites in the Gdansk and 

Odessa cities during the 2001-2006. In our study, we used the sulphur dioxide concentration data 

observed at several sites of the Gdansk  on 2003-2004, namely, the multi year hourly concentrations 

(one year total of 20x8760 data points) and the Odessa on 2001-2006, namely, the multi year hourly 

concentrations (one year total of 20 x 6570 data points). The typical temporal series of the SO2 

concentrations at two sites (Gdansk) are presented in Figure 1.  

 

 

Figure 1.   The typical time series of the SO2 concentrations at two sites (Gdansk), in µg/cm3 (see text) 

0 730 1460 2190 2920 3650 4380 5110 5840 6570 7300 8030 8760
0

25

50

75

100

125
в)

0 730 1460 2190 2920 3650 4380 5110 5840 6570 7300 8030 8760
0

25

50

75

100

125
г)

262



 Let us note that in the Gdansk region, the Agency of Regional Air  Quality Monitoring 

(ARMAAG) provides presently the 24-h forecasts of air quality levels using the  model called 

CALMET/CALPUFF (CALPUFF) (see [2,4] and Refs. therein).  

 In the Table 1 we present our calculated (advanced) data on some  dynamical and topological 

invariants, in particular,  the correlation dimension (d2), embedding dimension (dE), the Kaplan-Yorke 

dimension (dL), two Lyapunov’s exponents (1,2), the Kaplan-Yorke dimension (dL), and average 

limit of predictability (Prmax, hours) for the time series of the SO2 concentration at two sites of the 

Gdansk (during 2003 year). It should be noted that the analogous data are received  for the SO2 

concentration time series at the sites of the Odessa.  

Table 1. The correlation dimension (d2), embedding dimension (dE), first two Lyapunov’s exponents, 

E(1,2),  Kaplan-Yorke dimension (dL), and average limit of predictability (Prmax, hours) for the SO2 

concentration time series for the two sites (during 2003) 

Site  d2 dE 1 2 dL Prmax K 

1 19 1.58 6 0.0164 0.0066 5.01 43 0.71 

2 17 3.40 6 0.0150 0.0052 4.60 49 0.73 

 

The time series of the SO2 at the site 2 have the highest predictability (more than 2 days), and other 

time series have the predictabilities slightly less than 2 days. The concrete example of the prediction 

model realization (see details in Refs. [19-23]) is presented in Figure 2, where the empirical (solid 

line) and predicted (dotted line; by the Schreiber-type prediction algorithm with the simple neural 

networks block) SO2 concentration curves are listed for the last one hundred points of the time series.  

 

Figure 2.   The empirical (solid line) and predicted (dotted line) SO2 concentration curves  for the last 

one hundred points of the time series (see text). 
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In whole an analysis shows that almost all the peaks on the actual curve repeated on the 

prognostic difference between the forecast and the actual data in the event of high 

concentrations of the ingredients can be quite large. Therefore, one should conclude that the 

results of our computational forecasting can be considered as quite satisfactory. 
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New generalized chaos-geometric and neural networks approach 

to nonlinear modeling of complex chaotic dynamical systems 

 

 

Olga Yu. Khetselius, Andrey A. Svinarenko, Anna V. Ignatenko,  Anna A. Buyadzhi 

Abstract: We present  a generalized computational complex approach to studying and 

forecasting evolutionary dynamics of  the complex dynamical systems. The standard  

nonlinear modeling of chaotic processes in these systems can be based on the concept 

of compact geometric attractor with using the non-linear analysis and chaos theory 

methods such as the qualitative theory of differential equations, multi-fractal 

formalism, wavelet analysis, mutual information approach, correlation integral 

analysis, false nearest neighbour algorithm, the Lyapunov’s exponent’s analysis, 

surrogate data method, stochastic propagators, memory and Green’s functions 

approaches. We elaborate a new approach to analyze and to predict the nonlinear 

dynamics of chaotic systems based on the concept of geometric attractors, chaos 

theory methods and the neural network simulation algorithms. The combined using 

information on the phase space evolution of the physical process in time and  the  

simulation data of the neural network modeling can be considered as one of the 

fundamentally new approaches in the construction of global nonlinear models of the 

most effective and accurate description of structure of the corresponding strange 

attractor. Some illustrative numerical examples are presented. 

1. Introduction 

The most important and fundamental issue in the description of dynamics of the dynamical systems is 

its ability to forecast its future evolution, i.e. predictability of a behaviour. It should be recalled that, 

since the works of Poincare, Kolmogorov, Lorenz, Lyapunov, Einstein, Heisenberg, Feynman, 

Arnold, Moser, Feigenbaum, Mandelbrot, Sinai and many others, a chaos theory, which actually 

involves quite a variety of different directions, was developed mostly academically and very 

separately (qualitative theory of differential equations, ergodic theories, fractal geometry, methods of 

classical mechanics, etc.). Modern nonlinear dynamics has established the main mechanisms of 

instability and scenarios of transition to chaos in nonlinear dynamic systems; for example, one of the 

main scenarios of chaos in a coupled oscillator system is the so-called Ruel-Tacens scenario. But in 

real, especially very complex devices and systems, chaotic dynamics take on much more complex, 

partially or not fully understood forms (c.g., [1-14]). If the studied system is more complicated then 

the greater the equations is necessary for its adequate description. The examples of some systems 

described by a small amount of differential equations, are known nevertheless, these systems exhibit a 
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complicated behaviour. Probably the best-known examples of such systems are the Lorenz system, 

the Sinai billiard, etc. At present time there are developed and implemented a variety of methods, in 

particular, the nonlinear spectral and trend analysis, the Markov chains analysis, wavelet and 

multifractal analysis, the formalism of the matrix memory and the method of evolutionary stochastic 

propagators etc. In a series of papers [15-30] we have attempted to apply some of these methods in a 

variety of the physical, geophysical, hydrodynamic problems. In connection with this, there is an 

extremely important task on development of new, more effective approaches to the nonlinear 

modelling and prediction of chaotic processes in the complex dynamical systems.  

 In this work we present an advanced computational approach to analysis, modelling,  forecasting 

the temporal evolutionary dynamics of  the complex dynamical systems. The standard  nonlinear 

modeling of chaotic processes in these systems can be based on the concept of compact geometric 

attractor with using the non-linear analysis and chaos theory methods such as the qualitative theory of 

differential equations, multi-fractal formalism, wavelet analysis, mutual information approach, 

correlation integral analysis, false nearest neighbour algorithm, Lyapunov exponent’s analysis, 

surrogate data method, stochastic propagators method, memory and Green’s functions approach. We 

elaborate an advanced approach to analyze and to predict the nonlinear dynamics of chaotic systems 

based on the concept of geometric attractors, chaos theory methods and the neural network simulation 

algorithms. All calculations are performed with using “Geomath”, “Superatom” and “Quantum 

Chaos” computational codes [11-14, 31-45]. 

2. New concepts and algorithms in theory of analysis and forecasting dynamics of 

chaotic processes 

The basic idea of the construction of the combined chaos-geometric and neural networks modelling 

approach to prediction of nonlinear processes in chaotic systems was developed in Refs. [13,14] and 

resulted in the use of the traditional concept of a compact geometric attractor in which evolves the 

measurement data, plus the implementation of neural network algorithms. The existing so far in the 

theory of chaos prediction models are based on the concept of an attractor, and are described in a 

number of papers (e.g. [1-10]). The meaning of the concept is in fact a study of the evolution of the 

attractor in the phase space of the system and, in a sense, modelling ("guessing") time-variable 

evolution.. From the mathematical viewpoint in the phase space of the system an orbit continuously 

rolled on itself due to the action of dissipative forces and the nonlinear part of the dynamics, so it is 

possible to stay in the neighborhood of any point of the orbit y (n) other points of the orbit yr (n), r = 

1, 2, ..., NB, which come in the neighborhood y (n) in a completely different times than n. Here one try 

to build different types of interpolation functions that take into account all the neighborhoods of the 

phase space and at the same time explain how the neighborhood evolve from y (n) to a whole family 
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of points about y (n+1). Use of the information about the phase space in the simulation of the 

evolution of some nonlinear chaotic process in time can be regarded as a fundamental element in the 

simulation of random processes. After restoration of the phase space the block of calculating 

topological (different fractal dimensions, correlation) and dynamic (the local and global Lyapunov’s 

dimensions) invariants is further realized. The latter are very useful in considering the physics of the 

process and, in addition, determine the limited predictability of the chaotic motion of the physical 

system. Using only topological or only dynamic invariants to characterize an attractor is unlikely to 

give a "complete" set of invariants, so they must be used together. Since the Lyapunov’s dimensions 

are defined as asymptotic mean velocities, they are independent of the initial conditions and the 

choice of trajectory, so they are considered as invariant measures of the attractor. The calculation of 

the Lyapunov’s dimension spectrum is usually performed on the basis of the Jacobian of reflection 

and the multiplicative ergodic theorem. Calculating the Lyapunov’s dimensions, Kolmogorov entropy 

and Kaplan and York dimensions are further fulfilled. 

     Further we propose to generalize a description and modelling the nonlinear processes in dynamics 

of chaotic systems in terms of the modern theory of neural networks and neuroinformatics (c.g.,  

[11]). The key idea is in imitating the temporal evolution of a complex system as the evolution of a 

neural network with the corresponding elements of the self-study, self- adaptation, etc. Considering 

the neural network (with a certain number of neurons, as usual, we can introduce the operators Sij 

synaptic neuron to neuron ui uj, while the corresponding synaptic matrix is reduced to a numerical 

matrix strength of synaptic connections: W = | | wij | |. The operator is described by the standard 

activation neuro-equation determining the evolution of a neural network in time: 





N

j

ijiji swsigns
1

' ),(                                                                                                               (1) 

where 1<i<N.  

     From the viewpoint of a chaotic dynamical system theory, the state of the neuron (the chaos-

geometric interpretation of the forces of synaptic interactions, etc.) can be represented by currents in 

the phase space of the system and its the topological structure is obviously determined by the number 

and position of attractors. To determine the asymptotic behaviour of the system it becomes crucial 

information aspect of the problem, namely, the fact of being the initial state to the basin of attraction 

of a particular attractor. Modelling each physical attractor by a record in memory, the process of the 

evolution of neural network, transition from the initial state to the (following) the final state is a 

model for the reconstruction of the full record of distorted information, or an associative model of 

pattern recognition is implemented.  The domain of attraction of attractors are separated by  

separatrices or certain surfaces in the phase space. Their structure, of course, is quite complex, but 
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mimics the chaotic properties of the studied object. Then, as usual, the next step is a natural 

construction parameterized nonlinear function F (x, a), which transforms:   

 y(n)   y(n + 1) = F(y(n), a),                                                                                                        (2) 

and then to use the different ( including neural network) criteria for determining the parameters a (see 

below). The easiest way to implement this program is in considering the original local neighborhood, 

enter the model(s) of the process occurring in the neighborhood, at the neighborhood and by 

combining together these local models, designing on a global nonlinear model. The latter describes 

most of the structure of the attractor.   

As shown Schreiber [3], the most common form of the local model is very simple : 
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where n - the time period and the coefficients )(k

ja  may be determined by a least-squares procedure, 

involving only points s(k) within a small neighbourhood around the reference point. Thus, the 

coefficients will vary throughout phase space. The fit procedure amounts to solving (dA + 1) linear 

equations for the (dA + 1) unknowns. The measure of the fitting  the curve to the data, which is 

determined by the condition of exactly how y(k + 1)  coincides with F(y(k), a), is a local deterministic 

error: D(k) = y(k + 1)F(y(k), a). If the map F(y, a) is local, then for each adjacent point to y (k 

y(r)(k) (r = 1, 2, …, NB)  one could write )(r
D (k) = y(r, k + 1)F(y(r)(k), a), where y(r, k + 1) is the 

point in the phase space to which y (r, k) evolves. To measure the quality of the curve to the data, the 

local cost function looks like (in fact, the cost function for the error):  
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and the parameters determined by minimizing W(, k) will depend on a. Further, formally, it is 

possible to start a neural network algorithm, in particular, in the aspect of training an equivalent 

neural network system with reconstruction and temporary prediction of the state of the neurosystem 

(accordingly, adjustment of )(n
ja ). The details of computing procedure are presented in Refs. [11,14]. 

3. Some illustrative numerical examples and conclusions 

As illustration below we present two examples of using a pure geometric attractor prediction 

model and the combined chaos-geometric and neural networks approach to forecasting the 

temporal atmospheric pollutants (NO2) dynamics. The meaning of the latter is precisely the 
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application of neural network to simulate the evolution of the attractor in phase space, and 

training most neural network to predict (or rather, correct) the necessary coefficients of the 

parametric form of functional display. All details regarding the use of the neural network 

algorithm are described in the Refs. [5,10,11,14]. Here we only note that we used the time 

series of multiyear hourly concentrations (one year total of 20x8760 data points) observed at 

a few measurement sites of the Gdansk (Poland). The temporal series of concentrations (in 

µg/m3) of the NO2 are presented in figure 1 (for two sites). These data are presented by the 

Agency of Regional Air Quality Monitoring (ARMAAG), (see [10,11,46] and Refs. therein). 

 

 

Figure 1.   The temporal series of the NO2 concentration (in µg/m3): (a) site 1; (b) – site 2(see text). 

 

In the Table 1 we present our advanced data on the correlation dimension (d2), embedding 

dimension (dE), Kaplan-Yorke dimension (dL), two Lyapunov’s exponents (1,2), the Kaplan-Yorke 

dimension (dL), and average limit of predictability (Prmax, hours) for time series of the NO2 at sites of 

the Gdansk (2003). The data are received within the standard chaos-geometric approach (c.g., [1-15]). 

Table 1. The correlation dimension (d2), embedding dimension (dE), first two Lyapunov’s exponents, 

E(1,2),  Kaplan-Yorke dimension (dL), and average limit of predictability (Prmax, hours) for time 

series of NO2 at the Gdansk sites (during 2003) 

Site  d2 dE 1 2 dL Prmax K 

1 9 5.31 6  0.0185 0.0060 4.11 41 0.68 

2 8 5.31 6  0.0188 0.0052 3.85  42 0.66 
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 The concrete example of computational prediction of the atmospheric pollutant concentration  

temporal dynamics is presented in Figure 1. In this Figure the empirical (solid line 1) and theoretical  

forecasting (solid line 2 -by the Schreiber-type algorithm with neural networks block and dotted line 3 

- by the standard Schreiber-type algorithm) NO2 concentration lines (for 102 points) are listed.  

 

Figure 2.   The empirical (solid line 1) and forecasting (solid line 2 and dotted line 3) NO2 

concentration lines for the last one hundred points (see text). 

 

In whole an analysis shows that almost all the peaks on the actual curve repeated on the 

prognostic difference between the forecast and the actual data in the event of high concentrations of 

the ingredients can be quite large. The prediction line 2 looks more exact in comparison with actual 

data.  More detailed analysis of this fact will be presented in another paper. Here we only note that the 

results of our computational forecasting can be considered quite satisfactory. 
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Nonlinear dynamics of NEMS resonators in temperature field 

 
 

Anton Krysko, Jan Awrejcewicz, Ilya Kutepov, Vadim Krysko 

Abstract: We investigate the nonlinear dynamics of a distributed mechanical system 

in the form of a flexible curved microbeam described by the kinematic model of the 

first order approximation (Bernoulli-Euler) in a steady temperature field. Geometric 

nonlinearity has been introduced according to Kármán’s model. The impact of the 

temperature field is considered according to Duhamel-Neumann. Equations of motion 

for the flexible Bernoulli-Euler beams are derived from the Hamilton principle, 

considering the couple stress theory of elasticity. The obtained system of partial 

differential equations, with regard to displacements motions is reduced to the Cauchy 

problem by the second-order finite-difference method, which is solved by Runge-

Kutta methods of different order. The temperature field is defined from the solution of 

the steady heat equation using the finite-difference method. Our study is dedicated to 

the reliable definition of the oscillatory mode of a system using a variety of signal 

analysis methods, such as Fourier power spectrum, wavelet analysis, analysis of the 

phase portrait, and Poincaré maps. Analysis of the longitudinal motions allowed 

establishing a complex oscillatory mode with a harmonic buckling signal. To define 

the chaotic state, a spectrum of Lyapunov exponents was investigated. In order to 

check the reliability of the obtained sign of the Lyapunov exponent a few different 

methods have been used. As a result of the study of nonlinear dynamics of NEMS 

resonators under the influence of the temperature field, depending on the control 

parameters, reliable information has been obtained about the mode of oscillation of 

the system and maps of oscillatory modes have been constructed. The buckling shapes 

of structures are also investigated. 

1. Introduction 

The study of nonlinear dynamic processes in micro- and nano-mechanical devices has been a subject 

of numerous investigations [1–10]. Wang et al. [11] have studied a theoretical analysis and 

experimental results of the dynamic behavior of the bi-stable resonator of the micro-electro-

mechanical system (MEMS) and have shown the existence of a strange attractor and chaos. De 

Martini [12], Haghighi and Markazi [13], Aghababa [14] used the modified Mathieu equation to 

simulate the governing equation of motion of the MEMS and used the Melnikov method, describing 

the region of parameter space where chaos exists. They showed the presence of chaotic behavior in 

MEMS. 
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The works [15–16] are dedicated to the study of nonlinear dynamic effects in micromechanical 

beams, considering temperature effects and initial irregularities. The authors found that the presence 

of temperature effects leads to loss of stability and investigated resonance phenomena in the system 

after the loss of stability. The temperature field was taken as a constant value at each point of the 

beam. 

Ebrahimi and Salari [17] developed a consistent non-local microbeam model to analyze 

longitudinal and free oscillations of functionally gradient nanobeams, within which thermal effects 

were studied. The authors considered the effect of the temperature field in the linear and nonlinear 

formulation by obtaining a solution from the one-dimensional heat conduction equation. Reactions to 

buckling and free vibrations of microbeams with increasing temperature were studied by Nateghi and 

Salamat-talab [18] using a modified couple stress theory of elasticity. Multiple results showed that the 

effect of temperature becomes more significant at higher ratios of the thickness of the beam to the 

parameter of the scale length of the material. In the articles [19-23], application of the finite-element 

method (FEM), the finite-difference method (FDM) to the problems of modeling vibratory 

gyroscopes was considered. 

When studying the nonlinear dynamics of mechanical structures, it is important to study chaos 

and stability of the system, which stands for the scope of the article [24], in which one-dimensional 

mathematical models of beams, panels of infinite length and shells are constructed considering 

geometric, and constructive kinematic nonlinearity, and various combinations of these nonlinearities. 

Many problems were solved by various methods: finite differences, Bubnov-Galerkin, Rayleigh-Ritz, 

etc. Similar to the phenomenon of the universality of the emergence of chaos in simple systems, the 

existence of a certain universality of the transition to turbulence in the spatial problems of the theory 

of one-dimensional mechanical structures is shown. However, the book does not consider size-

dependent parameters and influence of temperature fields. 

Haghighi and Markazi [25] investigated chaotic dynamics of a micromechanical resonator 

influenced by electrostatic forces. The authors analyzed the phase portrait, Poincaré sections and 

bifurcation diagrams confirming the analytical forecast and showing the influence of the amplitude of 

external force on the transition of the system into chaos. Ghayesh and Farokhi [26] analyzed complex 

dynamic behavior of the system using the construction of fast Fourier transforms (FFT), Poincaré 

sections, and phase plane diagrams. According to Gulick’s [27] definition of chaos, the latter 

significantly depends on the initial conditions and the sign of the spectrum of the Lyapunov 

exponents. These initial conditions include temperature effects, which lead the system to a 

fundamentally new oscillation type, especially at the nano-level. This inquiry has not been previously 

considered. A review [28] presents a number of papers dedicated to MEMS, however, the question of 
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studying the chaotic dynamics and stability of curved beam elements of MEMS under the influence of 

an external load and a temperature field was not considered. 

The scope of application of beam MEMS elements is rather wide. These structures are desired 

for various applications, such as microdrives, microswitches, biosensors, vibration sensors and 

biomechanical devices. For this reason, the study of sustainability [29] and dynamic behavior [30] of 

such structures is of particular interest. A relatively new element of MEMS is the arched beam 

structures, which belong to bistable structures. Bistable structures are required for various 

applications such as micro-generators, filters, relays, switches, valves, actuators, memory cells and 

logic. Ramini et al. [31] demonstrated experimentally an efficient approach to excite primary and 

parametric (up to the 4th) resonance of MEMS arch resonators with large vibrational amplitudes. The 

authors have shown the possibility of controlling primary and/or parametric resonances, which can be 

used in various applications, such as resonator logic and storage devices. Hafiz et al. [32] 

demonstrated the switching between the two vibrational states with the change of the direct current 

(DC) bias voltage, thereby proving the memory concept. Experimental confirmation of the need to 

take into account the initial errors of the element curvature was demonstrated by Ramini et al. [33]. 

The authors noted that if the intentional curvature is not quite as expected after manufacturing, the 

thermal setting can adjust the curvature as needed. Thus, the study of nonlinear dynamics of 

curvilinear microbeams in the temperature range is a new and actual task. 

Analysis of publications within our subject has revealed that studies of the thermo-mechanical 

dynamic behavior of microstructures are not sufficiently elaborated. The present study proposes a 

solution to the following new problem of nonlinear dynamics of micromechanical structures: as the 

temperature increases, the curved microbeam buckles (deviates to the new state), acquiring a different 

initial irregularity. The temperature field is proposed to solve the two-dimensional heat equation. The 

article validates the “truth” of the oscillatory mode definition by applying various methods of the 

qualitative theory of differential equations and methods for defining the Lyapunov exponents. We 

have included influence of longitudinal motions to study the nature of oscillations. In addition to the 

critical states, scenarios of transition from periodic to chaotic oscillations are analyzed. 

2. Mathematical model 

The beam (Fig. 1) is a curved body, having length 𝐿, and height ℎ; beam section is rectangular with 

width 𝑏 and area 𝐴, and curvature 𝑘𝑥 = 1 𝑅𝑥⁄ . Beam with the boundary Г, occupies the region       

Ω = {0 < 𝑥 < 𝐿; −ℎ 2⁄ < 𝑧 < ℎ 2⁄ }.  
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Figure 1.   Investigated beam 

The mathematical model of the beam is based on the following hypotheses: any cross-section 

normal to the center line before deformation, remains straight and normal to the center line after the 

deformation and the section height doesn’t change; Kármán’s form of nonlinear deformation-motion 

ratio is used;  flatness condition is assumed according to Vlasov [34]; beam material is elastic and 

isotropic and is subjected to Duhamel-Neumann law; thermal expansion is temperature-independent; 

physical properties of the material are temperature-independent; there is no temperature field 

distribution restriction across the thickness of the beam; the propagation velocity of the longitudinal 

wave in the beam is considered. the motion of continuum points depends on their rigid rotation 

(Cosserat elasticity). 

The equations of motion of the beam, the boundary and initial conditions are obtained from the 

Hamilton principle. After the transformations, we obtain the resolving motion equations as follows: 

𝜕2𝑢

𝜕𝑥2
− 𝑘𝑥

𝜕𝑤

𝜕𝑥
+ 𝐿3(𝑤, 𝑤) −

𝜕𝑁𝑡

𝜕𝑥
−

𝜕2 𝑢

𝜕𝑡2
= 0

1

𝜆2
{(−

1

12
+

𝑙2

4
)

𝜕4𝑤

𝜕𝑥4
+ 𝑘𝑥 [

𝜕𝑢

𝜕𝑥
− 𝑘𝑥𝑤 −

1

2
(

𝜕𝑤

𝜕𝑥
)

2

− 𝑤
𝜕2𝑤

𝜕𝑥2
] + 𝐿1(𝑢, 𝑤) + 𝐿2(𝑤, 𝑤)} −

𝜕2 𝑀𝑡

𝜕𝑥2
−

−𝑘𝑥 𝑁𝑡 −
𝜕

𝜕𝑥
{𝑁𝑡

𝜕𝑤

𝜕𝑥
} + 𝑞 −

𝜕2𝑤

𝜕𝑡2
− 𝜀

𝜕𝑤

𝜕𝑡
= 0,

 (3) 

where: 𝐿1(𝑢, 𝑤) =
𝜕2 𝑢

𝜕𝑥2

𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑥

𝜕2 𝑤

𝜕𝑥2
, 𝐿2(𝑤, 𝑤) =

3

2
(

𝜕𝑤

𝜕𝑥
)

2 𝜕2𝑤

𝜕𝑥2
, and 𝐿3(𝑤, 𝑤) =

𝜕𝑤

𝜕𝑥

𝜕2 𝑤

𝜕𝑥2
  are nonlinear 

operators; 𝑤(𝑥, 𝑡)w(x, t) express element buckling; 𝜖 is dissipation factor; ℎ is the beam height; 𝐿 is 

beam length; 𝑢(𝑥, 𝑡)u(x, t) is longitudinal shift of the element; 𝑀𝑥
𝑇  is temperature beam bending 

moment; 𝑁𝑥
𝑇 is temperature longitudinal force; 𝑡 is time; 𝜗 is volumetric weight of the material; 𝑔 is 

gravity acceleration; 𝜌 is density; 𝑞 is external load.  

In case with no temperature and assuming 𝑘𝑥 = 0, equation (3) is the same as obtained in 

reference [35].  

For the set of equations (3), the following non-dimensional parameters are introduced: 

�̅� =
𝑤

ℎ
,  �̅� =

𝑢𝐿

ℎ2
,  𝑥̅ =

𝑥

𝐿
, 𝑧̅ =

𝑧

ℎ
,  𝑞 = 𝑞

𝐿4

ℎ4𝐸
,  𝑐 = √

𝐸𝑔

𝜌
,  𝜀 ̅ =

𝜀𝐿

𝑐
, 𝑡 ̅ =

𝑡

𝜏
, 𝜏 =

𝐿

𝑐
, 𝜆 =

𝐿

ℎ
,    

𝛾 =
𝑙

ℎ
,   𝑘𝑥

̅̅ ̅ =
𝑘𝑥𝐿2

ℎ
, 𝑁𝑥

𝑇̅̅ ̅̅ =
𝑁𝑥

𝑇 𝐿2

𝐸ℎ3
, 𝑀𝑥

𝑇̅̅ ̅̅ =
𝑀𝑥

𝑇

𝐸ℎ2
,  �̅� = 𝛼𝑇.   (4) 
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In case when the external transverse load is dynamic, the expression for 𝑞 is written as 𝑞 =

𝑞0 sin(𝜔𝑝𝑡), where 𝑞0 is amplitude of the load and 𝜔𝑝 stands for its frequency. Temperature 

moments 𝑀𝑥
𝑇   and forces 𝑁𝑥

𝑇 in the beam motion equation set (3) are defined in the following way 

𝑁𝑥
𝑇 = ∫ 𝑇(𝑥, 𝑧)𝑑𝑧

1/2

−1/2 ;  𝑀𝑥
𝑇 = ∫ 𝑇(𝑥, 𝑧)𝑧𝑑𝑧

1/2

−1/2 . (5) 

As mentioned above, there is no restriction on the distribution of the temperature field, and the 

temperature fields are defined by solving the following heat problem: 

∇2𝑇(𝑥, 𝑧) =
𝜕2 𝑇(𝑥,𝑧)

𝜕𝑥2
+ 𝜆2 𝜕2 𝑇(𝑥,𝑧)

𝜕 𝑧2
= 0, (6) 

with the supplemented boundary conditions of the first/second kind  

𝑇(𝑥, 𝑧)|Г = 𝑔1(𝑥, 𝑧), (7) 

𝜕𝑇(𝑥,𝑧)

𝜕𝑛
|

Г
= 𝑔2(𝑥, 𝑧), (8) 

where 
𝜕

𝜕𝑛
 is differentiation along the outer normal to the boundary Г of the beam. 

The set of equations (3) should be combined with the boundary conditions equation 

corresponding to the way of fixing the beam ends: 

𝑤(0, 𝑡) = 𝑢(0, 𝑡) = 𝑤′𝑥 (0, 𝑡) = 0,  𝑤(1, 𝑡) = 𝑢(1, 𝑡) = 𝑤′𝑥 (1, 𝑡) = 0, (9) 

𝑤(0, 𝑡) = 𝑢(0, 𝑡) = 𝑀𝑥 (0, 𝑡) = 0, 𝑤(1, 𝑡) = 𝑢(1, 𝑡) = 𝑀𝑥 (1, 𝑡) = 0. (10) 

The following initial conditions are employed 

𝑤(𝑥, 0) = 𝑓1 (𝑥); �̇�(𝑥, 0) = 𝑓2(𝑥);  𝑢(𝑥, 0) = 𝑓3(𝑥); �̇�(𝑥, 0) = 𝑓4(𝑥). (11) 

Table 1. Boudary condition of the heat-transfer equations 

Kind Boundary Condition 

K
in

d
 1

 𝑇(𝑥, 𝑧) = 𝑔1(𝑥, 𝑧) 𝑧 = −1/2 0 < 𝑥 < 1 
𝑇(𝑥, 𝑧) = 0 𝑧 = 1/2 0 < 𝑥 < 1 

𝑇(𝑥, 𝑧) = 0 𝑥 = 1 −1/2 < 𝑧 < 1/2 

𝑇(𝑥, 𝑧) = 0 𝑥 = 0 −1/2 < 𝑧 < 1/2 

K
in

d
 2

 

𝑇(𝑥, 𝑧) = 𝑔1(𝑥, 𝑧) 𝑧 = −1/2 0 < 𝑥 < 1 

𝜕𝑇/𝜕𝑛 = 𝑔2(𝑥, 𝑧) 𝑧 = 1/2 0 < 𝑥 < 1 

𝑇(𝑥, 𝑧) = 0 𝑥 = 1 −1/2 < 𝑧 < 1/2 

𝑇(𝑥, 𝑧) = 0 𝑥 = 0 −1/2 < 𝑧 < 1/2 

 

The combination of temperature conditions (7) - (8) at the beam boundaries Г allows considering 

various cases of temperature exposure. In this article, we simulate a temperature field of the first type, 
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by the boundary conditions given in Table 1 (a graphic interpretation of the temperature field is also 

provided herein). The intensity of this temperature effect T varies within 0 ≤ 𝑇 ≤ 100°𝐶. 

Hereinafter, the temperature 𝑇 is expressed in dimensional form for steel and it is assumed that, in the 

investigated temperature range, physical characteristics of the material do not change. To go to the 

dimensional values of temperature, the following values are used : 𝐸 = 2.06 × 105 mPa, 𝛼 = 12.5 ×

10−6 1/deg, while temperature is 𝑇 = ∆𝑇 + 𝑇0, where 𝑇0 = 22℃, and ∆𝑇 is an increment of 𝑇(𝑥, 𝑧) 

to be defined from the heat conductivity equation (6). 

3. Results of numerical investigations 

In order to solve the resulting set of equations (3), we used the finite difference method (FDM) - see 

[36] for more details. 

The following parameters of system (3) are assumed to be fixed: frequency 𝜔𝑝 = 5, curvature 

𝑘𝑥 = 24, the intensity of thermal exposure 𝑔1 (𝑥, 𝑧) = 50, boundary conditions (9), initial conditions 

(11). The Figure 3 presents a buckling diagram in the beam center for the mentioned parameters. To 

investigate the state of the system, we analyzed the Fourier power spectra (Tables 4,5,6). For 

additional analysis of the state of the system, Lyapunov’s criterion was applied. Using the general 

formulation of the problem of stability of the motion of a system according to Lyapunov, the state of 

the system is considered unstable if the largest Lyapunov exponent  (LLE) is positive. 

Let us consider the scenario of transition to a chaotic state with 𝛾 = 0 (Table 2). The harmonic 

mode is observed in the range of load variations from 𝑞0 = 0 to 𝑞0 = 14000  (𝐿𝐿𝐸 = −0.00389 ), 

afterwards, with the load of 𝑞0 = 14130 an independent frequency 𝜔1 (𝐿𝐿𝐸 = −0.00336) appears. 

With a further load increase up to 𝑞0 = 14500, 𝜔2 frequency and two dependent frequencies 𝜔4 =

𝜔𝑝 − 𝜔1 and 𝜔5 = 𝜔𝑝 − 𝜔2 (𝐿𝑒 = −0.01279) appear. When 𝑞0 = 21000 the third frequency 𝜔3 

and three dependent frequencies 𝜔4 = 𝜔𝑝 − 𝜔1, 𝜔5 = 𝜔𝑝 − 𝜔2 and 𝜔6 = 𝜔𝑝 − 𝜔3 appear in the 

power spectrum. The detected dependence is typical for Ruelle-Takens scenario. In the load change 

interval from 𝑞0 = 31000 to 𝑞0 = 33000 , there is a periodicity window, however, the Lyapunov 

exponent has a positive sign (𝐿𝐿𝐸 = 0.00552), and hence, the beam oscillation is considered as 

chaotic. Further, for 𝑞0 = 33000 , six frequencies 𝜔1−6 having the similar ratio are observed. When 

𝑞0 = 34000 , a new frequency 𝜔7 = 𝜔𝑝/2 appears in the frequency spectrum. In further range, from 

𝑞0 = 34500  to 𝑞0 = 36000 , only such frequencies as 𝜔𝑝 and 𝜔7 (𝐿𝐿𝐸 = 0.00796) are exhibited. Up 

to the 𝑞0 = 36440 value, frequency count increases through the period doubling, and the latter 

phenomenon is characteristic for the Feigenbaum scenario. Further increase of the load up to 𝑞0 

makes frequency 𝜔7 to disappear, the frequency count increases according to Ruelle-Takens. When 

𝑞0 ≥ 37000 , many frequencies supplement occurrence of the chaotic mode (𝐿𝐿𝐸 = 0.00842). Thus, 

282



the transition from periodic to chaotic state is carried out according to the modified Ruelle-Takens 

scenario throughout a series of appearances of linearly dependent frequencies. 

Table 2. Power spectra of the beams dynamics for 𝛾 = 0 

   

   

   

Table 3. Power spectra of the beam dynamics for 𝛾 = 0.3 
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Let us consider now the scenario of transition into a chaotic state with 𝛾 = 0.3 (Table 3). With 

the load of 𝑞0 = 20000  the system is in the harmonic mode, and oscillations occur at a frequency 𝜔𝑝 

(𝐿𝐿𝐸 = −0.01370 ). With 𝑞0 = 21000 , a second frequency 𝜔1 (𝐿𝐿𝐸 = −0.01248 ) appears. Further 

increase in load leads to the appearance of frequency 𝜔2 and two dependent frequencies: 𝜔4 = 𝜔𝑝 −

𝜔1 and 𝜔5 = 𝜔𝑝 − 𝜔2. Within the range from 𝑞0 = 24500 to 𝑞0 = 35500, the system is in a 

harmonic state according to the Fourier power spectrum. Further, frequencies appear in the same 

order. With 𝑞0 = 36260  the power of these frequencies increases (𝐿𝐿𝐸 = 0.13601), and with 𝑞0 =

40500  the spectrum shows multiple frequencies (𝐿𝐿𝐸 = 0.00743). Further increase of the load to 

𝑞0 = 55410 .12 causes more frequencies to appear, implying chaotic oscillatory mode (𝐿𝐿𝐸 =

0.00932). The transition from periodic to chaotic dynamics follows occurs the Ruelle-Takens 

scenario. 

Let us consider a scenario of transition into a chaotic state for 𝛾 = 0.5 (Table 4). In the range 

from 𝑞0 = 0 to 𝑞0 = 60000 , according to the Fourier power spectrum, the system exhibits periodic 

oscillations. The sign of the Lyapunov exponent changes from negative to positive when the load 

value is 𝑞0 = 35000 . 

Table 4. Power spectra of the beam dynamics for 𝛾 = 0.5 

   

In the periodicity windows, with 𝑞0 = 33000 for 𝛾 = 0,  𝑞0 = 35500  for 𝛾 = 0.3 and 𝑞0 =

35000  for 𝛾 = 0.5 we observed a harmonic signal 𝑤(0.5, 𝑡) according to the Fourier power spectrum 

and the non-harmonic state according to analysis of the largest Lyapunov exponent (LLE). Let us 

analyze the signal of the longitudinal motion in the quarter of the span of the beam 𝑢(0.25, 𝑡), Fourier 

power spectrum is computed for specified values of 𝑞0 and 𝛾. As it can be seen from the figures in the 

Table 5, the signals for 𝑢(0.25, 𝑡) are not harmonic, since frequencies on the power spectrum and 

wavelet appear, as well as complex phase trajectories are shown.  

The shape of the beam buckling was investigated with the following system parameters: 

temperature field of kind 2 (Table 1), 𝑔1 (𝑥, 𝑧) = 50, 𝑔1(𝑥, 𝑧) = −50, and 𝑔1(𝑥, 𝑧) = 0, 𝑘𝑥 = 24, 

𝑞0 = 30 × 103 , 𝜔𝑝 = 5, with boundary conditions (10) and initial conditions (11). Figure 2 shows 

the beam deflection 𝑤(𝑥, 𝑡) for 𝛾 = 0, 𝛾 = 0.3 and 𝛾 = 0.5. It is found that symmetric buckling 
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shapes are present with a value of the scale parameter 𝛾 = 0, while they are asymmetric with 𝛾 = 0.3 

and 𝛾 = 0.5. 

Table 5. Time histories and frequency spectra of the beam dynamics of different 𝛾. 

𝛾 = 0 𝛾 = 0.3 𝛾 = 0.5 

   

   

 

a 

 

b

 

c

 

Figure 2.   Snapshots of the beam buckling for different 𝛾: a) 𝑔1(𝑥, 𝑧) = 50, b) 𝑔1(𝑥, 𝑧) = 0,              

c) 𝑔1(𝑥, 𝑧) = −50 

In order to study the state of the system in the range of control parameter values 𝑞0 ∈

[0; 60 × 103 ] and 𝜔𝑝 ∈ [0; 10], a software complex was developed to study the modes of oscillations 

of a nanobeam based on a heuristic analysis of the Fourier power spectrum. The result of its operation 

is an image representing a map of oscillatory modes depending on the values of the frequency 𝜔𝑝 and 

external load amplitude 𝑞0. Each map has a resolution of 200200 pixels, that corresponds to 4104  

solved and analyzed problems for each parameter. 
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a 

 

b 

 

c 

 
Figure 3.   Oscillatory beam mode maps for  𝑘𝑥 = 24 and different 𝛾: a) 𝛾 = 0, b) 𝛾 = 0.3, c) 𝛾 = 0.5 

For 𝑘𝑥 = 24 (Figure 3), there is an increase of the zone of periodic oscillations in the medium 

frequency range. Increasing 𝛾 parameter implies an increase of the oscillation zone at dependent 

frequencies in the region of medium and high frequencies. For 𝑘𝑥 = 24, the map with the maximum 

harmonic oscillation zone is obtained for 𝛾 = 0.3. It was revealed that with increasing  𝛾, chaotic 

zone decreases for  𝑘𝑥 = 24 from 12.27% down to 4.74%. Increasing the curvature 𝑘𝑥 from 12 to 36 

causes the increase of the chaos zone in the investigated ranges of control parameters. Zone of 

harmonic oscillations at 𝑘𝑥 = 24 increases from 64.14% to 67.38%. 

4. Concluding remarks 

Consideration of the scale parameter length causes a change in the scenario of the system transfer into 

chaotic state. Reliable estimation of system state requires the introduction of an additional method, 

such as Lyapunov exponent analysis. Increasing the value of the scale parameter of length contributes 

to the preservation of the harmonic mode across a longer interval of external load. 

All the motion components shall be analyzed to define the system state. For 𝛾 = 0 asymmetric 

buckling shape is present at the subcritical load, while for  𝛾 = 0.3 and  𝛾 = 0.5 it is detected at the 

supercritical load. 
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Dimension reduction method in nonlinear equations of mathematical physics 

(MEMS/NEMS problems) 

 

 

Vadim A. Krysko-jr, Jan Awrejcewicz, Maxim V. Zhigalov, Vadim. A. Krysko 

Abstract  To simulate the static and dynamic behavior of nanoplates, higher-order 

continuum theories have been developed: modified couple stress theory of elasticity, 

nonlocal theory of elasticity, gradient theory of elasticity, and surface elasticity theory. 

It should be noted that when using these theories, the equations describing the behavior 

of the plates have a high order, and the desired functions depend on two or more 

variables. In this regard, there is a need to create methods that can reduce the dimension 

of the desired functions, i.e. reduce the solution of the partial differential equation to 

the solution of an ordinary differential equation. The paper provides an overview of 

methods for reducing partial differential equations to ordinary differential equations 

based on the Kantorovich-Vlasov method. One such method is the variational iteration 

method. MVI was widely used by many researchers in solving problems of the theory 

of shells and plates. The authors of this work, since the 70s of the last century, has been 

used this method to solve geometrically, physically nonlinear and contact problems of 

the theory of plates and shells for full-size systems. In a number of their works, the 

authors provided a justification of this method for a class of equations described by 

positive definite operators. In the presented paper, MVI is used in plate nanomechanics 

problems and a proof of MVI convergence for the problems under consideration is 

given. A numerical example is also added. 

 

1. Introduction 

A number of computational methods aimed to solve the most diverse problems of mathematical 

physics and technology are based on the ideas of Russian scientists I.G. Bubnov and B.G. Galerkin. To 

date, the Bubnov-Galerkin methods have been applied in solving numerous problems of structural 

mechanics, structural dynamics, hydromechanics, hydromechanical stability theory, magneto 

hydrodynamics, heat and mass transfer theory, acoustics, microwave propagation theory, neuron 

transfer theory, etc. Using the Bubnov - Galerkin approach, ordinary differential equations, partial 

differential equations, and integral equations were studied. The application of the Bubnov-Galerkin 

method is connected, among other things, with the search for stationary points of some functional, 

which is a certain integral of the differential expressions generated by the original problem, which 

makes it possible to decrease the order of differential operators in the integrand. 
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The origin of the Bubnov-Galerkin method is usually associated with the name of the outstanding 

Russian scientist Ivan G. Bubnov (1872 - 1919). Together with A.N. Krylov, he was the creator of the 

Russian Navy. S.P. Timoshenko in a paper published in 1907 [1] using the example of a central 

compressed rod considered the stability problem based on minimizing the potential energy of the rod. 

This work was sent for feedback to professors N.A. Belelyubsky, S.I. Beletsky, I.G. Bubnov, V.L. 

Kirpichev and G.V. Kolosov, which were published in 1913 in the "Collection of the Institute of 

Railway Engineers" [2]. This date is considered the date of the official birth of the Bubnov method, as 

a general method for solving differential equations. I.G. Bubnov gave two options for solving the 

problem of reducing partial differential equations (or their systems), i.e. either to algebraic equations 

(or their systems), or to an ordinary differential equation (or their systems). 

In Western literature, this method is associated with the B.G. Galerkin’s article [3] published in 

1915. The article was devoted to the elastic equilibrium of rods and thin plates. But the above analysis 

of publications devoted to this method suggests that I.G. Bubnov as a true genius proposed an idea that 

occurred to him when he was working on a review of  S.P. Timoshenko paper. In this review, he already 

established the identity between the energy method (called the Rayleigh – Ritz – Timoshenko method) 

and his approach (called the Bubnov – Galerkin method). I.G. Bubnov subsequently used this approach 

extremely little. This method is well known in the scientific literature due to the works of B.G. Galerkin 

and his colleagues. 

Applying the Bubnov – Galerkin methodology in one of the variables, if the desired function 

depends on two variables, we arrive at the solution of the ordinary differential equation in the other 

variable, accordingly, to the Kantorovich – Vlasov method [4, 5]. Such a procedure linked these two 

distinguished names, and the method 

they developed became known as the 

Kantorovich-Vlasov method 

(MKV). This method, by its 

ideology, couples the Fourier method 

(MF) based on the separation of 

variables, and the Bubnov-Galerkin 

method (MBG), which gave impetus 

to a number of modifications (Fig. 1). 

Modifications are based on the 

Weindiner method (MV), the 

variational iteration method (MVI), 

the Agranovsky – Baglai – Smirnov 

method (MABS), and their 

Fig. 1. Interrelation of Bubnov-Galerkin method,  

Fourier method, the method of Kantorovich-Vlasov  

and their modifications 

290



combinations are described in a number of papers by the authors of this work [6–8]. These articles 

provide evidence of convergence and a comparative analysis of the results of these methods. 

One of the methods included in the scheme is the variational iterations method (MVI), which saves 

the researcher from the need to build a system of approximating functions in the procedure while 

employing the Bubnov-Galerkin method. The functions initially specified in an arbitrary way 

(obviously satisfying certain well-known smoothness conditions) are refined in the process of 

calculations by MVI based on the solutions of the original system of differential equations. 

This method was first proposed and applied in 1933 by T.E. Shunk [9] for calculating the bending 

of cylindrical panels. However, the work went unnoticed, and the method was rediscovered again in 

1964 by E.E. Zhukov [10], who applied it in calculating thin rectangular plates. Later MVI was widely 

used by many researchers in solving problems of the theory of shells and plates (a bibliography on this 

subject is presented in [11]). The justification of this method for the class of equations described by 

positive definite operators is given in reference [12]. 

It should be noted the discrepancy in the names. In the Western scientific literature, the variational 

iterations method is called the extended Kantorovich method thanks to the work of A.D. Kerr [13-15] 

published 38 years after T.E. Shunk and 5 years after E.E. Zhukov. Thus, the method was reopened. 

The variational iterations method (extended Kantorovich method) over the past half century has 

been used to solve problems of statics, stability, determination of natural frequencies and dynamics. A 

fairly complete review of Western publications in this area can be found in [16, 17]. In the USSR and 

Russia, this method was mainly used in the works of V.A.Krysko and his students. For the first time, 

this scientific group used the approach in 1968 to study the bending of flexible orthotropic plates [18], 

and it got its name from the variational iterations method in 1970 [19], devoted to the numerical study 

of flexible plates and comparison with experimental data. Later, scientists of this group used the 

variational iterations method to solve geometrically and physically nonlinear problems in the theory of 

shells and plates [20,21], in problems of designing optimal plates [22–24], and on other topics [25–27]. 

In this paper, the variational iterations method is extended to the study of the static bending of 

Kirchhoff-Love nano-shells taking into account Kármán geometric nonlinearity and based on a 

modified couple stress theory. 

 

2. Mathematical background 

Let us consider a shallow rectangular shell with dimensions , ,a b h  along axes 1 2 3, ,x x x , respectively. 

For a spherical shell, the internal radius, expressed in the shell thickness, can be easily determined with 

a formula 
1 8f k , where 1k  stands for the shell curvature parameter [28]. 
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The origin of the coordinate system is located in the upper left corner of the shell on its middle 

surface. The axes 1 2,x x  are parallel to the shell sides and the axis 3x  is directed towards the shell 

curvature (Fig. 2). In the given coordinate system, the shell is treated as a 3D region   defined by 

        1 2 3 1 2 3,x ,x  /  ,x ,x 0, 0,  2, 2x x a b h h      . The shell middle surface 3 0x   is defined 

as       1 2 1 2, / ,x 0, 0,x x x a b    .  

 

  

 

 

 

 

Fig.1. Scheme of the studied shell. 

 

We denote shell displacements along the axes 
1 2 3, ,x x x  by 1 2 3, ,u u u , respectively, where 

3 3 1 2)( , )u u x x . All components of the displacement are assumed to be essentially smaller than the 

characteristic shell dimension; deformations in the shell middle surface 11 22 12, ,    are assumed to be 

negligible with respect to a unit (however, it does not mean that the relationship between displacements 

and deformations must be linear). Owing to the Kirchhoff-Love hypothesis, the following relations 

between the deformations of the middle surface 
ij  and an arbitrary surface ije  are valid [29]  

3ii ii iie x   , 1,2i  ,   12 12 3 12e x   , (1) 
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(2) 

and 1 2,k k  denote the shell curvatures. 

In the modified coupled stress theory [30], the deformation energy 
1U  of an elastic body 

occupying the space  , taking into account small deformation, reads 

 1

1

2
ij ij ij ijU m dv  



  , (3) 

292



where:
ij   deformation tensor components, 

ij   components of an asymmetric tensor of the 

curvature gradient. The components are defined as follows 

 , , , ,

1
,

2
ij i j j i m i m ju u u u        , ,

1 1
,

2 2
ij i j j i i i

rot u      . (4) 

Here 
iu  stands for the components of the displacement vectors u, θ stands for an infinitely small 

rotation vector with elements 
i  and 

ij  is the Kronecker symbol. In the case of an isotropic elastic 

material, stresses generated by kinematic parameters occurred in (4) are yielded by the following state 

equations [30]:  

22 , 2ij mm ij ij ij ijm l        , (5) 

where , ,ij ij ijm   и 
ij  denote components of the classical tensor of stresses σ , deformation tensor ,ε  

deviator part of the symmetric tensor of the higher order m  and a symmetric part of the curvature tensor 

χ , respectively; ,
(1 )(1 2 ) 2(1 )

E E
 

  
 

  
  are the Lamè parameters; 

   , , , , , , ,i iE x y z e x y z e  is Young’s modulus and Poisson’s coefficient, respectively,  , , , ix y z e  - 

density of the beam material; ie  - the strength of the deformation.  

In this model, in addition to the classical Lamè parameters, the additional scale parameter of the 

length l is employed [30]. This is a simple consequence of the fact that in the couple stress theory, the 

density of the deformation energy depends only on the deformation tensor and the symmetric curvature 

tensor. The latter does not explicitly depend on the rotation (nonsymmetric part of the deformation 

gradient) and the non-symmetric part of the curvature tensor [30]. 

To obtain the initial differential equations in mixed form we introduce the force function F: 

2

ij

i j

F
T

x x


 

 
,          (6) 

and then the equations in mixed form will be written with respect to 3u  and the force function F. 

We introduce the well-known notation for differential operators 

2 2
2

2 12 2

1 2

(.) (.)
(.) ;k k k

x x

 
  

 

2 2 2 2 2 2

2 2 2 2

1 2 2 1 1 2 1 2

(.) (.) (.) (.) (.) (.)
((.),(.)) 2L

x x x x x dx x dx

     
  
     

. (7) 

Using the Hamilton principle, we come to a system of differential equations composed of the 

equations of motion of the nano-shell (8) and the equations of compatibility of deformations (9): 

4 2

3 3( , ) 0kD u L u F F q     ,                                                 (8) 

4 2

3 3 3

1 1
( , )

2
kF u L u u

Eh
    ,                                                 (9) 
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where 
2

4(1 )

El
D D


 


 (D – cylindrical stiffness, l  - size-dependent length parameter of the 

material).  

Scheme of MVI can be formally described in the following way. We are aimed at finding a solution 

to equation ( , ) ( , );Aw x y q x y  , ( , )x y x y , where А stands for a certain operator defined on the 

manifold ( )D A  of the Hilbert space 
2( )L  ; ( , )q x y  stands for a given function of two variables x, y, 

and ( , )w x y  is a searched function; ( , )x y  is a space associated with variations of x and y. 

If ( , )x y X Y    (X – a certain bounded set of variables x; Y - a bounded set of y ), then a 

solution to equation  has the following form 
1

( , ) ( ) ( )
N

N i i

i

w x y u x v y


 , where the functions ( )iu x  and 

( )iv y  are defined by the following system of equations 

       

       

1 10, 0,

...............................................................................

0, 0,

N N

X Y

N N N N

X Y

Aw q u x dx Aw q v y dy

Aw q u x dx Aw q v y dy

   

   

 

 

 

in the following way. A certain system composed of N  functions with respect to one of the variables, 

for instance, 0 0 0

1 2( ), ( ),..., ( )Nu x u x u x is given. Then, the first N  equations of the system yield N  

functions 1 1 1

1 2( ), ( ),..., ( )Nv x v x v x . Next, the obtained functions are employed to create a new set of 

functions 2 2 2

1 2( ), ( ),..., ( )Nx u x u x u x , which is further used to construct a set of new functions with 

respect to the variable y, i.e. 3 3 3

1 2( ), ( ),..., ( )Nv x v x v x , and so on. In the case of the iterational procedure 

MVI [12], proves of the theorems constituting the theoretical background of the MVI convergence were 

given for the problems of the theory of plates. 

Theorem 1. If A is a positively defined operator with its action space ( ) ,AD A H  then the 

sequence of elements  
1 0( , )

T

k

k H
w x y w   is monotonously decreasing, i.e. for arbitrary i and j if 

only ,i j  then 1 0 1 0 .
T T

i j

H H
w w w w    

Theorem 2. Let each element of the basis system of the space  
0

2

mW X Y  has the form

( , ) ( ) ( ),i i ix y x y   where   i x  is a basis system in the space  
0

2

mW X , аnd respectively  
0

2

mW X  

in the space 
0

2 ( ),mW Y  and in order to get an arbitrary N -th approximation regarding MVI, the 
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components of the elements of the basis system   ,i x y  are taken as initial conditions. Then, for 

sufficiently large N, the MVI gives a unique approximate solution 
Nw , and the sequence  Nw  is 

convergent with regard to the norm of the space  
0

2

mW X Y  and tends to the exact solution 0w  

independently of a number of steps k, which can be defined for each of the N -th approximation, i.e. 

0

2
0 0,

m

k

N W
w w N   . 

The resulting system of nonlinear partial differential equations can be solved by one of the methods 

shown in Fig. 1. Boundary and initial conditions are given in [31]. 

For a numerical example, the variational iteration method and the combination of the variational 

iteration method and the Agranovsky – Baglay – Smirnov method [MABS] were used. The 

Agranovsky-Baglay-Smirnov method is proposed and substantiated in the works of Agranovsky et al. 

[32]. Let's consider the scheme of application of the Agranovsky-Baglai-Smirnov method on the 

example of the operator equation: 

   1 2 1 2, ,A w x x q x x    . (10) 

A solution to equation (10) in the first approximation ( ( 1) ( )

1 1 1( ) ( )k kw x y  ) is searched in a way 

similar to the MVI. 

The new equation is defined as follows 

2 1( , ) ( , ) ( , )Aw x y q x y Aw x y  ,                                                      (11) 

i.e. we have changed the right hand side of equation (10). Equation (11) is solved again with the help 

of MVI, and its first approximation yields 

( 1) ( )

2 2 2( , ) ( ) ( )k kw x y x y  .                                                              (12) 

The next new equation follows 

3 1 2( , ) ( , ) ( , ) ( , )Aw x y q x y Aw x y Aw x y   .                                       (13) 

and then one employs the MVI again in the first approximation, and so on. 

Finally, the following series is used as the input solution: 

1

( , ) ( , )
N

n

n

w x y w x y


 .                                                                   (14) 
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3. Results and discussions. 

As a numerical example, we consider the application of the described approaches to solve the 

problem of bending the nanoplate ( 1 2 0k k  ) and without taking into account the geometric 

nonlinearity, then equations (8, 9) in dimensionless form will be written as 

   1 2 1 2, ,D w x x q x x  , (15) 

where 21 (1 ) 1

12 (1 )(1 2 ) 4(1 )
D




  


 

  
, 

l

h
  - the dimensionless form of the dimension-dependent 

coefficient ,  is the Poisson's ratio. We consider the boundary conditions of two kinds:  

   1 2 1 2, 0, , 0
Г Г

w x x w x x   , (16) 

   1 2 1 2, 0, , 0
Г Г

w x x w x x n    . (17) 

The load is constant and distributed over the entire surface of the plate and is equal to 50. Ordinary 

differential equations obtained after the use of MSI and MSI + ABS are reduced by the finite difference 

method of 2 order of accuracy to a system of algebraic equations which is solved by the Gauss method.  

Numerical results for the variational iteration (MVI) and combination (MVI+ABS) method are 

given in Table 1. The exact solution obtained in double trigonometric series is also reported in [8]: 

 

Table 1. 

Boundary 

condition 

Exact 

solution 
γ 

MVI MVI+MABS 

N=4 N=10 N=20 N=4 N=10 N=20 

(16) 
0.2028 

γ=0 

0.2031 0.2031 0.2030 0.2029 0.2029 0.2028 

-//- -//- 0.1% -//- -//- 0% 
Relates error 

(17) 
0.0661 0.0650 0.0651 0.0653 0.0660 0.0660 0.0661 

Relates error 1.66% 1.51% 1.21% -//- -//- 0% 

(16)  

γ=0.5 

0.1074 0.1074 0.1073 0.1066 0.1066 0.1065 

(17)  0.0374 0.0375 0.0376 0.0382 0.0382 0.0383 

 

Here N is the number of partitions of the plate NxN. As can be seen from the table, the use of 

MABS significantly increases the accuracy of the solution and for the value γ=0, the numerical solution 

is equal to the exact one. Taking into account the size-dependent behavior leads to the fact that the 

deflection decreases almost twice, i.e. the plate becomes more rigid. 
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4. Concluding remarks 

The paper deals with the application of the variational iteration method (extended Kantorovich 

method) to the solution of the problems of the Kirchhoff – Love nano-shells bending on the basis of the 

modified couple stress theory. Modifications of known methods and their relationship are given. The 

paper presents a scheme for proving the convergence of the variational iteration method. The numerical 

implementation of the variational iteration method and the Agranovsky-Baglay-Smirnov method is 

shown by the example of solving the Sophie-Germain-Lagrange equation. Numerical results prove fast 

convergence of the methods even with a small number of grid partitions. 
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Nonlinear dynamics of flexible nanoplates resting on an elastic foundation in 
a stationary temperature field 

 

 

Vadim A. Krysko-jr, Jan Awrejcewicz, Ekaterina Yu. Krylova, Irina V. Papkova 

Abstract: In this work a mathematical model of the oscillations of the MEMS/NEMS 

element is constructed in the form of a flexible, dimensionally dependent, rigidly 

pinched plate rectangular located in a stationary temperature field. A transverse 

uniformly distributed alternating load acts on the plate. Geometric nonlinearity is 

taken into account according to the theory of von Kármán. The motion equations of a 

mechanical system element, as well as the corresponding boundary and initial 

conditions, are derived based on the Hamilton principle on the basis of a modified 

couple stress theory taking into account the Kirchhoff hypothesis. The temperature 

field is found from the three-dimensional heat equation by the method of variational 

iterations. It was revealed that the size-dependent parameter significantly affects the 

dynamics of the beam under the influence of a transverse alternating load and the 

temperature field. The temperature field at 0<T<100 does not affect the dynamics of 

the plate. 

1. Formulation of the problem  

Nanoscale mechanics provides the scientific foundation and infrastructure for nanotechnology and 

nanoengineering. Over the past decades, explosive worldwide growth has occurred in this area of 

nanoscience. Nano-plates, such as graphene sheets [1], silver nano-plates [2], and metal coated nano-

plates [3] have a wide range of promising applications in various fields of nanotechnology. In such 

nanoelectromechanical systems (NEMS) as nanomechanical resonators [4–6], nanoscale mass sensors 

[7–9] and actuators [10]. The mechanical characteristics and behavior of nano-plates, under the 

influence of various external factors, play an important role in the overall performance of nano-sized 

devices. Classical continuum models do not take into account the effects of scale at the nano-

dimensional level; therefore, many modified theoretical models are used to analyze the nano-plates 

behavior. A review of such theories is given in [11]. One of the theories that allows one to take into 

account large-scale effects is the micropolar (asymmetric, moment) theory that is being actively 

developed now [12-14 ]. In [15], various theories of plates and shells of the Cosserat type are 

presented; the features and differences between these theories are discussed. In paper [16] the linear 

theory describing plane-strain deformations of a micropolar elastic solid which incorporates the 

additional contribution of surface micropolar elasticity is presented. Two different versions of the 

surface shell are considered: one gives rise to a fourth-order surface theory and another which, via a 
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particular form of the Kirchhoff–Love kinematic assumption, results in a second-order surface model. 

In each case, the interior and exterior mixed boundary value problems are considered and we show 

that they can have at most one smooth solution despite the presence of boundary conditions of order 

equal to or higher than that of the governing equations. Augello et al. [17] intend to establish a unified 

theory of structures based on the micropolar elasticity, which allows taking into consideration the 

microstructure of the material, through the adoption of four additional material parameters. The 

considered model is developed in the domain of the Carrera unified formulation (CUF), according to 

which theories of structures can degenerate into unknown kinematics that makes use of an arbitrary 

expansion of the generalized variables. CUF is a hierarchical formulation that considers the order of 

the structural model as input of the analysis, so that no specific approximation and manipulation is 

needed to implement refined theories. Sargsyan and Sargsyan [18] consider a general model of 

dynamic bending of isotropic micropolar elastic thin plates with independent fields of displacements 

and rotations. The model has been justified asymptotically based on the solutions for special cases 

subject to simplifying assumptions. The model incorporates transverse shear deformations. 

Neglecting transverse shear, a model of the dynamics for micropolar elastic thin plates is also 

constructed. To solve the size-dependent differential equations of plate models, various solution 

methods are used, both analytical and numerical [19] including the Galerkin method [20], and the 

finite element method [21]. Note that size-dependent models of shells are more complex in terms of 

mathematical formulas and also solution methods than models of rods, beams [22] and plates. Nayfeh 

and Younis [23] studied various problems of oscillations and heat transfer processes of a nanoscale 

resonator taking into account the thermoelastic theory. The influence of temperature fields on nano 

and micro-elements is considered in [24]. Fazelzadeh et al. [25] investigated the thermo-mechanical 

vibration characteristics of doubly-curved nano-composite shells reinforced by graphene nanoplates 

by considering a first-order shear deformation theory. Krysko et al. [26] constructed a mathematical 

model of vibrations for flexible rectangular plates and shells under the action of transverse shock 

loads and a temperature field. The dynamic stability under such loads was studied. It is noted that the 

temperature influence can lead to a dynamic loss of stability. In [27], the nonlinear dynamical system 

(NDS) of an inhomogeneous isotropic hollow cylinder with a variable modulus of elasticity and 

thermal conductivity was studied based on the Lord-Shulman theory. The problem was solved 

numerically using the finite element method. The Laplace transform and potential methods were used 

to obtain thermoelastic fields of homogeneous isotropic hollow cylinders for the Lord-Shulman model 

[28]. It is worth noting an article [29] devoted to the thermoelastic behavior of a multilayer shallow 

cylinder with transitional temperature and mechanical loads applied on its internal and external 

surfaces. The problem is solved using the Laplace transform and the potential method. It follows from 

the above review that, despite the large number of publications on thermoelasticity problems, there 
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are practically no studies on the nonlinear dynamics of geometrically nonlinear nanoplates under 

conditions of temperature effects. This work aims to fill this gap. 

The object of the study is a rectangular plate, occupying in the space ℝ3 the region 𝛺 =

{0 ≤ 𝑥 ≤ 𝑎; 0 ≤ 𝑦 ≤ 𝑏; −
ℎ

2
≤ 𝑧 ≤

ℎ

2
}. 

The mathematical model of the plate is based on the following hypotheses: 

(i) any cross section normal to the middle plane before deformation remains straight and 

normal to the middle plane after deformation, but the section height does not change 

(Kirchhoff hypotheses are used); 

(ii) the nonlinear dependence between deformations and displacements in the von Kármán form 

is taken into account; 

(iii) the plate material is assumed to be isotropic, elastic and obeys the Duhamel-Neumann law 

(there are no restrictions on the temperature field over the plate thickness; it is determined 

from the solution of the three-dimensional heat equation, and it is assumed that the physical 

parameters of the material are temperature independent; 

(iv) normal stresses on sides parallel to the middle plane of the plate are negligible compared to 

other stresses and are not taken into account, and Kirchhoff kinematic hypotheses are taken 

into account. 

The components of the symmetric gradient tensor of curvature χ  for the Cosserat pseudo-

continuum will have the form: 𝜒𝑖𝑗 =
1

2
(𝜃𝑖, 𝑗 + 𝜃𝑗, 𝑖),  where   

1

2
i i

rot u   are the infinitesimal 

rotation vector components, and 

𝜃𝑥 =
1

2
(

𝜕𝑢𝑧

𝜕𝑦
−

𝜕𝑢𝑦

𝜕𝑧
), 𝜃𝑦 =

1

2
(

𝜕𝑢𝑧

𝜕𝑥
−

𝜕𝑢𝑥

𝜕𝑧
) ,  𝜃𝑧 =

1

2
(

𝜕𝑢𝑦

𝜕𝑥
−

𝜕𝑢𝑥

𝜕𝑦
). 

For the case of the Kirchhoff kinematic hypotheses, the χ  components are written as follows: 
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 (1) 

Hooke's law is used for an isotropic elastic material. Higher-order tensions ijm , are determined 

by the following equations [30]: 
2

1
ij ij

El
m 





, where  , , ,i j x y z , E  - Young's modulus,   - 

Poisson's ratio. The parameter l , that appears in higher-order tensions ijm , plays the role of an 

additional independent material length parameter associated with the symmetric curvature gradient 

tensor. 

A stationary temperature field is considered. Material properties are temperature independent. 

Higher order tensions and moments follow 
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(2) 

In this model, in addition to Young's modulus and Poisson's ratio, it is necessary to take into 

account one more scale length parameter l  [30]. This is a direct consequence of the fact that in the 

couple stress theory of elasticity, the strain energy density is a function of the strain tensor and the 

symmetric curvature tensor only. It does not depend explicitly on rotation (the asymmetric part of the 

deformation gradient) and the asymmetric part of the curvature tensor. 

We obtain the resolving equations of motion of the plate, and the boundary and initial conditions 

from the Hamilton’s variational principle: 
1

0

( ) 0

t

t

K U W dt     . Here K  - kinetic energy, U - 

potential energy, qW W W     - variation of the work of external forces qW  and damping forces 

W . Taking into account the micropolar theory, the potential energy U  in an elastic body with 

infinitely small deformations, is written in the form: 

 
1

2
ij ij ij ijU m dv  



  . (3) 

Kinetic energy of the system is as follows 

22 2
1

2

yx z
uu u

K dv
t t t




      
       

        
 . (4) 

Variation of the work of external forces and damping forces takes the following form 

,
w

W w dv
g t




  



 
  

 
   

0 0

, , .

a b

qW q x y t wdxdy     (5) 

where   is a dissipation coefficient,   is the density of the plate material,  , ,q x y t  is the external 

normal load. 

From the variational principles, we obtain the resolving equations of motion (6), the boundary and 

initial conditions. We have 
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(7) 

The nonlinear partial differential equations system with regard to displacements takes the 

following form 
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The following dimensionless parameters are used: x ax , y by , w hw , 

2h
u u

a
 , 

2h
v v

b
 , l hl , 

ab
t t

h E


 , 

h E

ab
 


 , 

4

2 2

Eh
q q

a b
 , 

2h
T T

ab
 , and   is a linear expansion 

coefficient. 

To study the stress-strain state in conditions of uneven heating, it is necessary to determine first 

the temperature field. In this regard, there is a need for the formulation and methods development for 

solving the corresponding problems of thermal conductivity for thin-walled elements. 

In this work, we propose to solve the three-dimensional heat equation without an internal heat 

source to determine the temperature field in the plates 
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𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑥2 +
𝜕2𝑇

𝜕𝑧2 = 0. (8) 

To solve the stationary heat equation, boundary conditions of the 1st to 3rd kind should be given. 

This equation will be solved for the first time by the method of variational iterations [31]. The essence 

of the variational iteration method is that the solution is represented in the form 𝑇(𝑥, 𝑦, 𝑧) =

𝑋(𝑥)𝑌(𝑦)𝑍(𝑧). The heat equation is three-dimensional, but the variational iterations method for 

boundary conditions of the third and third kind makes it possible to obtain an analytical solution. It 

should be emphasized that the heat equation in a three-dimensional formulation it is used for the first 

time here in our work. 

The obtained solution of the heat equation using the method of variational iterations was 

compared with the solution obtained by the finite difference method and showed their complete 

coincidence. To reduce the nonlinear differential equations system to the Cauchy problem, the finite 

difference method with approximation of the second accuracy order is used. The finite difference 

method is also applied to the boundary conditions. 

In the given equations system, the temperature terms are preliminarily calculated depending on 

the type of boundary conditions for the heat equation. 

The resulting system of ordinary second-order differential equations is reduced to a first order 

ordinary differential equations system, which is solved by the 4th-order Runge-Kutta method. The 

application validity of the 4th-order Runge-Kutta method was given in [32]. 

2. Numeric results 

The studies were carried out for a square silver plate with the following physical and geometric 

parameters: length and width a=b=2·10-7m, thickness h = 4·10-9 m, elastic modulus E = 1.01972·108 

kgf/m2, ν = 0.37, l = 0; 0.5. The problem was solved in two stages: 1. The plate was preheated. The 

resulting deflection w and displacements u, v were taken as initial conditions. 2. The plate, taking into 

account the initial conditions, was placed in a constant temperature field and under the action of a 

transverse uniformly distributed alternating load 𝑞 = 𝑞0sin (𝜔𝑝𝑡), where the excitation frequency is 

equal to the natural linear oscillations frequency 𝜔𝑝 = 𝜔0 = 10.6. The studies were carried out for a 

plate placed in a temperature field at T = 0ºC, 50ºC, 100ºC. 

The effect of temperature and size-dependent parameter on the plate dynamics was studied. Table 

1 presents the power spectra. Consider plate vibrations with a dimensionally dependent parameter l = 

0 and T = 50ºC. At the load 𝑞0 ∈ (0; 68], the power spectrum shows harmonic oscillations. The 

Lyapunov exponents are close to zero. In the load range 𝑞0 ∈ (68; 76], the oscillations become two-

frequency. The first Lyapunov exponent is positive, but close to zero. In the range of loads 𝑞0 ∈
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(76; 78] the frequencies are a linear combination of the excitation frequency 𝜔𝑝 and the independent 

frequency 𝜔1. Further, the system exhibits chaotic oscillations. 

 

Table 1 

𝒒𝟎 ∈ (𝟎; 𝟔𝟖]  𝒒𝟎 ∈ (𝟔𝟖; 𝟕𝟔] 𝒒𝟎 ∈ (𝟕𝟔; 𝟕𝟖] 
Le1 = -3.1082*10-5  

Le2 = -3.1943*10-5  

Le3 = -39*10-2  

Le4 = -59*10-2 

Le1 = 38*10-5    

Le2 = - 69*10-4 

Le3 = -15*10-2 

Le4 = -28*10-2 

Le1 = 19*10-4  

Le2 = -58*10-4  

Le3 = -19*10-4  

Le4 = -47*10-4 

   

 

Table 2 

𝑞0 ∈ (0; 118] 𝑞0 ∈ (118; 128] 

Le1 = 4.056·10-5; Le2 = -74·10-4;  

Le3 = -41·10-4; Le4 = -54·10-4 

Le1 = 34·10-5; Le2 = -9.3136·10-5;  

Le3 = -32·10-3; Le4 = -65·10-2 

  

 

Table 2 presents the dynamics of the nanoplate (l = 0.5) at a temperature of T = 50ºC. The plate 

oscillations are periodic in the range of the load amplitude 𝑞0 Є (0; 118], the first Lyapunov exponent 

is positive but close to zero. In the range 𝑞0 Є (118; 128] appears a linearly dependent frequency 

𝜔1 =
𝜔𝑝

29
, the first Lyapunov exponent is positive, but close to zero, the rest of Lyapunov exponents 

are negative. Figure 2 shows the dependences of the maximum deflection in the plate center on the 

load amplitude 𝑤𝑚𝑎𝑥(𝑞0) and the scales of the vibrations type for the silver plate, taking into account 

the size-dependent parameter l =0; 0.5 at temperature T = 50ºC. At l =0 harmonic oscillations are 

replaced by oscillations at two independent frequencies and bifurcations occur, at which harmonics 
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appear at the frequency 
𝜔𝑝

29
. At l =0.5, after harmonic oscillations, frequencies equal to 

𝜔𝑝

29
 also appear. 

Windows of periodic oscillations are replaced by periodic oscillations. The maximum deflection of 

the oscillations 𝑤𝑚𝑎𝑥 is much less than with l =0. 

 

 

Legend 

 Harmonic oscillations at 𝜔𝑝 

frequency. 

 Harmonic oscillations at 
𝜔𝑝

2𝑛
 

frequency. 

 Oscillations at 2 independent 

frequencies. 

 Oscillations at 
𝜔𝑝

2
 frequencies, 

where 𝑛 ∈ 𝑁. 

Figure. 2. The dependence of the maximum deflection in the plate center on the load amplitude 

𝑤𝑚𝑎𝑥(𝑞0)  

 

Similar results were obtained when studying the dynamics of the plate at a temperature T = 0ºC, 

100ºC and l = 0; 0.5.  

3. Conclusions 

In this work a mathematical model of the nonlinear dynamics for a NEMS plate element under the 

influence of a temperature field and a transverse uniformly distributed alternating load is derived. The 

motion equations are obtained taking into account the Kirchhoff hypothesis and the modified couple 

stress theory of elasticity. It was established that the temperature field in the range Т Є [0; 100] does 

not affect the dynamics of silver nano- and micro-plate under the uniformly distributed alternating 

load action. Taking into account the size-dependent parameter changes the oscillations nature. For l = 

0 a transition from harmonic to chaotic oscillations was obtained according to the Ruelle-Takens-

Newhouse scenario. At l = 0.5, the nanoplate becomes stiffer. Oscillations of a nanoplate are periodic 

or quasiperiodic. 
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An optimal control of the gyroscope system in the process of 

homing an air-to-air missile 

 

 

Izabela Krzysztofik, Zbigniew Koruba 

Abstract: The accuracy of the homing missile depends mainly on the correct 

determination of the current angle between the Gyroscope System Axis (GSA) and 

the Line of Sight (LOS). The automatic control system of the gyroscope system 

should ensure automatic levelling of this angle, and thus continuous directing of the 

gyro axis to the straight LOS, i.e. tracking of the target through the seeker. The work 

presents an optimal control algorithm for the gyroscope with a square quality 

indicator in the conditions of disturbance  and kinematic impact of the missile deck. 

The results of computer simulation tests were obtained in the Matlab-Simulink 

environment and presented in a graphic form. 

1. Introduction 

One of the most important air-to-air missile assemblies is the seeker (homing head) [1, 2]. The 

seekers that use infrared radiation are most commonly used. The seeker intercepts and tracks the air 

target. Homing of the missile consists primarily in determining the line of sight of the target being 

attacked – a straight line leaded from the homing seeker to the target. 

The basic element of the seeker is the optical target coordinator. The coordinator's optical system 

is mounted in the gyroscope rotor suspended on the Cardan joint. During the missile's flight, the task 

of the target coordinator is to determine the angle between the line of sight and the coordinator axis 

(axis of the gyroscope system) or its components or angular velocities. This operation is carried out 

automatically, in such a way that the GS control system constantly directs the optical axis to the 

moving target. At the moment when the axis of the gyroscope system coincides with the line of sight, 

then we recognize that the missile tracks the target and follows it. Sensors measure the angle between 

the LOS and the missile axis and pass it to the autopilot. Autopilot, independently, with its apparatus 

measures the angular position of the missile axis relative to the Earth, and then determines the control 

signals and feeds them to the steering actuator [3]. 

The accuracy of determining the current angle between the axis of the gyroscope system and the 

line of sight therefore has a huge impact on the precision of homing air-to-air missile on the 

maneuvering air target, and thus increases the efficiency of intercepting and destroying the target [4]. 

The gyroscope system is subjected to interactions by the missile deck that do not allow long-term 

maintenance, with a certain accuracy, of the set position of the optical axis. Therefore, the control 
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system parameters should be optimally selected so as to minimize the mean square error and the 

dynamic effects of GS appearing in the transient process [5]. 

The block diagram of the automatic gyro control adjustment system in the homing process is 

shown in Figure 1. 

 

Figure 1.   Block diagram of the automatic adjustment system of the gyro system control in the homing 

process.  

This work presents an optimal control algorithm for a gyroscope system with a square quality 

indicator (minimum error of mean square GSA deviation from LOS) in the conditions of disturbance 

and kinematic impact of the missile deck. Gain matrices of the optimal controller implementing the 

developed algorithm were obtained from the Riccati algebraic equation (after linearizing non-linear 

GS dynamic equations and saving them as state equations). 

2. Optimal control of the gyroscope system 

A linearized model of a controlled gyroscope system is saved in a vector-matrix form: 

  

  
       (1) 

where:   – is a vector of state,   – is a state matrix,   – is a control matrix, with components 
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where:   – inclination angle of GSA,    – deflection angle of GSA,    – velocity of inclination angle 

of GSA,    – velocity of deflection angle of GSA,    – friction coefficient in GS inner frame bearings, 

   – friction coefficient in GS outer frame bearings,     – moment of inertia of the GS rotor relative 

to the transverse axis,     – moment of inertia of the GS rotor relative to the longitudinal axis,    –

control moment applied to the GS inner frame,    – control moment applied to the GS outer frame. 

Let the square quality indicator will be given in the form of: 

                
 

 
 (2) 

where:  ,   – weight matrices experimentally matched. 

Let us present the control law as follows: 

           (3) 

where:    – is a vector of set state variables with components             determined from 

equations (7)–(10). 

The   gain matrix is determined by the following relationship:  

         (4) 

In the work, matrix   was determined using the Matlaba lqr function:  

                (5) 

The   matrix in equation (4) is determined from the algebraic Riccati equation: 

                    (6) 

The     angles occurring in reletionship (3) are set angles for the control system when tracking a 

detected target and are determined from the following system of equations describing the relative 

positions of the air target and the missile [6-8]: 

  

  
                                                                (7) 

  
  

  
                                         (8) 

  
  

  
                                                                (9) 

where: 

  – the distance between missile and air target; 

  – LOS inclination angle; 
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  – LOS deflection angle; 

      – missile and target velocities; 

      – yaw and pitch angles of the target velocity; 

      – yaw and pitch angles of the missile velocity. 

The figure below shows the scheme of determining the optimal controls for the gyroscope system in 

the homing head of an air-to-air class anti-aircraft missile. 

 

Figure 2.   Scheme determining the optimal controls. 

In the approaching process, the advance angle changes according to the proportional navigation 

algorithm:  

       ,         (10) 

where:       – constants of proportional navigation. 

3. Results of numerical research of gyroscope system control 

Simulation studies of gyroscope system control in the process of air-to-air missile homing to the 

manoeuvring target were conducted in Matlab/Simulink [9, 10], using ode45 procedure with a 

variable integration step, for the following parameters [11]: 

Initial parameters of the target and missile 

         ;         ;         ;           ;  

          ;           ;              ; 

         ;         ;         ;          . 

Maximum value thrust of the rocket engine 
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Permissible value control force 

             

Constants value of proportional navigation 

            

Parameters of the gyroscope system  

               ;                   ;              ;                 . 

LQR parameters 

   

     
      
     
      

 ;    
  
  

  

Disturbances       acting on the gyroscope system from the missile deck were angular velocities 

about the longitudinal x and transverse y axes, z – respectively. 

Figures (3) – (10) show selected results of simulation tests. Figure 3 shows that a missile intercepts a 

maneuvering air target after a time of 5.3 seconds. Figures 4 and 5 show a good convergence of the 

angles of flight desired and realized. The same is true of the coincidence of the gyroscope axis with 

the target line of sight – Figs. 6, 9 and 10. 

 

Figure 3.   Path-flights of the missile and target. 
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Figure 4.   Actual    and set   angles of missile flight as a function of time. 

 

Figure 5.   Actual    and set   angles of missile flight as a function of time. 
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Figure 6.   Angles of inclination and deflection of the LOS and gyroscope axis as a function of time. 

 

Figure 7.   Actual and set paths of the gyroscope system axis. 
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Figure 8.   Control moments as a function of time. 

 

Figure 9.   Angles of inclination and deflection of the LOS and gyroscope axis as a function of time. 
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Figure 10.   Actual and set paths of gyroscope system axis. 

4. Conclusions 

The optimal control algorithm presented in the paper demonstrates high effectiveness of gyroscope 

system control in the process of guiding air-to-air missile to a moving target. Optimal parameters of 

the regulator allow for stable and continuous maintenance of the target in the field of view of the 

homing head's optical system (Figs. 6 and 9). This can be particularly important when the target is 

detected with a significant angular deviation of the missile's longitudinal axis from the target line of 

sight. It should be emphasised that the control moments are small (Fig. 8), which determines their 

feasibility under real homing conditions. The optimal gyroscope system controller also operates stable 

under the influence of missile deck disturbance (Fig. 10). 
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Discrete-time model reference sliding mode control using an
exponential reaching law

Pawe l Latosiński, Andrzej Bartoszewicz

Abstract: Discrete time reaching law based sliding mode control is well known
to ensure good robustness of the controlled system with respect to any bounded
uncertainties. In principle, reaching law methodology involves a priori speci-
fying the desired evolution of the system representative point and obtaining a
control signal which ensures this evolution. However, since the plant is subject
to uncertainties at each time instant, the desired state trajectory specified by
the reaching law can get gradually distorted during the control process. This
in turn can negatively alter the length of the reaching phase or increase quasi-
sliding mode band width. Motivated by this problem, in this paper we describe
a novel model reference approach to discrete-time sliding mode controller de-
sign. In this approach, a reaching law based control strategy is first applied
to a reference model of the plant with the aim of obtaining a desirable state
trajectory. Then, a secondary controller is applied to the original plant to drive
its state alongside that of the model, thus eliminating the residual effect of dis-
turbance on quasi-sliding motion of the system. In particular, in this paper a
non-switching reaching law using an exponential function of the sliding variable
has been applied to the model with the aim of obtaining favorable properties
of its quasi-sliding motion. It has been demonstrated that, with the use of the
proposed model reference approach, these properties are then carried over to
the original plant even in the continued presence of uncertainties.

1. Introduction

Discrete-time sliding mode control (DSMC) strategies [11, 15] are a computationally efficient

way of ensuring good system performance in the presence of nonlinear uncertainties. Their

highly valued robustness property is obtained by confining the system representative point

to a vicinity of the sliding hyperplane defined in the state space. Contrary to its older

continuous-time equivalent [7, 14], DSMC can effectively compensate for both matched and

non-matched uncertainties. Such strategies are conventionally designed by first stating the

control law and then proving, via Lyapunov’s theorem, that it ensures stability of the sliding

motion. However, a more recent approach [9] instead involves defining the desired evolution

of the sliding variable in advance and then applying this evolution to synthesize the control

signal, therefore omitting the non-trivial proof of stability. This method, referred to as the

323



reaching law approach, has gained significant recognition in the field of DSMC [1, 6, 8, 10,

12, 13].

An often overlooked downside of reaching law-based DSMC is the fact that the a priori

specified evolution of the sliding variable gets gradually distorted by uncertainties during

the control process. Indeed, since the reaching law specifies values of the sliding variable

on a step-by-step basis, residual effect of past disturbances can delay system response or

deteriorate its robustness. A very recent approach using a reference model of the controlled

plant [4] aims to remedy that problem by eliminating the effect of past uncertainties on

sliding motion of the system. Authors of that work have proposed the application of a

DSMC strategy (in particular Gao’s reaching law [9]) to a reference model of the plant in

order to obtain its desired trajectory, and then drive the original system alongside that

trajectory using a secondary controller.

In our paper we describe model reference DSMC methodology in a tutorial manner and

propose an application of this scheme in conjunction with an exponential reaching law. It is

demonstrated that the proposed strategy ensures better robustness of the system than the

traditional reaching law approach and ensures that the a priori specified evolution of the

sliding variable is followed much more closely. In particular, the reaching law applied in our

paper ensures an upper bounded, almost constant convergence rate of system representative

point to the vicinity of the sliding hyperplane. Furthermore, contrary to the reaching law

used in [4], model reference strategy described in this paper ensures non-switching type

quasi-sliding motion as defined in [2, 3] rather than conventional switching type discrete-

time motion [9]. As a result, our approach produces no chattering in the sliding phase.

2. Model reference strategy

In our paper we consider discrete-time dynamical plants subject to nonlinear disturbance

that does not satisfy matching conditions. These conditions state that the uncertainties

affect the plant through the same input channel as the control signal and have traditionally

been used to ensure good qualities of system sliding motion, but this assumption is not

necessary in our work. Dynamics of the considered plants can be expressed as

xp(k + 1) = Axp(k) + bup(k) + d(k), (1)

where xp ∈ Rn and up ∈ R represent the system state and the control signal, respectively,

the ”p” subscript refers to the plant, d(k) ∈ Rn is a vector representing the non-matched

disturbance, A ∈ Rn×n is the state matrix and b ∈ Rn is the input distribution vector. The

objective of the control process is to drive the state of this plant to a desired xd and it is

assumed its initial conditions xp(0) are known. In our paper a novel model reference sliding
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mode control strategy will be applied to such plants. In this approach the following model

of the plant is first specified

xm(k + 1) = Axm(k) + bum(k), (2)

where the ”m” subscript refers to the model, A and b are the same as in (1) and xm(0) =

xp(0). Two separate sliding mode controllers will be designed for plant (1) ad model (2),

respectively. First, a desired evolution of the model state will be obtained with the use of

reaching law approach. Then, a simple dead-beat controller will be applied to the original

plant with the aim of driving its state towards that of the model. The design process of

both controllers begins with defining an appropriate sliding variable and the hyperplane on

which this variable equals zero. The considered variables and their corresponding sliding

hyperplanes are expressed as

σ∗(k) = e∗(k) = cTxd − cTx∗(k) = 0, (3)

where the ”∗” subscript refers to either plant p or model m, e∗ ∈ Rn is the state error

and vector c ∈ Rn is selected to guarantee stability of the system. To that end, it must

ensure that cTb 6= 0 and that all eigenvalues of the closed-loop system state matrix Acl =

A − b(cTb)−1cTA are inside the unit circle. In order to make the considered strategy

applicable to plant (1) it is assumed that total effect of the unpredictable disturbance on

sliding variable σp is limited. In particular, let this effect be lower and upper bounded in

the following way

Dmin ≤ D(k) = cTd(k) ≤ Dmax. (4)

We can then define the mean effect D1 of this disturbance and its maximum deviation from

the mean D2 in the following way

D1 =
Dmax +Dmin

2
, D2 =

Dmax −Dmin

2
. (5)

Further in this section a general form of the considered model reference strategy will be

discussed. Then, in the next section an example application of this control scheme using a

particular reaching law will be described.

2.1. Reaching law applied to the model

In order to obtain a desired model trajectory, a reaching law based control strategy is first

applied to design control signal um. When using the reaching law approach, target evolution

of the sliding variable is defined in advance with a recursive function, and then a control
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signal which ensures this evolution is calculated. Reaching law for model (2) has the following

general form

σm(k + 1) = f [σm(k), k], (6)

where f is a function selected so that stability of the sliding motion is ensured. Since σm(0) is

known and model (2) is free of uncertainties, this function will always define exact subsequent

values of the sliding variable. Choice of this function has a direct impact on properties of

the system such as its robustness or convergence rate to the sliding hyperplane. In order to

obtain control signal um which ensures the state evolution defined by (6), sliding variable

σm is first substituted from (3) into the left hand side of (6), which yields

cTxd − cTxm(k + 1) = f [σm(k), k]. (7)

Then, model dynamics (2) are further substituted into (7), giving

cTxd − cTAxm(k)− cTbum(k) = f [σm(k), k]. (8)

Finally, relation (8) is solved for um, which gives the desired control signal

um(k) = (cTb)−1{cTxd − cTAxm(k)− f [σm(k), k]
}
, (9)

which drives the output of the model exactly as specified in reaching law (6). In the next

section a second controller will be designed with the aim of driving the state of the plant

alongside the obtained trajectory of the model.

It should be noted that, since the considered reference model is free of uncertainties,

exact evolution of its state can be obtained for any k knowing only the initial conditions of

the system. Thus, it is possible to calculate values for σm(k) ahead of time and store them

in a look-up table if one wishes to enhance computational efficiency of the control strategy.

2.2. Control strategy for the plant

Typically, reaching law based strategies similar to (6) are applied directly to the considered

plant subject to uncertainties. However, since control signal (9) itself cannot compensate

for disturbance in any way, this would cause the desired state trajectory to get gradually

distorted in each step. To prevent this, we instead propose a secondary control signal for the

original plant which aims to drive its state alongside that of the model. This control signal

originates from the simple reaching law

σp(k + 1) = σm(k + 1)−D(k) +D1. (10)
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It should be noted that this reaching law depends on the unpredictable disturbance and, as

a result, does not specify exact values of σp in each step but merely the range of its possible

values. Nevertheless, it can be applied to design control signal up by first substituting sliding

variable (3) and system dynamics (1) into the left hand side of (10). This gives

cTxd − cTAxp(k)− cTbup(k)− cTd(k) = σm(k + 1)−D(k) +D1. (11)

Considering (4), one can solve this equation for up and get the control signal

up(k) = (cTb)−1{cTxd − cTAxp(k)− σm(k + 1)−D1

}
. (12)

This control signal ensures that output of the original plant will always closely follow the

trajectory obtained from the model. Indeed, as seen in reaching law (10), sliding variable

σp can only deviate from σm by a value proportional to the single most recent disturbance

term. This property will be formally described in the following theorem.

Theorem 1 If the control signal for plant (1) is defined by (12), then for all k > 0 the

absolute difference between σp(k) and σm(k) is not greater than D2.

Proof: For any k reaching law (10) implies

∣∣σp(k + 1)− σm(k + 1)
∣∣ =

∣∣σm(k + 1)−D(k) +D1 − σm(k + 1)
∣∣. (13)

Then, since relations (4) and (5) give |D(k)−D1| ≤ D2 for all k, (13) further gives

∣∣σp(k + 1)− σm(k + 1)
∣∣ =

∣∣−D(k) +D1

∣∣ ≤ D2. (14)

Thus, for any time instant after 0 the difference between σp(k) and σm(k) is lower and upper

bounded by D2. �

It has been shown that, with the use of the proposed model reference scheme, output

of the plant always closely follows that of the model. This is an important property since it

means that system robustness ensured by reaching law (6) for the reference model is carried

over to the original plant even in the presence of non-matched disturbance. Theorem 1 allows

one to draw an additional conclusion on the convergence rate of the sliding variable to zero,

which will be outlined below.

Theorem 2 If the control signal for plant (1) is defined by (12), then for all k > 0

∣∣σp(k + 1)− σp(k)
∣∣ ≤ ∣∣σm(k + 1)− σm(k)

∣∣+ 2D2. (15)
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Proof: It is easy to notice from properties of the absolute value that

∣∣σp(k + 1)− σp(k)
∣∣ =

∣∣σp(k + 1)− σm(k + 1) + σm(k + 1)− σm(k) + σm(k)− σp(k)
∣∣

≤
∣∣σp(k + 1)− σm(k + 1)

∣∣+
∣∣σm(k + 1)− σm(k)

∣∣+
∣∣σm(k)− σp(k)

∣∣. (16)

Then, for any k > 0 Theorem 1 further implies

∣∣σp(k + 1)− σp(k)
∣∣ ≤ D2 +

∣∣σm(k + 1)− σm(k)
∣∣+D2, (17)

which is consistent with relation (15). �

It has been shown that the proposed model reference approach ensures a similar con-

vergence rate of the system representative point to zero as the reaching law applied to the

model. In conclusion, Theorems 1 and 2 show that all significant properties of the reaching

law applied to the model are carried over to the original plant. In the next section an exam-

ple application of this control scheme using an exponential reaching law will be proposed.

Then, the effectiveness of the new method will be verified in a simulation.

3. Exponential reaching law

In this paper the model reference control scheme proposed in this paper will be used in

conjunction with an exponential reaching law first introduced in [5]. This reaching law aims

to ensure a limited, almost constant convergence rate of the system representative point to

the sliding hyperplane, confine this representative point to a narrow vicinity of the hyperplane

and prevent unnecessary switching in the sliding phase to avoid excessive chattering. For

the disturbance-free model (2) this reaching law has the following form

σm(k + 1) = σm(k)− σ0sgn[σm(k)]g[σm(k)], (18)

where σ0 > 0 is a constant design parameter, function

g(?) = 1− exp

[
− (?)2

σ2
0

]
(19)

and sgn(?) is specified so that sgn(0) = 0. According to relation (9) control signal for the

reference model is expressed as

um(k) = (cTb)−1{cTxd − cTAxm(k)− σm(k) + σ0sgn[σm(k)]g[σm(k)]
}
. (20)

It can be seen that for large values of σm reaching law (18) will cause the sliding variable to

decrease by a value close to σ0 in the next step, providing an almost constant convergence
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rate to the vicinity of zero in the reaching phase. On the other hand, as σm gets closer to

zero, function g causes the value of the switching term to diminish, which prevents generating

excessive control signals in the sliding phase.

Reaching law based strategy (20) allows one to obtain favorable properties of the sliding

motion for the reference model of the plant. Then, reaching law (10) can be used to carry

over these properties to the original plant, exactly as described in Section 2.2. Properties

of the proposed model reference strategy with reaching law (18) will be discussed in greater

detail in the next section.

3.1. Properties of the proposed strategy

Exact properties of system sliding motion with the use of the proposed model reference

strategy with exponential reaching law will now be formulated and proven. In the first

theorem it will be demonstrated that the proposed strategy always ensures limited sliding

variable rate of change.

Theorem 3 If the control signal for plant (1) is defined by (12) and values of σm are

obtained from reaching law (18), then for any k ≥ 0 sliding variable rate of change satisfies

|σp(k + 1)− σp(k)| ≤ σ0 + 2D2. (21)

Proof: Since function g defined as (19) is always upper bounded by 1, then for sliding

variable σm reaching law (18) implies

|σm(k + 1)− σm(k)| = |−σ0sgn[σm(k)]g[σm(k)]| ≤ σ0. (22)

Then, directly from Theorem 2 we obtain

∣∣σp(k + 1)− σp(k)
∣∣ ≤ ∣∣σm(k + 1)− σm(k)

∣∣+ 2D2 ≤ σ0 + 2D2, (23)

which is consistent with (21). �

Next, it will be shown that the proposed model reference scheme always drives the system

representative point to a specified quasi-sliding mode band around the switching hyperplane.

Theorem 4 If the control signal for plant (1) is defined by (12) and values of σm(k) are ob-

tained from reaching law (18), then for any initial conditions of the system, its representative

point is at least asymptotically driven to the following band around the sliding hyperplane{
xp :

∣∣cTxd − cTxp

∣∣ ≤ D2

}
. (24)
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Proof: It will first be shown that reaching law (18) always ensures asymptotic convergence

of σm(k) to zero. Let k be any time instant for which σm(k) > 0. To simplify notation, we

temporarily substitute s = σm(k). Then, relations (18) and (19) imply

σm(k + 1) = f(s) = s− σ0

{
1− exp

[
− s

2

σ2
0

]}
< s = σm(k), (25)

which means the sliding variable will decrease in the next step. It will be further shown that

σm(k + 1) cannot become negative. Relation (25) gives

d

ds
f(s) = 1− 2s

σ0
exp

[
− s

2

σ2
0

]
, (26)

d2

ds2
f(s) = −2(σ2

0 − 2s2)

σ3
0

exp

[
− s

2

σ2
0

]
. (27)

It is easy to notice that the formula (27) has exactly one zero for positive values of s, namely

σ0/
√

2. Change of sign from negative to positive around this zero implies that (26) has a

global minimum in this point, which equals

d

ds
f(σ0/

√
2) = 1− 2√

2
exp

(
−1

2

)
≈ 0.142 > 0. (28)

Since the minimum is positive, one concludes that the first derivative of f(s) is always greater

than zero for s > 0, which further implies that f(s) itself is a strictly increasing function.

Thus, for any s > 0 relation (25) gives

σm(k + 1) > f(0) = 0− σ0 [1− exp(0)] = 0, (29)

which means that σm(k+ 1) will never become negative. Since relations (25) and (29) show

that sliding variable σm(k) always decreases but never changes its sign to negative, it must

converge to a certain non-negative σ+. Naturally, σm(k + 1) also converges to the same

value. Consequently, reaching law (18) implies

σ+ = lim
k→∞

σm(k + 1) = lim
k→∞

{
σm(k)− σ0g[σm(k)]

}
= σ+ − σ0g(σ+). (30)

Taking into account (19), relation (30) further gives

σ+ − σ0

{
1− exp

[
−σ

2
+

σ2
0

]}
− σ+ = 0, (31)

which ultimately yields σ+ = 0. We conclude that for any initial conditions of the system

such that σm(0) > 0 sliding variable σm always asymptotically converges to zero. Proof of

the same property for initial conditions such that σm < 0 is almost identical to the analysis

given in (25)-(31), which is why it will be omitted.
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It will now be demonstrated that the representative point of the actual plant always

at least asymptotically converges to band (24). Since σm(k) converges to zero, Theorem 1

implies

lim
k→∞

|σp(k)| = lim
k→∞

∣∣cTxd − cTxp

∣∣ ≤ lim
k→∞

|σm(k)|+D2 = D2, (32)

which means that the system representative point will either enter the considered quasi-

sliding mode band in finite time or approach it asymptotically. �

It has been proven that the proposed model reference control scheme using exponential

reaching law (18) at least asymptotically drives the state of the plant to a narrow vicinity of

the sliding hyperplane while at the same time ensuring an upper bounded convergence rate to

this vicinity. The band obtained in Theorem 4 is strictly narrower than the one obtained in

[5] for reaching law (18) without the use of reference model. This implies that the proposed

model reference scheme improves robustness of the plant with respect to disturbance while

still ensuring all desirable qualities of system sliding motion. In the next section, the new

approach will be compared to an existing control strategy in a simulation example.

4. Simulation results

In this section the proposed model reference strategy will be compared to conventional

reaching law approach by means of a simulation. In particular, in this example we consider

a fourth-order discrete-time plant with dynamics expressed as

xp(k + 1) =


1 1 1/2 1/6

0 1 1 1/2

0 0 1 1

0 0 0 1

xp(k) +


1/24

1/6

1/2

1

up(k) +


d1(k)

0

0

0

 (33)

with initial conditions xp(0) = [20 0 0 0]T. The objective is to drive the representative

point of the system to xd = 0 in the presence of non-matched disturbance, where d1(k) =

sin(kπ/10). To that end, two strategies will be used.

A) Conventional reaching law approach using strategy (18) originally proposed in [5].

B) Our model reference scheme, in which the same reaching law is applied to the model (2).

For both strategies we select σ0 = 2 and c = [1 1.5 0.9167 0.25]. The three figures

presented below illustrate the comparison of both strategies. They include comparisons of

the sliding variable, the control signal and the first state variable, respectively.

It can be seen from Figure 1 that the proposed model reference strategy ensures an

almost constant convergence rate of sliding variable to zero, consistent with the selected
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design parameter σ0 = 2. Meanwhile, evolution of the variable for strategy B without

the reference model is distorted in the reaching phase and convergence to zero is delayed.

At the same time, our strategy drives the variable to a narrower quasi-sliding mode band,

the width of which is consistent with Theorem 4. Figure 2 illustrates that both strategies

generate similar values of the control signal in the initial stages of the control process, but

strategy A requires significantly less control effort in the sliding mode. Finally, Figure 3

demonstrates that the proposed model reference strategy ensures faster convergence of the

first state variable to its target value and its smaller error in all stages of the control process.

Figure 1. Sliding variable

Figure 2. Control signal
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Figure 3. First state variable

5. Conclusions

In our paper we have described a novel model reference sliding mode control strategy for

discrete-time systems. In this strategy, a reaching law based controller is first applied to

the reference model of the plant with the aim of obtaining the desired state trajectory,

then the state of this plant is driven along that trajectory with a secondary controller.

In particular, in our paper this desired trajectory has been obtained with an exponential

reaching law, which ensures a bounded convergence rate of the system representative point

to the sliding hyperplane, good robustness of the plant and no undesirable chattering. It has

been demonstrated that the model reference control scheme allows one to improve robustness

of the plant by completely rejecting the effect of past uncertainties on its sliding motion.

Indeed, it has been shown that when the proposed strategy is applied to the plant, its

evolution more closely follows the one specified in the reaching law.
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Kinematic analysis of the rolling locomotion of mobile robots 

based on tensegrity structures with spatially curved compressed 

components 

 
Enrique Roberto Carrillo Li, Philipp Schorr, Tobias Kaufhold, Jorge Antonio 

Rodríguez Hernández, Lena Zentner, Klaus Zimmermann, Valter Böhm 

Abstract: The use of mechanically compliant tensegrity structures in mobile robots is 
an attractive research topic, due to the possibility to adjust their mechanical properties 
reversibly during locomotion. In this paper rolling locomotion of mobile robots based 
on simple tensegrity structures, consisting of three compressed spatially curved 
members connected to a continuous net of prestressed tensional members, is discussed. 
Planar locomotion of these robots is induced by the movement of internal masses. The 
movement direction can be changed by changing the robot's shape between a cylinder 
and a truncated cone. The paper focuses on the description of the kinematics of these 
systems with respect to the shape change. 

1. Introduction 

The use of mechanically prestressed compliant structures in mobile robotics is a recently discussed 

topic. Tensegrity structures, consisting of a set of rigid disconnected compressed members connected 

to a continuous net of prestressed tensioned members build one specific class of these structures. Robots 

based on these structures are deployable, lightweight, have a simple system design, very high strength 

to weight ratio, and shock absorbing capabilities [1-3]. An overview of actual developments and 

development directions can be found in [4-8]. A recent development direction is the realization of 

rolling mobile robots based on these structures [9-11]. Known systems use conventional tensegrity 

structures, based on straight members. Rolling is realized by body deformation and tip-over movement 

sequences, due to periodically changing the length of selected tensioned or compressed members. The 

application of curved components in tensegrity structures indicates their potential ability for the use in 

rolling mobile robots. In our previous work ([12-14]) we have shown, that uniaxial rolling locomotion 

is possible by using structures with curved compressed members. In the present work we focus on the 

kinematic properties of a simple rolling mobile robot, based on a 3D non-conventional tensegrity 

structure with three spatially curved compressed members. In contrast to known works, planar rolling 

movement of this robot is possible without tip-over movement sequences. In section 2 the geometric 

properties of the structure of the robot are discussed. The system’s kinematics is considered in section 

3, partly with the help of a simple equivalent mechanical model in the cases uniaxial and planar 

locomotion. Finally, a brief summary and outlook are given in section 4. 
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2. Structural properties 

The considered structure is based on the regular T3 tensegrity prism (called as Simplex), consisting of 

3 compressed members which are indirectly connected pin-jointed by 9 tensioned members with each 

other. Due to the prestess, the structure is in stable equilibrium as depicted in Fig. 1 a,b. In case of 

identical mechanical parameters of the 6 tensioned members which build the upper and lower triangles 

of the prism (members D-E, D-F, E-F and members A-B, A-C, B-C), identical parameters of the 

diagonal tensioned members (A-E, B-F, C-D), and identical parameters of the compressed members 

(A-D, B-E, C-F), the structure is cyclic symmetric and the twist angle between the top and lower base 

triangles in planes parallel to each other is equal to /6. 
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Figure 1.   The regular T3 tensegrity prism ( a) and b) ) and the considered tensegrity structure with 

curved compressed members ( c)f), thick lines: compressed members, thin lines: tensioned 

members. 

 In the structure to be considered (see Fig. 1 c-f and Fig. 2) the straight compressed members 

(i=1,2,3) are replaced with right handed cylindrical helixes with constant radius R, slope h/(R∙max), 

and with arc lengths L= 0,max∙(R2+(h/φ0,max)2)0.5. With respect to the planned specific application, the 

helix turning angle is selected to max=4/3 (see also Section 3.1). The position of a point at 0 
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(0=0…0,max) of compressed member i can be expressed with the position vector with respect to the 

Cartesian coordinate system {xR’,yR’,zR’} with origin O’ in the cylinder’s center: 
. 

  
0 0,max

i 0 0

0

h ( / 1/ 2)

r ( )= R cos( +i 2 /3) ; i 1,2,3

R sin ( +i 2 /3)

    
       
     

 ,                                                                                        (1) 

 The connectivity of the members is modified in a small manner with respect to the regular T3 

tensegrity prism. To keep the tensegrity twist angle unchanged, the tensioned members corresponding 

to the lower and upper base triangles are attached to the curved compressed members at 0=1/12 and  

0=(4/31/12). In order to suppress possible rotatory motions of the curved compressed members 

inside the structure due to the pin-jointed connections, these members are connected also pin-jointed in 

their middle (points G, H, and J at 0=0,max/2) to the corresponding diagonal tensioned members.  

 As a result of the previous conventions, the outer hull of the resulting structure is assumed as a 

cylinder. In the resulting structure the tensegrity principle is still present, independent of the complex 

load situation in the compressed members. These members are only indirectly connected with each 

other. 

 

Figure 2.   Manufactured model of the considered tensegrity structure in different views. 

 The global shape of the cylindrical tensegrity structure can be influenced by asymmetric changing 

of their prestress. If an identical length or stiffness change of selected tensioned members is induced by 

means of actuators, the geometry of the structure changes from a cylinder to a truncated cone (conical 

frustum). The structure remains cyclic symmetric, if an equal stiffness change of all three tensioned 

members corresponding to the upper (members: D-E, D-F, E-F) or the lower base triangles (members: 

A-B, A-C, B-C) occurs. The intersection points of the three curved segments with planes perpendicular 
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to the yR’zR’ plane lie on circles of variable radius, see Eq. 2. The global shape of the resulting structure 

can be characterized with the conicity parameter CP (1 < CP < +1). 
 

 0 P 0 0,maxR( ) R (1 C (1 2 / ))        .                                                                                              (2) 

 

In this case, the coordinates of the points of the compressed members can be expressed following  

Eq. 1 with the position vectors with respect to the Cartesian coordinate system {xR’,yR’,zR’}: 
 

 
0 0,max

i 0 0 0

0 0

h ( / 1/ 2)

r ( )= R( ) cos( +i 2 /3) ; i 1,2,3

R( ) sin ( +i 2 /3)

    
        
      

 .                                                                                     (3) 

  

The geometry of the structure is depicted exemplarily in Fig. 3 for two different values of CP. 
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Figure 3.   Geometry of the considered structure for the cases a): Cp=+0.5; b): CP=0.4, (R/h=1/3; 

left/middle/right: isometric/side/front view). 

3. Kinematics of the system 

We consider rolling movement of the system on a plane surface without slipping. By assuming high 

prestress of the structure, elastic deformations will be neglected. During locomotion only the curved 

compressed members can touch the ground. The movement is induced by rotation of the structure about 

the longitudinal axis xR’ (rotation angle: ). In dependence of the conicity parameter Cp, movement on 

a straight line or movement on a curved path can be realized. By changing the conicity parameter during 

locomotion, planar movement of the system results. 
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3.1. Uniaxial movement 

If CP=0, uniaxial bidirectional locomotion can be realized corresponding to the cylindrical shape of the 

structure [15]. The center of the structure (O’, origin of the coordinate system {xR’,yR’, zR’}) moves 

along a straight line. In the case xR’ || x0, the locomotion direction is the y0-direction (see Fig. 4). The 

position vector of O’ can be expressed in the global Cartesian coordinate system {x0,y0,z0} by using the 

rolling condition (O’(0,0,R) for =0): T
O'r ( )=(0, R ,R)  


. 

-2R

0

2R

-2R 0 2R 4R 6R 8R 10R

BAC C

x0

y0

A

E FD D E

2R
2/3R

L

b)

a)
C

A

BA
C

B

0

C
R D

A

B F

2R

-2R

E

E
6R

F

4R

D

0

D

F
2R

E

02R
-2R

y0

x0

z0

 

Figure 4.   Uniaxial rolling of the considered structure (conicity parameter: Cp=0, R/h=1/3), a): iso-

metric view, b): top view with paths of the contact points between structure and ground. 

With the help of the transformation matrix TxR()=[1,0,0 ; 0,cos(),–sin() ; 0,sin(),cos()] any points 

of the curved compressed members can be found in dependence of the rotation angle in {x0,y0,z0}: 
 

T T
i 0 i 0 xR O'r ( , ) =r ( ) T ( ) r ( ); i 1,2,3       
  

.                                                                                             (4) 

 

 Due to the specific geometry, the paths of the contact points on the ground correspond to straight-

line segments (see Fig. 4). In general, there are two points of the structure in contact with the ground, 

due to the selected specific value of φ0,max (see Fig. 4 b). These two points lie on two curved compressed 

components. During locomotion, these contact points change continuously on the curved compressed 

members. Furthermore, the contact points alternate on these members. As in the example in Fig. 4 is 
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shown, the contact points lie at the beginning of the movement on the curved compressed members i=1 

(A-D) and i=2 (B-E), then on i=2 (B-E) and i=3 (C-F) and finally on i=3 (C-F) and i=1 (A-D). The 

orientation of the paths of the contact points can be characterized by the helix angle H, where 

tan(H)=R∙φ0,max/h. The length of a path builded by the contact points corresponding to one compressed 

member equals to L. 

The velocity vector of the center O’ of the structure is given by O'r ( (t))
 . The angular velocity 

vector of the system has the orientation corresponding to the x0 axis. 

3.2. Movement on curved paths 

If the conicity parameter equals to non-zero values (CP 0 ), the system moves along a curved path 

with constant radius RP. To describe the system's kinematics for this second basic movement sequence, 

a substitute mechanical model, consisting of a rigid circular disc (radius R) and a rod (length 

LR=h/(2∙CP)) is considered (Fig. 5).  
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Figure 5.   Geometrical parameters in case of movement on curved paths ( a) and b)), c): direction of the 

angular velocity vector. 

The rod (end points O, O’) is connected to the centre point O’ of the disc normal to the disc plane, 

without relative movement capability between disc and rod. The free end of the rod (point O) is rotatable 

supported in the origin of the inertial coordinate system {x0,y0,z0}. With respect to the system to be 
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considered, in the simplified model the disc corresponds to the outer hull of the tensegrity structure in 

the xR’yR’ plane, and the rod to the line segment between the centre point O’ of the tensegrity structure 

and the fixed point O, lying on their longitudinal axis. With respect to the specified parameters the path 

radius can be determined by using geometrical relationships (see Fig. 5): RP=R/sin(), with the conicity 

angle , where tan=CP∙2R/h. The overall rotation of the structure about the z-axis during movement 

is described by the angle . The relationship between this angle and the rotation angle  of the disc can 

be determined by considering the length of the path, builded by the contact points between disc and the 

x0y0 plane (∙RP), and the corresponding arc length on the disc (∙R): 
 

PR R    .                                                                                                                                        (5) 

 

By using the above introduced geometrical relationships, Eq. (5) can be reformulated in dependence of 

the main geometrical parameters: 
  

1
PPtan (C ./sin( ) K2R h )                                                                                                                         (6) 

where KP is a constant, representing the geometrical parameters of the structure. In Fig. 6, selected 

relationships between geometrical and movement parameters are depicted exemplarily. 
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Figure 6.   Movement parameters in dependence of geometrical parameters. a) and b): normalized path 

radius RP/R in dependence of the conicity parameter CP for different R/h values; c): KP in 

dependence of the R/h ratio for different CP; values. 

The position vector of O’ can be expressed in the global Cartesian coordinate system {x0,y0,z0} by using 

the rolling condition (O’(LR∙cos,0,R∙cos) for =0): T
O' R Rr ( )=(L cos ,L sin ,R cos ) .cos       


 

By using the transformation matrices TxR(), TyR()=[cos(),0,sin() ; 0,1,0 ; sin(),0,cos()], and 

T()=[cos(),sin(),0 ; sin(),cos(),0 ; 0,0,1], any points of the curved compressed members can be 

found in dependence of the rotation angle in the {x0,y0,z0} reference system: 
 

T T
i 0 i 0 xR yR O'r ( , , ) =r ( ) T ( ) T ( ) T ( ) r ( ); i 1,2,3            
  

.                                                                               (7) 
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 Due to the specific geometry, the paths of the contact points on the ground correspond to curved 

line segments with non-constant radii (see Fig. 7). As for CP=0, in general there are two points of the 

structure in contact with the ground. These points lie on different curved compressed components. 

Similar to the uniaxial movement, these contact points change continuously on the curved compressed 

members during locomotion. 
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Figure 7.   Movement of the system on a curved path (conicity parameter: Cp=0.5, R/h=1/3), a): iso-

metric view, b): top view with paths of the contact points between structure and ground. 

The velocity vector of the center O’ of the structure is given by O'r ( (t))
 . The angular velocity of the 

structure with Rd (t)/dt      and dγ(t)/dt     can be expressed with 

 PR x x
1tan (C 2R /) hcos( e ))( e           

                                                                                          (8) 

where 

 R R xR xR x ze e (cos( ) e sin( ) e )            
      ,                                                                      (9) 

 xR zR z0 z z(sin( ) e cos( ) e ) e e sin( ) e              
      .                                               (10) 

3.3. Movement in the plane 

The introduced system needs two types of actuation, corresponding to the realization of rotation about 

its longitudinal axis (primary actuation), and corresponding to the needed shape change from cylindrical 

shape to conical shape (secondary actuation). As the above considerations show, this shape change is 

needed to change the locomotion direction. As an example, the primary actuation can be realized by 

moving of internal masses time-shifted along the three curved compressed members, as shown in [12-

14]. Shape change of the system is realized preferably by change of lengths or stiffnesses of selected 

tensioned members, e.g. by replacing these members with shape memory alloy actuators or by using 

conventional additional length variable cables at these members.  
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Planar movement can be induced by purposeful variation of the conicity parameter CP during 

locomotion. By a continuous change of CP, the system moves on a path with continuous changing radius 

(Fig. 8). 
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Figure 8.   Example for the planar movement of the system (R/h=1/3). 

4. Conclusions 

In this paper the kinematics of a rolling mobile robot, based on a non-conventional tensegrity structure 

is considered. It was shown, that rolling locomotion can easily realized with tensegrity structures 

consisting of spatially curved compressed members. Movement in the plane is possible without tip-

over movement sequences. The change of the movement direction is induced with global shape change 

of the robot. The influence of geometrical parameters on the movement behavior was discussed. Further 

investigations will focus on the description of the system’s dynamics and on the realization and testing 

of a prototype. 
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Fractional dynamics and power law behavior in soccer leagues

António M. Lopes, J. A. Tenreiro Machado

Abstract: This paper addresses the dynamics of soccer teams performance dur-
ing a given league. The modeling perspective adopts the concepts of fractional
calculus and power law. The proposed model embeds implicitly details such as
the behavior of players and coaches, strategical and tactical maneuvers during
the matches, errors of referees and a multitude of other effects. The scale of
observation focuses on the teams behavior in the perspective of their classi-
fication along the league. Data characterizing 4 European soccer leagues are
processed and discussed. The computational and mathematical modeling leads
to the emergence of patterns that are analyzed and interpreted in the light of
complex systems.

1. Introduction

Soccer is the most popular sport in Europe [2, 5]. The game is played by 2 teams of 11

players, on a rectangular field with a goal placed at each end. The objective of the game

is to score by getting a spherical ball into the opposing goal. Each team includes 10 field

players, that can maneuver the ball using any part of the body except hands and arms, and

one goalkeeper, who is allowed to touch the ball with the whole body, as long as he/she stays

in his/her penalty area. Otherwise, the rules of the field players apply. The match has 2

periods of 45 minutes each. The winning team is the one that scores more goals by the end

of the match.

In most European countries, soccer competitions are organized hierarchically in leagues

composed by groups of teams. At the end of each season, a promotion and relegation system

decides which teams move up and down into the hierarchy. In a given league and season

each pair of teams plays to matches, so that the visited and visitor interchange place. All

teams start with zero points and, at every round, one {victory, draw, defeat} worths {3, 1, 0}
points. By the end of the last round, the team that accumulated more points is the champion

[1].

This paper studies the dynamical performance of soccer teams in a given league. The

modeling perspective adopts the concepts of fractional calculus and power law [16, 15]. The

proposed approach embeds implicitly details such as the behavior of players and coaches,

strategical and tactical maneuvers during the matches, errors of referees and a multitude of
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other effects. The scale of observation addresses the teams behavior in the perspective of

their classification along the league. Data characterizing the year 2018-2019 and the 4 leagues

Spanish ‘La Liga’, English ‘Premiership’, Italian ‘Serie A’ and French ‘Ligue 1’ are processed

and discussed. The computational and mathematical modeling leads to the emergence of

patterns that are analyzed and interpreted in the light of complex systems [11, 14, 3].

Bearing these ideas in mind, this paper is organized as follows. Section 2 models the

behavior of the teams in 4 top European soccer leagues by means of power laws functions.

Section 3 analyzes the leagues in the perspective of the entropy of the spatio-temporal

patterns exhibited by distinct alternative models. Finally, Section 4 outlines the conclusions.

2. Power law behavior of the teams’ dynamics

Let us consider N teams competing in a league for one season. Therefore, the league has

R = 2(N − 1) rounds, and each team plays R/2 matches at home and R/2 matches away.

Let us denote by xi(k), i = 1, . . . , N , 0 ≤ k ≤ kr, the teams’ positions up to the round

kr ∈ {3, . . . , R}. The lower limit kr = 3 is adopted to yield data-series with a minimum

number of points for processing. Therefore, the signals xi(k) evolve in discrete time and

1-dimensional space, and can be seen as the output of a complex system.

We use the nonlinear least-squares [8, 4] to test the behavior of xi(k) for 6 hypotheses,

namely power law (PL), Hoerl (Ho), shifted power (SP), quadratic (Qu), Hill (Hi) and vapor

pressure (VP) models, given by:

PL : x̂PL
i (k) = ai · kbi , (1a)

Ho : x̂Ho
i (k) = ai · bki · kci , (1b)

SP : x̂SP
i (k) = ai · |k − bi|ci , (1c)

Qu : x̂Qu
i (k) = ai + bi · k + ci · k2, (1d)

Hi : x̂Hi
i (k) =

ai · kbi

cbii + kbi
, (1e)

V P : x̂V P
i (k) = e

ai+bi
ci·ln(k) , (1f)

where x̂i denote the approximated values, k represents time and {ai, bi, ci} ∈ R are the

models’ parameters. Naturally, these parameters depend on kr, that is, they vary with time.

We can adopt other fitting models, eventually with more parameters, that adjust better

to some particular series xi(k). However, only simple analytical expressions, requiring a

limited set of parameters, are considered [10], otherwise the interpretation of the parameters

becomes unclear.
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Fig. 1(a) depicts the time evolution of the FC Barcelona position, x1(k), and the fitting

values, x̂1(k), obtained with the models (1a)-(1f), up to the end of the 2018-2019 season,

that is for kr = 38. Fig. 1(b) represents the fitting error x1(k)− x̂1(k).
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Figure 1. Time evolution of the FC Barcelona position up to the end of the 2018-2019

season (kr = 38) and the approximate values obtained with the models (1a)-(1f) for: (a)

position, x1(k), and fitting values, x̂1(k); (b) fitting error x1(k)− x̂1(k).
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Figure 2. Locus of the the model parameters (a1, b1) for the 2018-2019 champions of ‘La

Liga’ and ‘Premiership’: (a) PL model for FC Barcelona; (b) Ho model for FC Barcelona; (c)

PL model for Manchester City; (d) Ho model for Manchester City. The point labels denote

kr.

Fig. 2 depicts the parameters (a1, b1) of the PL and Ho models for the 2018-2019

champions of ‘La Liga’ and “Premiership”, namely FC Barcelona and Manchester City,

respectively. The point labels represent the value of kr. For the Ho model the parameter

ci is omitted since it does nor vary significantly. We verify that for the FC Barcelona we

have two trends in the (a1, b1) locus. The first corresponds to the period 3 ≤ kr ≤ 8,

where the (a1, b1) trajectory evolves influenced by a set of consecutive bad results between

rounds 5 and 8. The second corresponds to the period 8 ≤ kr ≤ 38, where the (a1, b1) path

changes direction driven by a consistent and positive team behavior towards the final victory

at kr = 38. For the Manchester City the (a1, b1) evolution is more complex. Initially, we

348



observe a route for the period 3 ≤ kr ≤ 7. Then, the locus has a slight change, due to a draw

achieved by the team at round 8, but recovers fast its initial trend during for 9 ≤ kr ≤ 15.

Again the locus (a1, b1) changes driven by the set of team negative results in rounds 16 -

19 and 24. From kr = 25 onward, the (a1, b1) locus evolves positively influenced by the

consecutive team victories until the end of the season at kr = 38. For other teams we can

draw similar conclusions, meaning that there exists a clear relationship between the models’

parameters (ai, bi) and the teams’ performance along the season. Moreover, we verify that,

in general, abrupt changes in the (ai, bi) trend correspond to inconsistent results at early

rounds, that is, small values of kr. For larger kr, eventual inconsistencies on the teams’

behavior do not translate in significant modifications of the (ai, bi) patterns, since the fitting

becomes less sensitive to the number of fitting points.

Fig. 3 depicts the 10, 50 and 90 percentiles of the root-mean-squared error (RMSE)

of the PL and Ho fit to the data-series xi(k), for all teams, i = 1, · · · , 20, and rounds

0 ≤ k ≤ kr, for kr ∈ {3, · · · , 38}, both for the ‘La Liga’ and the “Premiership” during

the 2018-2019 season. The results demonstrate the adequacy of the fitting functions. For

the other teams the fitting quality is similar, with the exception of the initial transient.

Therefore, no specific model can be favored against the others. Nonetheless, the PL (1a) has

the advantage of yielding a good fit while requiring only 2 parameters.

By approximating the output signals xi(k) through power law functions (1a) we are

modeling the complex system as a fractional integrator [17, 6, 13, 12, 18] of order bi ∈ R+

for a constant, step-like, input signal.

If a team obtains {victory, draw, defeat} in all matches, then xi(k) is a straight line

with ai = {3, 1, 0} and bi = 1. However, real-world teams have victories/draws/defeats

and, thus, yield a fractal like response that follows a power law behavior. Therefore, frac-

tional/unit values of bi reflect variable/constant time evolution, while values of ai close to

3/1/0 correspond to victory/draw/defeat results [15].

3. Entropy of the spatio-temporal patterns of the models’ parameters

For each league we now compute the PL parameters (ai, bi) that fit the teams’ positions

xi(k), i = 1, . . . , 20, 0 ≤ k ≤ kr, up to the round kr ∈ {3, · · · , 38}. Therefore, for every kr

we have an array of 20 × (kr − 2) points in a 2-dimensional space. We then determine the

bi-dimensional histograms by binning the data of each array into M ×M = 100× 100 bins

(αj , βk), j, k = 1, . . . ,M . Finally, we calculate the Shannon entropy [19, 7]:

S(kr) = −
M∑
j=1

M∑
k=1

P (αj , βk) logP (αj , βk) , (2)
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Figure 3. The RMSE of the PL and Ho model fit versus kr: (a) PL for ‘La Liga’; (b) PL

for ‘Premiership’; (c) Ho for ‘La Liga’; (d) Ho for ‘Premiership’.

where the probabilities P (αj , βk) are approximated by the data relative frequencies.

It should be mentioned that the entropy is a measure of regularity that has been suc-

cessfully adopted in the study of complex systems [9, 14].

For example, Fig. 4 depicts the histograms of the 2018-2019 ‘La Liga’, ‘Premiership’,

‘Serie A’ and ‘Ligue 1’ for kr = 38. We verify that the parameters (ai, bi) exhibit less dis-

persion for the pair P1 = {‘La Liga’, ‘Ligue 1’} than for the pair P2 = {‘Premiership’, ‘Serie

A’}, meaning that the results of the Spanish and French teams have lower time variability

than the English and Italian ones.
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(a) (b)

(c) (d)

Figure 4. Histograms of the parameters (ai, bi) up to the end of the season 2018-2019

(kr = 38) for 4 leagues: (a) ‘La Liga’; (b) ‘Premiership’; (c) ‘Serie A’; (d) ‘Ligue 1’.

Fig. 5 illustrates the evolution on the entropy, S(kr), up to each round kr ∈ {3, . . . , 38},
of ‘La Liga’, ‘Premiership’, ‘Serie A’ and ‘Ligue 1’. Again, we verify that the pairs P1 and

P2 reveal similar behavior. For the pair P1 the entropy increases faster with kr that for the

pair P2. This means that, in the 2018-2019 season, the Spanish and French teams started

more irregular than the English and Italian ones. Nevertheless, since for all leagues, S(kr)

converges to a similar settling value, we conclude that by the end of the season the {victory,

draw, defeat} global pattern exhibited by teams in different leagues is identical.

351



3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
0

1

2

3

4

5

6

'La Liga'
'Premiership'
'Ligue 1'
'Serie A'

Figure 5. Evolution on the entropy S(kr) versus kr ∈ {3, . . . , 38}, for the leagues ‘La Liga’,

‘Premiership’, ‘Serie A’ and ‘Ligue 1’.

4. Conclusions

We proposed a complex systems’ perspective for analyzing soccer teams competing within

a league season. Firstly, we adopted 6 fitting models to describe the teams’ positions along

one season and interpreted the loci of the models’ parameters as a signature of the system

dynamics. Secondly, we studied the entropy of the models parameters’ spatio-temporal

patterns for comparing different leagues. Both approaches represent valid tools to describe

the complex behavior of such challenging systems.
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Nonlinear dynamics of the sensory element of the atomic force microcopy 

 

 

Alexey Lukin, Popov Ivan, Udalov Pavel 

In this paper, a microscope with a sensitive element in the form of a cantilever beam 

operating in the frequency contact mode. The problem of obtaining approximate 

analytical expressions describing the dynamics of the sensitive element in the case of 

forced oscillations, taking into account the pre-stressed state caused by static 

deformation and non-linear force of interaction with the sample. Asymptotic and 

variational methods of mathematical physics, a model is constructed and estimates are 

obtained, the result is compared with a numerical solution by the finite element 

method. The key focus in this work is the analysis of the nonlinear dynamics of the 

sensitive element of an atomic force microscope and the selection of the information 

signal from the nonlinear effects associated with the interaction of the indenter and the 

sample. It is interesting and practically important to conduct a qualitative analysis of 

the dynamics of a sensitive element using asymptotic methods of the nonlinear theory 

of oscillations, and to obtain final analytical expressions and curves that could serve 

as a basis for highlighting useful signal. Due to the generality of the method, the range 

of applicability of these results would not be limited to an atomic force microscope, 

and they would also prove useful in designing gyroscopic instruments. 

1.1 Introduction 

In this work, we will consider such a section of microscopy as scanning probe microscopy (SPM), 

which is one of the most powerful modern methods in studying the surfaces of objects. 

In its turn, SPM is divided into two main layers, “modes” - scanning tunneling (STM) and atomic 

force microscopy (AFM), which allow studying the topography of both conductive and dielectric 

materials. Namely, a qualitative analysis of AFM devices, its operating modes, and a method for 

determining the surface will be made. 

Before describing the AFM, it is necessary to say about its predecessor - a scanning tunneling 

microscope (STM). The main principle of its operation is that in the STM a metal needle is brought to 

the sample at a distance of 0.1 nm. Further, when a certain potential is applied, a tunnel current arises 

in this needle, which changes when interacting with electrons on the surface of the object under study. 

And just by this change you can judge the relief of the sample. In more detail, the principle of STM 

operation is considered in. 
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STM gives fairly accurate results of the surface of the sample, but since its principle of operation is 

associated with the tunneling current and its interaction with the electrons located on the sample, 

unfortunately, in some situations the STM will not be able to give correct and correct results. 

There are extreme cases, for example, the presence of a sample in water, vacuum, the study of non-

conductive, dielectric materials, in which the STM will not be able to give correct results, not to 

mention the fact that in some cases it cannot be used. 

The next step in scanning probe microscopy was AFM, which can and works in almost any medium, 

not counting the one that can destroy it, for example, acid, etc. It is also possible to work with non-

conductive and dielectric materials. 

The sensitive element of the atomic force microscope is a beam of constant cross section with a 

tip at the end. A change in the distance between the tip and the surface of the test sample will give 

information about the topography of the sample. In contact mode, the AFM tip is subjected to 

repulsive forces due to the proximity of the electron shells of the tip and the sample. With this 

interaction, the beam is repelled to its equilibrium position, and then continues to pave near it. Further 

we will be based on the contact theory of Hertz, representing the contact between the infinite half-

plane and the hemisphere (end of the tip). 

For the most accurate operation of the AFM, phase modulation is used, in which the sample is 

subjected to a harmonic signal at the resonant frequency of the sensing element. And by changing this 

frequency from the resonance one can judge the topography of the object. 

After that, we consider the case of subharmonic resonance, in which the sample will be excited at 

a frequency equal to the integer part of the resonance 

1.2 Mathematical model 

Next, we will consider the movement of the AFM during its operation in contact mode. When 

the probe is excited by an external harmonic signal, bending vibrations are observed, the movements 

of which occur in the vertical direction. 

We choose a linear beam (Bernoulli – Euler beam) as a mechanical model of the AFM, to which a 

force is applied at its tip. 

 

Figure. 1. Model of  contact mode AFM. 
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Further, following the notation [4], we write the equation of bending vibrations and the 

corresponding boundary conditions: 

 

 ̂    ̈̂        

 ̂  ̂    ̂
   ̂         

 ̂    ̂         

  ̂     ̂  ̂   ̂   ( ̂ ̇̂   ̂  ̂
   ̂  ̂

   ̂     ̂ ̂)  ̂         

where         ̇ respectively denote the derivative with respect to the new dimensionless coordinate  ̂ 

and dimensionless time  ̂.  ̂ – dimensionless movement of the tip,  ̂ - dimensionless coefficient of 

friction,  ̂ ,  ̂ ,  ̂  - Hertz dimensionless coefficients[4, 6], ̂,  ̂ - dimensionless amplitude and 

frequency of the exciting harmonic signal. Dimensionless quantities and the transition to dimensional 

are shown in [4]. 

1.3 Linear model of AFM motion 

Next, we consider the mathematical model (1) - (4), discarding all nonlinear terms in it 

and find solution as: 

 ̂      ̂     ̂  ̂,     

where  ̂ -dimensionless natural frequency of the AFM. Substitute (5) in (1)-(4) we get the expression 

for the natural frequencies of the AFM: 

  ̂                         
                     

where  ̂ 
    

 
. 

And we get the expression of the mode shapes : 

    ̂   ( 
              

              
       ̂         ̂   (       ̂        ̂ ))     

where   - unknown constant that can be determined from the normalization condition. 

1.4 Asymptotic formulation of the AFM motion problem 

Next, we obtain an analytical expression for the cantilever deflection using the multi-scale method []. 

 efine the defle tion of the  eam w   in the form  

 ̂    ̂ ( ̂  ̂   ̂   ̂ )     ̂ ( ̂  ̂   ̂   ̂ )     ̂ ( ̂  ̂   ̂   ̂ )     

where   - small dimensionless parameter. 

Further, by changing the variables with respect to time  ̂, we pass to the derivatives with respect to  ̂ : 

 

  ̂
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  ̂ 
   

           (  
       )         

   
 

  ̂ 
      

We renormalize the coefficient of linear friction and the amplitude of the exciting force, assuming 

that they have the corresponding second and third orders of smallness. 

 ̂     ̂   ̂     ̂      

It is worth noting that it is at this moment that our liberty is present: namely, in the choice of the 

smallness of these values. But, as practice shows [3,5,6], it is precisely with the corresponding orders 

of smallness that the final expression for determining the topography of the surface of the studied 

sample, as will be shown below, will include all parameters of not only the AFM, but also the sample 

itself. Equating the expressions with the same powers of ε, we o tain the following pro lems  

   

   ̂ 

  ̂ 
   

  ̂       

 ̂   ̂          

  ̂ 

  ̂
  ̂          

   ̂ 

  ̂   ̂          

   ̂ 

  ̂   ̂  ̂              

  : 

   ̂ 

  ̂    
  ̂         ̂       

 ̂   ̂          

  ̂ 

  ̂
  ̂          

   ̂ 

  ̂   ̂          

   ̂ 

  ̂   ̂  ̂   ̂     ̂  ̂ 
   ̂        

  : 

   ̂ 

      
  ̂   [      ̂  (  

       ) ̂ ]      

 ̂   ̂          

  ̂ 

  ̂
  ̂          
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   ̂ 

  ̂   ̂          

(
   ̂ 

  ̂   ̂  ̂ )   ̂   [ ̂   ̂    ̂  ̂  ̂   ̂  ̂ 
   ̂     ̂ ̂]  ̂        

The problem for   (13)-(17) coincides with the linear problem (1) – (4). 

After successively solving problems (18)-(22) and (23-27), determining the secular terms, we arrive 

at a system of differential equations for the amplitude   and phase    of the beam oscillations. 

   ( ̂ )

  ̂ 

  
 ̂     

  
   

 

    
            

  
   ( ̂ )

  ̂ 

     
 

   
*  ̂ (      ̃            )    ̂   

    +
  

 

 
  

 
 

    
            

where :  

  ∫   
   ̂ 

 

 
   norm of eigenfunction         

 -detuning parameter defined as: 

 ̂              

   
 ̂   

    

    ̂ 
      

1.5 Periodic motions 

Periodic motions correspond to the fixed points (   ,    ) of equations (28) and (229). Thus, letting 

     ̂  

  ̂ 
 

     ̂  

  ̂ 
   in equations (28) and (29), we obtain the following frequency– response 

equation: 

  
      

  √      
 
     

       
       

     

    
  

     

where: 

  
 

    
 

     

  
 ̂     

  
      

  
 

    
*  ̂ (      ̃            )    ̂   

    +      

The maximum oscillation     is reached when the radical expression disappears in equation (33), i.e., 

at maximum, the roots of this expression become multiple. Therefore, the value of the frequency 

detuning parameter, which corresponds to it, is known to us and is equal to   =   . 
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Thus we obtain the dependence of the frequency detuning parameter at which the maximum 

amplitude is o served on the  antilever’s stati  defle tion. 

   
 

  ̂   
 *   ̂ ( ̃     

 ̂   
    

   ̂ 
)    ̂   

    +      

 

Figure 2. Graph of the frequency response of nonlinear oscillations in the case of  ̂  =50, 

F=(1, 2, 3, 4 ),  ̂ = 0.12 ,  ̂   ̂ . 
 

Figure 4 shows that up to two values of the amplitude of oscillations can correspond to a certain 

value of σ. And in order to esta lish whether we are really at the maximum amplitude, it is ne essary 

to act in the following way: for example, first start to increase the frequency of external excitation, if 

the amplitude decreases, then, accordingly, the maximum is in the zone of lower frequencies. Then, it 

will be necessary to reduce the frequency - if the amplitude starts to increase and at some point 

decreases sharply, it means that we were at the maximum amplitude. If this is not observed, then we 

are not in the region of minimum amplitude. The main disadvantage of this operation - each 

measurement of the amplitude after changing the frequency, even waiting for a steady motion - takes 

time. It is the time taken to identify the amplitude of the oscillations that are one of the significant 

disadvantages of AFM in the case of resonant excitation. 

AFM motion in the case of subharmonic resonance 

Previously, AFM operation was considered when a sample was excited by a harmonic signal at one of 

the resonant frequencies. Next, we will consider the case in which the excitation frequency will be 

some part of the resonance, for example, half of natural frequency. Further construction will be based 

on [4]. Below are only the main points. We study the response of the probe to a subharmonic 

resonance at half the natural frequency. 

We write the response of the system in the form of the sum of the forced and resonant 

component: 
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 ̂  ̂  ̂   ̂ ̂  ̂     ̂ ̂   ̂  ̂  ̂       

We write the periodic motions of the AFM in the case of subharmonic resonance in the Nayfe 

notation [4]. 

  
    ̂  

       
 

  ̂ 
       

     

   
       

   

 ̂ 
  

  
 

 ̂ 
       

     

where: 

 ̂  ̂  
      ̂      ̂      ̂       ̂        ̂  ̂      ̂ ̂       ̂ ̂      ̂ ̂ 

 [  ̂      ̂      ̂      ̂      ̂    ̂
         ̂    ̂ ]

      

where   ̂
   ̂. 

Such an approximation for the probe response is valid and exists for all frequencies  ̂ far from 

the resonant ones. For  ̂   ̂ , the denominator in (41) is zeroed. 

    ̂  
 ̂    ̂ 

    ̂ 
      

    ̂  
                                ̂       ̂        ̂       ̂ 

 [  ̂                         
              ]

 

     

where      ̂    

   
 

 
  

    {  ̂ 
 [            ]    ̂ }      

    ̂  ̂  
     ̂         

1.6 Periodic motions in the case of subharmonic resonance 

Periodic motions correspond to the fixed points (   ,    ) of equations (28) and (229). Thus, letting 

  
    

    in equations (39) and (40), we obtain the following frequency– response equation: 

   
 [  ̂   

     (  
      

 

 ̂ 
)

 

]  
  

 ̂ 
    

       

                                                            ,      . 

Second case give us: 

    √
 ̂ 

   
[  √

  

 ̂ 
    ̂   

    ]      

The question of stability was fully considered in []. Let us write down only the values of the 

critical force, which will be enough to act on the system to deduce it from the trivial solution and the 
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critical parameter of the frequency detuning, which will determine the interval of the non-trivial 

solution for the beam oscillation amplitude. 

    

√     ̂   
    

 ̂ 
 

     

It determines the interval [      ]  of the forced frequency, within which the trivial solution is 

unstable. 

On the other hand, with a fixed parameter σ, it is possible to act on the system with different 

levels of external force F. 

The critical level of force that corresponds to the instability of the trivial solution: 

   || ̂ 

√     ̂   
    

  ̂   
     ̂   

||      

 

Figure 3.Solid lines show stable solutions, dashed lines indicate unstable solutions. In the 

experiment, only solutions on solid lines can be seen. A stable solution is stable for all values of the 

frequency detuning around   ̂ , except for the interval [      ]. 

Stable and unstable branches of the solution are bent to the left, because the nonlinearity in this 

case is mitigating. 

It can be seen from the foregoing that, generally speaking, the amplitude at subharmonic 

resonance can be zero, that is, in this case there will be no information signal for registering the 

surface of the sample. The interval of an unstable trivial amplitude value [      ]was previously 

established, in which the zero position loses stability and switches to a solid branch. And it is 

precisely by the value of the amplitude on it that a conclusion will be made about the cantilever 

deflection. 

The main difficulty associated with working in a subharmonic resonance is that it is necessary to 

select the parameters of the frequency detuning and the excitation force in such a way that the trivial 

solution loses its stability and switches to a nontrivial stable branch. 
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1.7 Asymptotic calculation of the first natural frequency 

We turn to the transcendental equation to determine the natural frequencies of the beam (6).  

Next, we represent trigonometric functions through interpolation polynomials describing their 

behavior on a half-wave period. We represent hyperbolic functions using the Padé approximation. 

 

        
 

  
        

     

         
  

      
 

      

 

     

For example, we use the Pade approximation [0 1]. Substituting it and the representations (50) and 

(51) in (6). Next, using the direct decomposition method, we find the root at the zero degree of the 

small parameter. 

The expression obtained for the first approximation of the root is obtained using symbolic 

calculations in Matlab. Only the value of the absolute error between the analytical expression for the 

natural frequency and asymptotic is given below. 

Absolute error in the case of Pade approximation: 

         
     

Below is a graph illustrating the Pade table, those ratios of the numerator and denominator for which 

there is a minimum absolute error are highlighted in red. Errors of 99% are due to the fact that the 

approximant is trying to catch the zero frequency. 

 

Figure 4. Pade’s ta le 
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1.8 Conclusion 

Summing up the above, I want to note that microscopy as a subject of scientific research is of great 

interest. Using AFM as an example, it was shown that special attention must be paid to modeling the 

force of interaction between the tip and tip, because for each operating mode this force is modeled 

individually. 

The contact mode was selected as the main AFM mode. At first glance, the main problem was related 

to nonlinearity in the boundary conditions. Then we used the MMM, an asymptotic solution was 

constructed for the deflection function. As in all problems associated with MMM, in the end a 

nonlinear system of differential equations is obtained with respect to the amplitude and phase of the 

beam oscillations. Next, periodic motions were considered and the frequency response of nonlinear 

oscillations was constructed. A breakdown of the amplitude was revealed, which is characteristic of 

such problems. 

Similar studies were conducted for subharmonic resonance. This is a resonance in which the sample is 

no longer excited at the resonant frequency, but, for example, at doubled. It was found that in this 

solution there is a trivial solution for the oscillation amplitude. 

A qualitative study is carried out on the stability of trivial solutions and the boundaries of the 

frequency detuning parameter and the critical force for the instability of this trivial solution are 

established. Of course, each of these two methods for determining the surface of a sample has its pros 

and cons. In the case of resonant excitation, it is necessary to check whether we are at the maximum 

amplitude. In a subharmonic resonance, however, time is needed for the trivial solution to fall into the 

instability region. 
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Size-dependent nonlinear vibrations of micro-plates 

subjected to in-plane magnetic field 

 

 
Olga Mazur, Jan Awrejcewicz 

Abstract: Nonlinear vibrations of the microplates subjected to the influence of a 

longitudinal magnetic field are considered. Size-depended model based on a modified 

couple stress theory is employed. The governing equations for geometrically nonlinear 

vibrations use the von Karman plate theory.  Effect of the magnetic field is taken into 

account due to the Lorentz force deriving from the Maxwell's equations. Developed 

approach is based on applying of the Bubnov-Galerkin method and reducing partial 

differential equations to an ordinary differential equation.  Some calculations are 

performed to validate the proposed algorithm in comparison with the known from 

literature results. Influence of the magnetic field, material length scale-parameter, plate 

aspect ratio on the system behavior is studied. 

It is clear that problems of micro and nano sized elements have been increasingly studied because of 

the widespread use of microplates, microbeams, microshells in high-tech industries. It is often the 

microelements are subjected to various loads which can significantly effects on its behavior. 

Investigation of plate under magnetic field in-plane influence is of great importance due to using as 

elements of NEMS, MEMS, resonators, sensors etc. The experimental and theoretical investigations 

allow to conclude that a size-dependent effect appears when thickness is in a micro or nano scale [1] 

and for accurate analysis classical elasticity theory can be not enough. Various theories have been 

applied to study of micro and nano structures, theory of micropolar elasticity by Cosserat and Cosserat 

[2], couple stress theory by Mindlin and Tiersten [3], Toupin [4] , Koiter [5],  the nonlocal elasticity 

theory by Eringen [6], strain gradient theory  by Lam et al. [1] . In this paper we use modified couple 

stress theory (MCST) proposed by Yang et al [7], which contains only one additional material length 

scale parameter and a symmetric couple stress tensor.  

Recently, MCST was used in linear vibrations, buckling and bending plate analysis [8-13], nonlinear 

vibrations of micro-plates [14,15], FG Mindlin microplates [16], viscoelastic plates [17], chaotic 

vibrations of nano-shells [18]. Influence of magnetic field on micro and nano plates is studied in [19-

22] using nonlocal elasticity theory. Analysis of published results has shown that geometrically 

nonlinear vibrations of small-sized plates subjected to magnetic influence in framework MCST has not 

been investigated yet. 

In the paper we present an analytical method for small-sized geometrically nonlinear vibrations of 

plates. The investigation is based on the modified couple stress theory, the von Karman plate theory, 
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Kirchhoff-Love hypotheses and Maxwell’s relations. The governing PDEs is reduced to ODE by 

applying of the Bubnov-Galerkin method. The present results contain study of the magnetic field effect 

and material length scale parameter influence on the frequencies and backbone curves.  

1.1. Formulation  

Geometrically nonlinear vibrations of isotropic plate (see Fig.1) in magnetic field are considered. 

According to the modified couple strain theory [7] the strain energy unlike the classical elasticity theory 

depends on stress tensor and curvature tensor and it is presented as 

𝑈 =
1

2
∫ (𝜎𝑖𝑗𝑉

𝜀𝑖𝑗 + 𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝑉 (1) 

where 𝜎𝑖𝑗 , 𝜀𝑖𝑗 , 𝑚𝑖𝑗𝜒𝑖𝑗 are components of stress tensor, strain tensor, diviatory part of the couple stress 

tensor, symmetric curvature tensor, that are defined as 

 𝜎𝑖𝑗 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 ,   𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑢𝑚,𝑖𝑢𝑚,𝑗),                                                       (2) 

 𝑚𝑖𝑗 = 2𝑙2𝜇𝜒𝑖𝑗 , 𝜒𝑖𝑗 =
1

2
(𝜃𝑖,𝑗 + 𝜃𝑗,𝑖),                                                                                                 (3) 

where 𝜆, 𝜇 are Lame constants 

 𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
, 𝜇 =

𝐸

2(1+𝜈)
. 

𝛿𝑖𝑗 is Kronecker delta, 𝑙 is a material length scale parameter, 𝜈 is Poisson’s ratio, E is Young’s modulus,  

𝑢𝑖 are displacements, 𝜃𝑖  are components of rotation vector, which have form  

𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗 ,                                                                                                                              (4) 

here 𝑒𝑖𝑗𝑘   is permutation symbol. 

The nonlinear dynamics of the plate is derived by the equations based on the von Karman theory. Mixed 

form of the governing equations in propagation of elastic waves in longitudinal equations are neglected 

is presented [18] 

 (𝐷 + 𝐷𝐿)∆
2𝑤 = 𝐿(𝑤, 𝐹) − 𝜌ℎ

𝜕2𝑤

𝜕𝑡2 + 𝑞𝑙,                                                                                       (5) 

 
1

2
𝐿(𝑤,𝑤) = −

1

𝐸ℎ
∆2𝐹,                                                                                                                    (6) 

 𝐿(𝑤,𝑤) = 2 (
𝜕2𝑤

𝜕𝑥2

𝜕2𝑤

𝜕𝑦2
− (

𝜕2𝑤

𝜕𝑥𝜕𝑦
)
2

),  𝐿(𝑤, 𝐹) =
𝜕2𝑤

𝜕𝑥2

𝜕2𝐹

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑦2

𝜕2𝐹

𝜕𝑥2
− 2

𝜕2𝑤

𝜕𝑥𝜕𝑦

𝜕2𝐹

𝜕𝑥𝜕𝑦
. 

In (5), (6) 𝐹 is the stress function [18,23], h is thickness of the plate, 𝐷 =
𝐸ℎ3

12(1−𝜈2)
, 𝐷𝐿 =

𝐸𝑙ℎ2

2(1+𝜐)
, q is load. 

 System of equations (see Eq. 5, 6) is supplemented with the boundary conditions: 

 simply supported movable edges: 
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𝑤 = 0,
𝜕2𝑤

𝜕𝑥2
+ 𝜈

𝜕2𝑤

𝜕𝑦2
= 0, 

𝜕2𝐹

𝜕𝑥𝜕𝑦
= 0, ∫

𝜕2𝐹

𝜕𝑦2
= 0, 𝑥 = 0, 𝑎

𝑏

0
,                                                                   (7) 

𝑤 = 0,
𝜕2𝑤

𝜕𝑦2
+ 𝜈

𝜕2𝑤

𝜕𝑥2
= 0, 

𝜕2𝐹

𝜕𝑥𝜕𝑦
= 0, ∫

𝜕2𝐹

𝜕𝑥2
= 0, 𝑦 = 0, 𝑏

𝑎

0
.                                                                   (8) 

simply supported immovable edges: 

𝑤 = 0,
𝜕2𝑤

𝜕𝑥2 + 𝜈
𝜕2𝑤

𝜕𝑦2 = 0, 
𝜕2𝐹

𝜕𝑥𝜕𝑦
= 0, 𝑢 = 0, 𝑥 = 0, 𝑎 ,                                                                   (9) 

𝑤 = 0,
𝜕2𝑤

𝜕𝑦2
+ 𝜈

𝜕2𝑤

𝜕𝑥2
= 0, 

𝜕2𝐹

𝜕𝑥𝜕𝑦
= 0, 𝑣 = 0, 𝑦 = 0, 𝑏.                                                                     (10) 

 

Figure 1. Microplate subjected to in-plane magnetic field 

1.2. Influence of magnetic field  

Changing the vibrational characteristics of the small-sized plates by an appropriate external influence 

can be effectively used in the structure design, vibration control etc. One of the significant effects is the 

use of a magnetic field. We consider the plate exposed to the uniaxial magnetic field [19,21,22], defined 

by the vector of magnetic field strength 

 �⃗⃗� = (𝐻𝑥, 0,0).                                                                                                                                                                       (11) 

From Maxwell’s relations distributing vector of the magnetic field ℎ⃗  has the form 

 ℎ⃗ = [∇, [U⃗⃗ , H⃗⃗ ]],                                                                                                                             (12) 

where vector �⃗⃗� = (𝑢𝑥, 𝑢𝑦 , 𝑢𝑧) is vector of displacements. After substitution (see Eq. 11) into (see Eq. 

12) it can be obtained 

 ℎ⃗ = (−𝐻𝑥
𝜕𝑢𝑦

𝜕𝑦
− 𝐻𝑥

𝜕𝑢𝑧

𝜕𝑧
, 𝐻𝑥

𝜕𝑢𝑦

𝜕𝑥
, 𝐻𝑥

𝜕𝑢𝑧

𝜕𝑧
).                                                                                                             (13) 

Thus, current density 𝐽  is written as 

𝐽 = [∇, h⃗ ]=( 𝐻𝑥
𝜕2𝑢𝑧

𝜕𝑥𝜕𝑦
− 𝐻𝑥

𝜕2𝑢𝑦

𝜕𝑥𝜕𝑧
,−𝐻𝑥

𝜕2𝑢𝑧

𝜕𝑥2 − 𝐻𝑥
𝜕2𝑢𝑦

𝜕𝑦𝜕𝑧
− 𝐻𝑥

𝜕2𝑢𝑧

𝜕𝑧2 , 𝐻𝑥
𝜕2𝑢𝑦

𝜕𝑥2 + 𝐻𝑥
𝜕2𝑢𝑦

𝜕𝑦2 + 𝐻𝑥
𝜕2𝑢𝑧

𝜕𝑦𝜕𝑧
).(14) 

The Lorentz force is defined as 

𝑓 = (𝑓𝑥 , 𝑓𝑦 , 𝑓𝑧) = 𝜂[𝐽 , �⃗⃗� ].                                                                                                            (15) 

In (see Eq. 15) 𝜂 is the magnetic permeability. 

It should be noted that the transverse vibrations are considered and only 𝑓𝑧   is taken into account [22]. 

Formula (see Eq. 15) gives 

 𝑓𝑧 = 𝜂𝐻𝑥
2(

𝜕2𝑢𝑧

𝜕𝑥2 +
𝜕2𝑢𝑦

𝜕𝑦𝜕𝑧
+

𝜕2𝑢𝑧

𝜕𝑧2 ).                                                                                                        (16) 
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For Kirchhoff-Love plate transverse component 𝑓𝑧 takes form 

  𝑓𝑧 = 𝜂𝐻𝑥
2(

𝜕2𝑤

𝜕𝑥2
−

𝜕2𝑤

𝜕𝑦2
).                                                                                                              (17)    

where 𝑤 is mid-plane displacements of the plate along z directions. As a result, force produced by 

magnetic field can be presented as 

 𝑞𝑙 = ∫ 𝑓𝑧𝑑𝑧 = 𝜂ℎ𝐻𝑥
2(

𝜕2𝑤

𝜕𝑥2
−

𝜕2𝑤

𝜕𝑦2
)

ℎ/2

−ℎ/2
.                                                                                         (18) 

1.3. Linear vibrations of microplate in magnetic field 

In the case of linear vibrations, system (see Eq. 5,6) is reduced and we have following equation 

 (𝐷 + 𝐷𝐿)∆
2𝑤 = −𝜌ℎ

𝜕2𝑤

𝜕𝑡2
+ 𝑞𝑙 .                                                                                                  (19) 

Solution of such equation is taken as 𝑤(𝑥, 𝑦, 𝑡) = 𝑋(𝑥, 𝑦)𝑐𝑜𝑠𝜔𝑚𝑛𝑡, where 𝑋 = 𝑠𝑖𝑛
𝑚𝜋

𝑎
𝑠𝑖𝑛

𝑛𝜋

𝑏
 is shape 

function, that allows to obtain linear frequency of plate vibrations under in-plane magnetic field 

 𝜔𝑚𝑛
2 =

(𝐷+𝐷𝐿)((
𝑚𝜋

𝑎
)
2
+(

𝑛𝜋

𝑏
)
2
)
2

+𝜂ℎ𝐻𝑥
2((

𝑚𝜋

𝑎
)
2
−(

𝑛𝜋

𝑏
)
2
)

𝜌ℎ
.                                                                     (20) 

For first mode (1,1) this formula is reduced to 

 𝜔11
2 =

(𝐷+𝐷𝐿)𝜋
4(

1

𝑎2+
1

𝑏2)
2
+𝜂ℎ𝐻𝑥

2𝜋2(
1

𝑎2−
1

𝑏2)

𝜌ℎ
.                                                                                    (21) 

1.4. Nonlinear vibrations of microplate in magnetic field 

Now let us consider system of equations (see Eq. 5,6). The deflection 𝑤(𝑥, 𝑦, 𝑡) is presented as  

 𝑤(𝑥, 𝑦, 𝑡) = 𝑤0(𝑡)𝑠𝑖𝑛
𝜋𝑥

𝑎
 𝑠𝑖𝑛

𝜋𝑦

𝑏
.                                                                                                 (22) 

Substitution (see Eq. 22) into the equation in (see Eq. 6) leads to  

 
1

𝐸ℎ
∆2𝐹 =

1

2
𝑤0

2
(
𝜋

𝑎
)
2
(
𝜋

𝑏
)
2
(𝑐𝑜𝑠

2𝜋𝑥

𝑎
+ 𝑐𝑜𝑠

2𝜋𝑦

𝑏
).                                                                              (23) 

The solution of the last equation (see Eq. 23) [23] is 

 𝐹 =
𝐸ℎ𝑤0

2

32
(
𝑎2

𝑏2 𝑐𝑜𝑠
2𝜋𝑥

𝑎
+

𝑏2

𝑎2 𝑐𝑜𝑠
2𝜋𝑦

𝑏
) + 𝑝1𝑥

2 + 𝑝2𝑦
2.                                                                    (24) 

Coefficients 𝑝1 and 𝑝2 can be found from boundary conditions, for case (see Eq. 9, 10) 𝑝1 = 0, 𝑝2 = 0, 

for case (see Eq. 7, 8)  

 𝑝1 =
𝜋2𝐸ℎ(𝑎2+𝜇𝑏2)𝑤0

2

16(1−𝜇2)𝑎2𝑏2 , 𝑝2 =
𝜋2𝐸ℎ(𝑏2+𝜇𝑎2)𝑤0

2

16(1−𝜇2)𝑎2𝑏2 .                                                                              (25) 
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Next step is substitution expressions (see Eq. 22,24) into the first equation (see Eq. 5) of governing 

system and applying the Bubnov-Galerkin approach that leads to the following Duffing type equation 

𝑦′′ + 𝜔𝐿
2𝑦 + 𝛼𝑦3 = 0,                                                                                                                  (26) 

where 

  𝛼 =
𝜋4𝐸ℎ2

16𝜌
(

1

𝑎4
+

1

𝑏4
) +

𝜋4𝐸ℎ2

8(1−𝜈2)𝑎2𝑏2
(
𝑏2

𝑎2
+

𝑎2

𝑏2
+ 2𝜈), 𝜔𝐿 = 𝜔11, 𝑦 =

𝑤0

ℎ
.                                        (27) 

Equation (see Eq. 26) can be solved by the Bubnov-Galerkin approach, presenting the solution as 

𝑦(𝑡) = 𝐴 𝑐𝑜𝑠𝜔𝑁 𝑡, where 𝐴, 𝜔𝑁  are amplitude and frequency of nonlinear vibrations. Thus, it can be 

obtained frequency ratio 

 (
𝜔𝑁

𝜔𝐿
)
2
= 1 +

3

4
𝛽𝐴2, 𝛽 =

𝛼

𝜔𝐿
2.                                                                                                                    (28) 

2. Validation 

To verify presented method the results are compared with available ones, we considered size-dependent 

vibrations of rectangular simply supported plate without magnetic action. Dimensionless natural 

frequencies �̅� = ω𝐿
𝑎2

ℎ
√

ρ

E
  are presented in Table 1,2 for various values of  𝑙/ℎ. The material properties 

for considered nanoplate are taken as 𝜌 = 1220𝐾𝑔/𝑚3, 𝐸 = 1.44𝐺𝑃𝑎, 𝜈 = 0.38.  

Table 1  

Dimensionless natural frequencies �̅�  for isotropic simply supported square plate (b/a=1) 

 depending on thickness ratio 𝑙/ℎ 

𝑙/ℎ 1/6 1/5 1/4 1/3 1/2 1 

b/a = 1 

[17] 6.471 6.602 6.839 7.323 8.558 13.383 

Present 6.471 6.603 6.839 7.323 8.558 13.383 

 

Table 2  

Dimensionless natural frequencies �̅�  for isotropic simply supported rectangular plate (b/a=0.5)  

 depending on thickness ratio 𝑙/ℎ 

𝑙/ℎ 0.1 0.5 1 

[17] 15.68 21.39 33.45 

Present 15.685 21.396 33.459 

In Table 3 nonlinear frequency ratios 𝜔𝑁/𝜔𝐿 for plate found by proposed method with 𝑙 = 0 (classical 

theory) are presented. Material parameters are 𝜌 = 1220𝐾𝑔/𝑚3, 𝐸 = 1.44𝐺𝑃𝑎, 𝜈 = 0.3.  Boundary 
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conditions are supposed of type (see Eq. 9, 10). The results compared with ones obtained by another 

approaches [24-27]. 

Table 3 

Nonlinear frequency ratio 𝜔𝑁/𝜔𝐿 for isotropic simply supported plate (𝑏/𝑎 = 1) 

𝑤

ℎ
 [25] [26] [27] [24] Present 

0.2 1.0195 1.0197 1.0195 1.0197 1.0195 

0.4 1.0757 1.0768 1.0765 1.0767 1.0760 

0.6 1.1625 1.1662 1.1658 1.1659 1.1641 

0.8 1.2734 1.2813 1.2796 1.2813 1.2773 

1 1.4024 1.4173 1.4163 1.4168 1.4095 

 Comparison of results allows to conclude about good agreement with the known ones in the literature. 

3. Numerical results 

To investigate the influence of magnetic field on vibration process dimensionless linear 

frequencies �̅� for various values of magnetic parameter MP (here dimensionless magnetic 

parameter is introduced as 𝑀𝑃 =
ηhHx

2a2

D
) and thickness ratio l/h  are calculated. It is assumed 

that plate has the following characteristics  

ρ = 1220Kg/m3, E = 1.44GPa, ν = 0.38, a = 10mm, 𝑏/𝑎 = 1.5(𝑎), 𝑏/𝑎 = 2(𝑏), ℎ/𝑎 = 0.01. 

 

 

a) 

 
b) 

Figure 2. Dimensionless frequency for various values of material scale parameter, magnetic 

parameter, a) b/a=1.5, b) b/a=2. 
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Analyzing it can be seen that increasing of magnetic parameter leads to increasing of dimensionless 

frequency as well as it is observed the similar influence of length scale parameter on frequency in both 

cases of the plate aspect ratio. Also we can conclude that the aspect ratio has a small effect (especially 

when l/h is close to 1) on the frequency parameter at large values of the magnetic parameter. 

Dimensionless frequency parameters  �̅�  in terms of magnetic parameter and thickness ratio are 

calculated and presented on Figure 3. It can be found that frequency parameter generally increasing 

with increasing of magnetic parameter and material scale length parameter. Changing of magnetic 

parameter has smaller effect on vibration frequency when material length scale parameter is close to 

thickness of the plate. The minimum of dimensionless frequency achieves when MP and l vanish. 

 

Figure 3. Dimensionless frequency parameter �̅�  in terms of MP and l/h 

 

The effect of geometric nonlinearity is demonstrated on Figure 4, 5.  The backbone curves (see Eq. 28) 

for rectangular plate specified by the aspect ratio b/a=1.5, thickness ratio l/h=0 and various MP are 

provided on Figure 4. According to obtained results frequency ratio decreases with increasing of 

magnetic parametric value MP. Further we fixed MP=0 to investigate the influence of material length 

scale parameter l on backbone curves, these results are presented on Figure 5. The size effect is more 

meaningful when l/h>2.5 and the difference in results obtained by classical theory and modified couple 

stress theory is insignificant when the thickness ratio l/h is small.  Action of magnetic field as well as 

scale parameter is more significant in the case of immovable edges (see Eq. 9,10), in case of movable 

edges (see Eq.7,8) the backbone curves are closer each other (see Fig. 4, 5). 
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a) b) 

Figure 4. Frequency ratio (see Eq. 28) for two types of boundary conditions: a)-conditions (see 

Eq. 7,8),  b) – conditions (see Eq. 9,10), l/h=0 

  

a) b) 

Figure 5. Frequency ratio (see Eq. 28) for two types of boundary conditions: a)-conditions (see 

Eq. 7,8), b) – conditions (see Eq. 9,10), MP=0 

4. Conclusions.  

The size-dependent nonlinear vibrations of microplates in magnetic field are studied. Governing PD 

equations are based on the modified couple stress theory, the Kirchhoff hypothesis, the von Karman 

theory.  The influence of the material length scale parameter, the magnetic parameter, boundary 

conditions, aspect ratio on the linear frequency, nonlinear ratio is investigated. It has been shown that 

the linear frequency increases with increasing of length scale parameter and magnetic parameter unlike 
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the ratio of nonlinear frequency to linear frequency, which decreases. Also, the small-size effect and 

magnetic action are more significant for immovable simply supported plates. 
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Numerical and experimental investigations of dynamics of 
magnetic pendulum with an aerostatic bearing 

 

 
Ewelina Ogińska, Krystian Polczyński, Dariusz Grzelczyk, Jan Awrejcewicz 

Abstract: In this paper, both numerical and experimental results of the dynamics 

of a magnetic pendulum with an aerostatic bearing are presented. The experimental 

stand consists of the physical pendulum with a neodymium magnet at its end, whereas 

two electric coils are placed underneath. The pivot of the pendulum is supported 

by aerostatic bearing, therefore dry friction can be negligible, and it has only a viscous 

character. The electric current that flows through the coils is of a square waveform with 

a given frequency and duty cycle. Mathematical and physical models with the system 

parameters confirmed experimentally, are presented. The magnetic interaction is 

characterized as a moment of force as a function of the electric current and angular 

position of the pendulum. The results of the simulation and experiment showed the rich 

dynamics of the system, including various types of regular motion (multi-periodicity) 

and chaos. 

1. Introduction 

Pendulums are the objects of different studies in numerous scientific works due to their simplest 

construction and nonlinear character of motion. It is known that mechanical energy can be produced by 

an interaction between electric and magnetic fields with a high level of efficiency. This phenomenon is 

used, for example, in electric motors, which means that it is a developmental topic. In this paper we 

analyzed an original construction of a physical pendulum with magnetic interactions, and its axis of 

rotation coincides with the shaft’s axis suspended in the pressured air generated by an aerostatic bearing. 

Electric coils, working as an excitation source, were introduced into the system, in order to repulse the 

neodymium magnet attached to the end of the pendulum. As a result, the considered case is a dynamical 

system in which electromagnetic forces affect the mechanical system. This system is coherent, so the 

pendulum's movement is closely dependent on the force generated by the electromagnetic field, but 

also on the distance from the coil. The presented dependency is the object of the study in this paper. 

 The investigations in which the pendulum behaviour depends on the electromagnetic field were 

carried out, for instance, by Kraftmakher [1,2]. In those papers, two magnets were placed on opposite 

sides of the pendulum’s rod at different distances from the point of the rotation. The external magnetic 

field was driving the pendulum motion and could be used to modify the torque. Chaotic behaviour and 

nonlinear oscillations (forced and free) were detected and studied numerically. The Poincaré sections, 

phase plane graphs, histograms and Fourier’s spectra were also presented. 
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In another paper Wojna et al. [3] analyzed numerically and experimentally the behaviour of a 

system containing a double physical pendulum with two permanent magnets forced by alternating 

magnetic field comes from the coils. They presented extended bifurcation diagrams for different 

frequencies of excitation signal as a control parameter, obtained both experimentally and numerically. 

Berdahl and Lugt [4] investigated pendulum driven by rotating permanent magnet, using the power 

spectra, Poincaré maps and time-delay plots of the system. They observed that, depending on driving 

frequencies, some behaviour of Poincaré maps were periodic, and another chaotic. The time-lag plots 

for both periodic and chaotic motion were also presented in that study. 

Polczyński et al. [5,6] described the behaviour of a two-degree-of-freedom system consists of two 

pendulums with magnets and elastic element coupling their pivots. Tests were conducted both 

numerically and experimentally. By using time histories, phase portraits, Poincaré sections and 

bifurcation graphs, they presented rich nonlinear dynamics of the considered system. Moreover, the 

results obtained experimentally were in good agreement with the simulation ones. The uniqueness of 

that work lies in the mechatronic system and the original way of the excitation source. 

The modification of the Duffing equation of periodically driven iron pendulum in a magnetic field 

was analyzed by Donnagáin and Rasskazov [7]. Studies led to creating a special Poincaré section, time 

histories and phase portraits for the determined values of the parameters. 

Kadjie and Woafo [8] presented a model of energy harvester consisting of an electromechanical 

pendulum subjected to nonlinear springs. The investigations showed that the suitable range of control 

parameters of the device vary led to the more efficient power generation than the case without springs. 

The transition from periodic to chaotic states were clearly noticed. 

Concluding, in contrast to the above mentioned articles, this paper describes the periodic and 

chaotic behaviour of an asymmetrically forced physical pendulum system. One electric coil is mounted 

exactly under the pendulum, i.e. when the non-forced pendulum is in a stable position. The axis of 

rotation of the second electric coil is inclined at the angle of 45 degrees to the first one. Both coils 

generate an electromagnetic field, which defines the behavior of magnetic pendulum. An aerostatic 

bearing is the next new aspect, since it eliminates dry friction force and provides only viscous resistance. 

2. Experimental rig and the electric excitation signal 

The experimental setup of the considered physical pendulum system is presented in Fig. 1. The stand 

is equipped with the pendulum (1), which has a neodymium magnet (2) at the end of the rod. The axis 

of rotation has coincided with the shaft’s axis suspended in the pressured air produced by an aerostatic 

bearing. Two electric coils (3) are mounted on the textolite board (4), whereas the angle between them 

is 45 degrees. The aluminium disk (5) with a diameter of 65 mm is attached to the shaft. Distance 

between the coils and the neodymium magnet during the experiment was equal to 2 mm. The test stand 
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is made of non-magnetic materials such as aluminium alloys, brass and polymer composites, due to 

diminishing the interaction with the magnetic elements of the investigated system. 

 

 

Figure 1.   Experimental rig: 1 – physical pendulum, 2 – neodymium magnet, 3 – electric coils, 4 – 

textolite board, 5 – aluminium disk. 

The shape of the electric current signal inside the electric coils is presented in Fig. 2 and flows 

through both coils at the same time. The parameters of the signal such as frequency and duty cycle can 

be controlled independently, whereas the amplitude ia of the electric current was fixed to 0.5 A for the 

experimental tests. 

 

 

 

Figure 2.   Excitation current signal: τz – switched on current; τw – switched off current; τ = τz + τw – 

the period of the signal; 𝑤 =
𝜏𝑧

𝜏
 ∙ 100% – duty cycle). 
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3. Mathematical model 

In this section, the physical and mathematical models of the system are developed and presented. The 

physical model of the considered pendulum system is shown in Fig. 3. 

 

 

 

 

Figure 3.   Physical model of the system: 1 – pendulum; 2 – neodymium magnet; 3 – electric coils; 

4 – shaft; 5 – aerostatic bearing. 

 

The mathematical model has been carried out according to classical mechanics laws. General 

equation of motion is as follow 

 

 𝐼�̈�  +  𝑐�̇�  +  𝑚𝑔𝑠 𝑠𝑖𝑛 𝜑 =  𝑀1𝑚𝑎𝑔(𝜑, 𝑖)  +  𝑀2𝑚𝑎𝑔(𝜑, 𝑖), (1) 

 

where I stands for the moment of inertia of the pendulum, mg is the weight of the pendulum, s is the 

length between the pivot and centre of mass of the pendulum, and c stands for coefficient of viscous 

damping. The term M1mag(φ,i) describes the magnetic interaction between the magnet and coil placed 

under the pendulum, whereas M2mag(φ,i) concerns the inclined coil case. The argument i is the value of 

the current signal dependent on time. 

4. Experiments versus numerical simulations 

We started our studies from the identification of the system parameters. In order to reduce the number 

of the parameters which we had to find using numerical methods, some of them were identified 

experimentally. First of all, the value of the product of m and s parameters was obtained experimentally. 

While the electric coils were switched off (i.e. M1mag(φ,i) = M2mag(φ,i) = 0), the moment of gravity mgs 
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was balanced by the torque generated by force F. This torque was generated by tensometric beam 

connected with the aluminium disk with diameter D (attached to the shaft, see Fig. 1) by the string. This 

dependence could be written by using the equilibrium equation which yields 

 

 
𝑚𝑠 =

𝐹𝐷

2𝑔 sin 𝜑
 . (2) 

Assuming values of the parameters g = 9.81 N/kg and D = 0.065 m, the values of the force F was 

measured for angles φ larger than zero. Taking into consideration Eq. (2) and measured values of force 

F, we received a constant value of ms = 4.4∙10-3 kg∙m. 

In the next step, we identified the values of I and c based on time histories of the pendulum 

displacement obtained experimentally. The parameters I and c were obtained numerically, by fitting the 

Eq. (1) with neglected terms M1mag (φ,i) and M2mag (φ,i) to the experimental data of time histories of 

angular position of the pendulum during free oscillations. Figure 4 shows the time histories of angular 

position of the pendulum with the fitting process, where blue markers denote the experimental data and 

the red line is the fitted solution of Eq. (1). The fitting process was obtained by using Mathematica 

software. The best fit was obtained for I = 0.21179∙10-3 kg∙m2 and c = 9.28868∙10-6 N∙m∙s/rad. 

 

 

 

Figure 4.   Time histories of free oscillations obtained experimentally (blue markers) and fitted 

numerical solution of Eq. (1) (red line). 

 

In the last step, we modelled and identified the magnetic interaction between the magnet and 

coils based on the experimental data. For this purpose, to obtain experimental data, we used only the 

bottom coil of mentioned interaction and assume that the excitation of the second coil (located at an 

angle π/4 from the bottom coil)  has the same nature as the first one. Therefore, we used modified 
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equation of motion in steady state by adding the magnetic interaction term M1mag(φ,i). For a fixed 

value of i(t) = ia = 0.5 A the coil produces a steady torque M1mag(φ,ia) for each φ. The torque 

M1mag(φ,ia) can be computed by using the following formula 

 𝑀1𝑚𝑎𝑔(𝜑, 𝑖𝑎) = 𝐹
𝐷

2
+ 𝑚𝑔 sin 𝜑. (3) 

In further studies we have modelled magnetic torque M1mag(φ,i) as an analytical approximation of 

the obtained experimental data comes from Eq. (3). Moreover, the torque M2mag(φ,i) has been 

described by this same approximation formula, whereas the angle argument is shifted by the fixed 

angle 𝜋/4. Both formulas have the following forms 

 𝑀1𝑚𝑎𝑔(𝜑, 𝑖) = 𝐴𝑖𝑒−𝜆𝜑2
𝜑, (4) 

 
𝑀2𝑚𝑎𝑔(𝜑, 𝑖) = 𝐴𝑖𝑒

−𝜆(𝜑+
𝜋

4
)

2

(𝜑 + 𝜋/4), (5) 

where 𝜑 is limited to the range [−𝜋, 𝜋], A and λ are constants coefficients for a given pair of magnet 

and coil as well as a current signal. Figure 5 presents experimental data of torque M1mag(φ,ia) 

calculated from Eq. (3) and analytical approximation described by Eq. (4). The fitting process 

conducted via Mathematica has given the following coefficients: A = 0.943439 N∙m/(rad∙A) and λ = 

14.6911 1/rad2. 

 

 

 

Figure 5.   Comparison of experimental data (blue markers) and the torque 𝑀1𝑚𝑎𝑔(𝜑, 𝑖) obtained 

analytically from Eq. (4) (red line) for steady i(t) = ia = 0.5 A. 
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Taking into account Eqs. (4) and (5), the total excitation torque acts on the pendulum can  

be expressed as the sum of both equations. The total value of magnetic interaction is presented in 

Fig. 6. 

 

 

 

Figure 6.   The total magnetic torque acting on the pendulum (blue line) as a sum of torques 

generated by both coils. 

The developed mathematical model of the considered pendulum system subjected to the magnetic 

torque induces by two coils was verified experimentally. The angular position of the forced 

pendulum was recorded and confirmed with simulation. The current signal parameters during the 

experiment were fixed as follow: amplitude of current – ia = 0.5 A, the frequency – f = 2.2 Hz, and 

the duty cycle – w = 50%. Furthermore, the formula describes the rectangular waveform of the 

current signal reads [5] 

 𝑖(𝑓, 𝑤, 𝑡) = 𝑖𝑎
1

2
[1 − tanh (200 sin(𝜋𝑓𝑡) sin (𝜋𝑓𝑡 −

𝜋𝑤

100
))], (6) 

where f and w are frequency and duty cycle of the current signal, respectively, whereas t is time. 

Fig. 7 shows time histories of angular position of the pendulum in different time intervals, obtained 

both experimentally and numerically. 
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(a) (b) 

  

 

(c) 

 

(d) 

  

Figure 7.   Comparison of experimental (a), (c) and numerical (b), (d) time histories of the 

angular positions of the pendulum for f = 2.2 Hz, w = 50% and ia = 0.5 A. 

As can be seen, the transient motion is clearly visible both in experimental and numerical 

investigations. Furthermore, the experimental transient behaviour is slightly longer than the 

simulation one. When the transient motion has vanished, the periodic oscillation has revealed for 

fixed parameters. The period and amplitude of the oscillation are in good agreement for both 

experimental and numerical analysis. In the considered case, the moment of impact of the pendulum 

on the magnetic barrier is clearly visible as a double amplitude peak, both in experimental and 

numerical results. 

The bifurcation analysis has yielded a wider dynamical spectrum of the system motion. Figure 

8 shows the numerical bifurcation diagrams with the frequency f as a control parameter, while the w 

= 50% and ia = 0.5 A. Figure 8a displays the bifurcation for increasing value of frequency, and the 

windows of various multiperiodic motions as well as of chaotic motion can be recognized. In turn, 
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Fig. 8b displays the bifurcation diagram for decreasing frequency, and the coexisting attractors of 

periodic solution were exhibited. 

(a) 

 

 

(b) 

 

Figure 8.   Comparison of bifurcation diagrams for increasing (a) and decreasing (b) value of 

frequency as a control parameter. 

The phase plots for different regular and chaotic type of motion are presented in Fig. 9. The phase 

plots have been taken for a small increment of frequency to present the evolution of the trajectory. 

The rare trajectories of periodic motion are shown in Fig. 9c and 9i, the significant influence on the 
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form of the trajectories has the asymmetric nonlinear character of the magnetic interaction. The 

double amplitude peaks in the form of loops of the trajectory can be seen in Fig. 9e, 9f and 9i. Above 

the frequency 3.5 Hz, the one well-oscillation are exhibited by the system (see Fig. 9j). 

(a) f = 1.2 Hz                                                  (b) f = 1.5 Hz 

 

 

(c) f = 1.7 Hz                                                  (d) f = 1.8 Hz 

 

 

(e) f = 2.0 Hz                                                  (f) f = 2.4 Hz 

 

 

(g) f = 2.9 Hz                                                  (h) f = 3.0 Hz 

384



 

(i) f = 3.4 Hz                                                  (j) f = 3.9 Hz 

 

 

Figure 9.   Regular (c, e, f, h, i, j) and chaotic (a, b, d, g) dynamics detected by phase portraits 

plotted in the range t = 960-1000 s for different values of frequency f. 

 

5. Conclusions 

In this paper the system of a magnetic pendulum supported by aerostatic bearing and subjected to an 

asymmetric repulsive magnetic field has been studied both experimentally and numerically. The 

magnetic field was alternating and induced by electric coils powered by a rectangular current signal. 

The current signal has controlled values of frequency, duty cycle and amplitude. The physical and 

mathematical models of the considered system have been developed, where magnetic interaction has 

been applied as an approximation function of experimental data. The numerical time histories plots of 

periodic motion have been shown and their good agreement with the experimental data. The bifurcation 

analysis has been presented for increasing and decreasing paths of frequency as a control parameter. 

The multiperiodic and chaotic ranges of oscillation as well as the coexisting attractors have been 

reported and discussed. Especially, evolution of the chaotic motion has been shown in a set of phase 

plots. The simplicity of the mathematical model is important for developing analytical solutions which 

can be experimentally validated. Therefore, the developed mathematical model and the constructed 

experimental stand are a valuable source for further investigations. 
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Analytical and numerical modelling of surface acoustic waves in 
rotating media 

 
 

Alexey Papirovskiy, Alexey Lukin, Ivan Popov 

Abstract: This paper presents results of analytical and numerical research of surface 

acoustic waves propagation process in rotating piezoelastic media. Various wave 

parameters such as frequency, phase velocity, wave mode are analyzed and their 

dependencies on angular velocity is investigated. The results obtained can be used to 

develop microelectromechanical devices in the field of navigation and signal 

processing.The relationship between phase velocity and rotation was determined 

without simplifying assumptions and was compared with previously obtained results 

from the literature. Based on the obtained analytical solutions, the numerical solution 

in COMSOL and ANSYS was verified. There is a great difficulty in solving such 

problems with rotating media by the finite element method, due to required numerical 

precision and necessity to solve eigenvalue boundary problem for non-self-adjoint 

linear operator. Equation-based COMSOL solver was used as a numerical method for 

such problems. The solution of the initial equations by the method of finite 

differences was also obtained. 

1. Introduction 

The use of various types of devices (micro-mechanical sensors, delay lines, particle manipulation 

systems in microchannels [1]) in various fields of instrumentation, the principle of which is based on 

the propagation of surface acoustic waves (surfactants) in solid media, promotes the development of 

analytical and numerical methods to study these processes.  

All the above mentioned devices are MEMS devices. These devices combine micromechanical 

and microelectronic components. Wide use of MEMS in instrument-making is conditioned by the fact 

that such devices have many unique properties, namely: high resistance to external influences, lack of 

elastic inertial bonds in the construction of the device, low cost of manufacture, as well as a long 

service life relative to other known types of devices [2]. 

For the first time the method of generation of surfactants in piezoelectric media by means of a 

counterpointer transducer was proposed by White and Voltmer [3]. Wave propagation along the 

surface of piezoelectric materials is accompanied by modulation of the electric field for 

piezoelectrically active material directions, which makes it necessary to consider the connectivity of 

mechanical and electric fields in the construction of analytical and numerical models. Of particular 

interest for the study is the class of devices that operate in in inertial reference systems, since it is 
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known that the phase velocity of the surfactant depends on the angular rotation speed of the half-

space [4]. This effect can be used in the construction of inertial navigation systems [5]. For the first 

time, the problem of surface acoustic wave propagation in isotropic space, taking into account 

Coriolis forces and centrifugal forces, was presented by Schoenberg in 1973 [6], stimulating the study 

and construction of analytical models. Later, Lao [7] conducted a similar study in which he 

considered the dependence of the phase velocity of the surfactant on the angular velocity. The first 

micromechanical navigation devices based on surfactants were presented by such researchers as 

Kurosawa [8], Woods [9], Varadan [10]. At the moment, the need to build analytical models and 

develop numerical techniques remains in order to accurately study the dynamics of devices, finding 

the effective wave properties and characteristics of the process of surface acoustic waves propagation.  

The subject of the study is the study of the process of surfactant propagation in a rotating half-

space, as well as finding various wave parameters (frequency, phase velocity, wave modes, dispersion 

curves and their dependence on the angular velocity of the system). 

The purpose of the work is to study in detail the analytical models and to build effective 

numerical schemes of finding the wave parameters. 

2. The general formulation 

Many MEMS devices have piezo-ceramic or piezoelectric materials as working elements. Wave 

generation is possible due to the piezo effect. This is the effect of mechanical deformation caused by 

an electric field. This is achieved by placing special systems of interdigital transducers (IDT) on the 

surface of piezoelectrics (Figure 1-2), which provide the generation of SAW. 

If MEMS devices are also operated in non-inertial reference systems, mechanical distortions in 

the form of Coriolis forces and centrifugal forces begin to take effect on wave parameters [11]. 

  

Figure 1.   IDT Figure 2.   SAW motion 

 

2.1 Surface acoustic waves in rotating half-space. Analytical solution 

Consider the case of wave propagation for isotropic material in the system. To do this, introduce the 

Cartesian coordinate system 𝑂𝑥1𝑥2𝑥3 and consider isotropic material that occupies the space (𝑥3 ≤

0) without mechanical loads on the surface (𝑥3 = 0). Around one of the 𝑥𝑖 axes there is an angular 
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velocity vector component 𝛺𝑗 . The elastokinetics equation and boundary conditions according to [12] 

will take the form: 

𝜌
𝜕2𝑈𝑖

𝜕𝑡2
− 𝐶𝑖𝑗𝑘𝑙

𝜕2𝑈𝑖

𝜕𝑥𝑗𝑥𝑘
+ 2𝜌𝜀𝑖𝑗𝑘𝛺𝑗

𝜕𝑈𝑙

𝜕𝑡
+ 𝜌(𝛺𝑖𝛺𝑗𝑈𝑗 − 𝛺𝑗

2𝛺𝑖) = 0, 𝑖, 𝑗, 𝑘, 𝑙 = 1,2,3,  (1) 

𝑇𝑖3 = 𝐶𝑖3𝑘𝑙
𝜕𝑈𝑘

𝜕𝑥𝑙
= 0, 𝑥3 = 0.  (2) 

Where 𝜌 – density; 𝐶𝑖𝑗𝑘𝑙 - tensor of elastic constants; 𝜀𝑖𝑗𝑘 - symbol of Levi-Civita; 𝑈𝑖 - vector of 

movement; 𝑇𝑖3 - stress. 

We will search for a solution of the equation in the form of 𝑈𝑖 = 𝑎𝑖𝑒𝑖𝑘(𝑛1𝑥1+𝑛2𝑥2+𝑛3𝑥3−𝑉𝑡), where 

𝑉 - phase velocity; 𝑛𝑙 - directing cosines in the Cartesian axes 𝑥𝑙; 𝑘 = 𝜔/𝑉 - wave number; 𝜔 - wave 

frequency. As is known, at (𝛺 ≪ 𝜔) the contribution of centrifugal forces is much smaller than that of 

Coriolis. Therefore, at this stage we will not consider them in the solution. 

Let the wave propagate along the 𝑥1 axis, then the leading cosines will have the following 

values: 𝑛1 = 1, 𝑛2 = 0, 𝑛3 = 𝑛. By substituting the type of solution into expression (1) we can write 

the equation in the following form: 

(Г𝑖𝑘 − 𝛿𝑖𝑘𝜌𝑉2 − 2𝑖𝜌
𝑉

𝐾
𝜀𝑖𝑘𝑗Ω𝑗) 𝑎𝑘 = 0.  (3) 

Where Г𝑖𝑘 =  𝐶𝑖𝑗𝑘𝑙𝑛𝑗𝑛𝑘 - Christopheles' tensor; 𝛿𝑖𝑘 - Kroneker delta. 

The tensor of elastic constants 𝐶𝑖𝑗𝑘𝑙 for isotropic material depends only on two independent 

components. These components are expressed through the Lame constants 𝜆(= с12), 𝜇(= с44) and 

с11 = 𝜆 + 2 𝜇 [13]. Then we agree with the Einstein summation rule of Christopheles Г𝑖𝑘 tensor can 

be presented in the following form: 

Г𝑖𝑘 = [

с11 + с44𝑛2 0 (с12 + с44)𝑛

0 с44(1 + 𝑛2) 0

(с12 + с44)𝑛 0 с11 + с44𝑛2

 ].  (4) 

So, by substituting expressions for Г𝑖𝑘 in (3), we can write (3) in algebraic form: 

[
𝑣𝐿

2 + 𝑣𝑇
2𝑛2 (𝑣𝐿

2 − 𝑣𝑇
2)𝑛 − 2𝑖𝑉2𝛿

(𝑣𝐿
2 − 𝑣𝑇

2)𝑛 + 2𝑖𝑉2𝛿 𝑣𝑇
2 + 𝑣𝐿

2𝑛2 ] (
𝑎1

𝑎3
) = 𝑉2 (

a1

a3
).  (5) 

Where 𝛿 = 𝛺/𝜔 is the ratio of angular velocity to frequency. The phase velocities of the 

longitudinal and transverse waves will be 𝑣𝐿 = √с11/ 𝜌 and 𝑣𝑇 = √с44/ 𝜌. 

The characteristic polynomial for the expression (5) will appear: 

(𝑣𝐿
2 + 𝑣𝑇

2𝑛2 − 𝑉2)(𝑣𝑇
2 + 𝑣𝐿

2𝑛2 − 𝑉2) − (𝑣𝐿
2 − 𝑣𝑇

2)2 − 4𝛿2𝑉4 = 0.      (6) 
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After finding the roots of the expression (6), corresponding to the SAW, it is necessary to find 

your own vectors 𝑎𝑖. Then the vector of movement is represented as a linear combination of two 

waves, longitudinal and transverse, and has the following form: 

𝑢 = ∑ 𝐶𝑗𝑎(𝑗)𝑒𝑖𝑘(𝑥1+𝑛(𝑗)𝑥3−𝑉𝑡)2
𝑗=1 .  (7) 

 Where 𝐶𝑗 - an arbitrary coefficient, which is determined from the boundary conditions (2). To 

find it, it is necessary to allow the system: 

[
𝑎3

(1)
+ 𝑛(1)𝑎(1) 𝑎3

(2)
+ 𝑛(2)𝑎1

(2)

𝑐12𝑎1
(1)

+ 𝑐11𝑛(1)𝑎3
(1)

𝑐12𝑎1
(2)

+ 𝑐11𝑛(2)𝑎3
(2)

] (
𝐶1

𝐶2
) = (

0
0

).  (8)  

 The resolution of the system (8) involves many mathematical difficulties. This is due to the fact 

that 𝛿, which depends on the frequency of the wave and the phase velocity 𝑉 is included in the roots 

and vectors of the system. These values are uncertain, and expression (8) is also complex. Therefore, 

it is necessary to construct an iterative procedure to resolve such a system. It is necessary to select 

such values of 𝑉, at which the system's determinant (8) will return to zero with a given accuracy [14]. 

In the process of iterative procedure it is necessary to turn to zero and the actual and imaginary parts 

of the determinant. It is not at all obvious that a value of  𝑉 can always be found at which the equality 

of zero of one part of the determinant leads to the equality of zero of the other part. Numerical 

calculations and experimental data [15] confirm the existence of such values of phase velocities at 

which this requirement will always be met. 

 We will aim to derive the dependence of the phase velocity increment of the wave V on the value 

of the parameter 𝛿 as a solution. For this purpose, let us express the function V=V(δ). We will build 

the dependence of the species: 

𝑉−𝑉0

𝑉0
= 𝛿.  (9) 

Figure 3 shows the graph for expression (9) with a strict straightforward solution and for finding 

the roots (6) using numerical methods. 

Now we will construct dispersion curves (see Fig. 4) as a function of the form 𝜔 = 𝜔(𝑘) at 

different values of angular velocity 𝛺. As is known, surface acoustic waves do not have dispersion. 

By the phenomenon of dispersion we will understand the dependence of the phase velocity of the 

waves on their wavelength. 
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Figure 3.   Phase velocity change 𝑉 Figure 4.   Dispersion curves 

Now let us illustrate the change in the trajectory of the medium particle oscillations (see Fig. 5) 

at wave propagation depending on the value of the parameter 𝛿. The particle's trajectory of motion 

has the form of an ellipse polarized horizontally, but taking into account the angular velocity, the 

particle's trajectory of motion begins to acquire vertical polarization. 

We will bring to consideration centrifugal force. For this purpose, let's build a solution of the 

initial system (1) taking into account the summand - 𝜌(𝛺𝑖𝛺𝑗𝑈𝑗 − 𝛺𝑗
2𝛺𝑖). We will also compare the 

solution of the initial system with the approximation of the initial solution [14]. Figure 6 shows a 

comparison of the direct analytical solution with and without centrifugal forces, as well as the 

approximation of the exact solution without centrifugal forces. 

 
 

Figure 5.   Particle oscillation trajectory  Figure 6.   Comparison of the solutions 

Analyzing the obtained solutions, we can say that the curve corresponding to the solution taking 

into account the centrifugal forces, clearly differs from the rest of the solution. On this basis, we can 

conclude that it is necessary to take into account the centrifugal forces for a qualitative assessment of 

the wave parameters depending on the rotation of the system. 

391



3. Surface acoustic waves in a rotating half-space. Numerical solution 

The chapter is devoted to the development and verification of numerical methods for solving the 

problem of surface acoustic wave propagation in isotropic rotating half-space. 

3.1. Finite element solution 

We will focus on solving the problem on our own values in a flat statement, limited geometrically to 

the region. The peculiarity of finding a solution for the process of propagation of surfactants of the 

Rayleigh type in rotating spaces is the asymmetry of its own operator, because of the presence in the 

system of rotation. This imposes significant difficulties on the choice of the numerical scheme of 

finding a solution to the original problem. 

The numerical solution will be implemented in the Ansys software package [16]. Let's consider a 

cell of periodicity, the horizontal size of which is determined by the length of the surface wave, and 

the vertical one should provide its attenuation to the depth of the region. Figure 7 shows the finite 

element statement of the problem being solved with the illustration of boundary conditions. 

At the lower boundary of the region, the displacement vector is set to zero. On the side edges of 

the region iteratively connect the pairs of nodes with the ratio for the components of the displacement 

vector. Thus, the periodicity of the structure is provided. The angle velocity vector is also applied in 

the region, and only the influence of Coriolis forces is considered for solution. The upper boundary of 

the region remains unloaded. The problem on eigenvalues is solved with the help of a special matrix 

method for asymmetric operators. Figure 8 shows the finite element model corresponding to the 

model of the surface acoustic wave of the Rayleigh type. 

  

Figure 7.   Boundary conditions Figure 8.   Finite element solution  
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As the second settlement complex we will choose system COMSOL Multiphysics [17]. Figure 9 

shows the graphs of the phase velocities of SAWs depending on the parameter 𝛿, as in the previous 

chapters, obtained in different design complexes. A comparison with the solution obtained 

analytically is also given. 

 

Figure 9.   Comparison of the solutions 

Analyzing the obtained decisions, it can be concluded that both decisions are characteristic of the 

analytical decision. But the results obtained in the COMSOL Multiphysics software suite are more 

accurate to the exact solution. 

3.2. Finite difference solution 

The positive aspects of applying the finite difference method are that it has no restrictions on the 

algebraic formulation of the problem, as in the case of using the finite element method, and allows to 

solve the original equation describing the process. 

We will set a goal, solve the problem on our own values, as in the previous section. To 

implement the solution, we will use the COMSOL software package. 

In the software complex for solving the problem by finite difference method, the general form of 

the differential equation for the problem by eigenvalues is as follows: 

𝜆2𝑒𝑎𝑼 − 𝜆𝑑𝑎𝑼 + ∇ ∙ Г = 𝑓.  (10) 

Where 𝑼 = [𝑢1, 𝑢2]𝑇 - vector of movement; ∇= [
𝜕

𝜕𝑥
,

𝜕

𝜕𝑦
]. 
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To solve the problem, it is necessary to determine the coefficients in equation (10): 𝑒𝑎, 𝑑𝑎, Г, 𝑓. 

The value of 𝑓 is assumed to be equal to zero, and the rest of the coefficients are assigned the 

following values: 

Г=𝜎 = [
(𝜆 + 2𝜇)

𝜕𝑢1

𝜕𝑥
+ 𝜆

𝜕𝑢2

𝜕𝑦
𝜇(

𝜕𝑢1

𝜕𝑦
+

𝜕𝑢2

𝜕𝑥
)

𝜇(
𝜕𝑢1

𝜕𝑦
+

𝜕𝑢2

𝜕𝑥
) (𝜆 + 2𝜇)

𝜕𝑢2

𝜕𝑦
+ 𝜆

𝜕𝑢1

𝜕𝑥

],  (11) 

𝑑𝑎 = [
0 2𝑖𝜌Ω

−2𝑖𝜌Ω 0
],  (12) 

𝑒𝑎 = [
𝜌 0
0 𝜌

].  (13) 

Where 𝜌 - density, Ω - angular velocity, 𝜆 and 𝜇 - Lame constants. 

Figure 10 shows the geometric area and boundary conditions used to solve the problem. 

The conditions on the side edges and on the lower boundary of the region are similar to the 

conditions of the previous problem. On the upper boundary there is a mathematical condition free 

from the surface load through the tensor 𝜎, which is the stress tensor.  

Figure 11 shows the obtained solution in the form of incremental phase velocity of the SAWs 

depending on the parameter 𝛿 and the analytical solution. 

 
 

Figure 10.   Boundary conditions Figure 11.   Comparison of the solutions 

Analyzing the received decision it is possible to assert that the method of finite differences also 

corresponds to the analytical decision and therefore is applicable for practical calculations. 
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4. Conclusions 

In summary, we will present the main results of the study. 

1.  The problem of propagation of surface acoustic waves of the Rayleigh type in isotropic elastic 

rotating half-space is set and solved. Wave parameters depending on the speed of rotation of the 

system are also found. The influence of centrifugal forces on the strict analytical solution of the 

system is taken into account.  

2. Numerical methods for finding wave parameters depending on the system rotation have been 

developed and verified. By means of finite element method and finite difference method. 

3. The developed methods further allow to study a number of phenomena influencing the 

process on already developed models, it is the account of electromechanical connection and 

anisotropic properties of piezoelectric media. 
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Dynamics of logistic train 

 

 

Wojciech Paszkowiak, Tomasz Bartkowiak 

Abstract: A rapid development in intralogistics is the argument for seeking new 

solutions in this field. An example of such a solution is a logistics train. An important 

problem in the application of intralogistics trains is the choice of adequate parameters 

of the kinematic system and the possibility to check before the commissioning whether 

the train is able to pass the given path without a collision with surrounding objects. In 

this paper, we present a dynamic model of a logistic train which was developed for the 

three most common steering systems: virtual clutch and drawbar, conventional clutch 

and drawbar as well as double Ackermann steering. In the paper, we consider a three-

wheeled tractor towing passive wheeled trailers. The tractor consists of actuated 

steering wheel at front and a two passive rear wheels used for stable motion. Two types 

of trailers are considered. First one is connected to the tractor via a passive joint and it 

has two rear fixed wheels and two caster wheels in front. The latter has front wheels 

that follow Ackermann steering principle. The turn of front wheels is caused by rotation 

of drawbar. The rear wheels are synchronized with front ones but they rotate in the 

opposite direction. Dynamic model was created following Lagrange’s theorem 

including the possibility of lateral slip. In order to calculate the side-slip angle we used 

relation between relative velocities for a given wheel. Then, the system of differential 

equations was numerically solved. The results obtained are presented in the form of 

animations presenting train run in various conditions. 

 

1. Introduction 

The objective of this paper is to develop a credible dynamic model of the multiple trailers on a tractor 

system for the production logistics application i.e. logistic train. This includes the most common 

steering: virtual clutch and drawbar system, conventional clutch and drawbar system as well as double 

Ackermann steering. This model should contribute to a better understanding of an impact of geometrical 

relations and friction on the trajectory of such systems in motion. This can facilitate the logistic train 

design for improved maneuverability in narrow corridors through choice of applicable number of 

trailers and selections of the best geometric parameters of the trolley. It can also help to estimate 

collision risk with nearby static objects.  
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1.1. Logistic train 

Logistic trains are applied means of transport across all sectors of production supply [1]. A logistic train 

is usually called a milk-runner. The milk-run concept is derived from the method of delivering or 

receiving supplies in the dairy industry, where one tanker collects milk from many farmers. In  the 

industry one train supplies multiple workstations.. The idea is to visit assigned locations by one supplier 

in a single run [2]. Milk-run system minimizes the total distance travelled, as a single vehicle is use 

instead of many [3], especially in case of  repeatable flow of materials between the same locations. The 

specificity of the train is that it transports more goods than other intralogistics means of transport per 

each run [4]. 

The discussed train consists of a tractor and a certain number of trailers also called logistics 

trolleys. The tractor usually has an Ackermann steering system. The most common steering systems for 

trolleys are: conventional clutch with drawbar system, virtual clutch with drawbar system and 

Ackermann steering system. The classic solution for connecting the trolleys is drawbar at the front the 

unit. This conventional connection could be potentially ineffective. It was showed that another two 

types of steering systems are better for ride in narrow corridors. Virtual clutch has drawbar at the back 

of the trolley. Rear wheels are fixed and front wheels are castor wheels. The most advanced steering 

system is double Ackermann. For this steering system, a number of degrees of freedom is higher than 

for other systems assuming the same number of trolleys. This is thank to the rotary drawbar, which turn 

determine turn front wheels of the trolley. Rear wheels rotate in the opposite direction than front, which 

direction of turning is consistent with drawbar. Comparison of kinematics of these steering system was 

presented in [5]. 

1.2. Vehicle dynamics 

Dynamic models of vehicles can be written based on Newton’s second law or Lagrange’s theorem [6]. 

These models are applicable in numerous fields including: mobile robots [7], autonomous vehicles [8], 

cars [9], trucks [10], agricultural vehicles [11], airplanes [12]. The most common models involve 

nonholonomic constraints [7]. The  idea in those approaches is based on Chaplygin sleigh model, where 

lateral forces and lateral velocity are not considered for wheels [13]. This assumption causes the 

trajectory of vehicle movement to be known and dependent on kinematics, mass of vehicle and drive 

power. In those models it is assumed that the friction is not relevant. Nonholonomic constraints appear 

with the assumption of a non-slip condition. Center points of the wheels cannot move along the 

direction of the wheel own axis [14].  

 In order to take into account the slip effect, it requires to apply holonomic system of Lagrange 

formula or equations based on Newton’s second law. This is also possible using the model for a non-

holonomic system. In that case, forces acting on the system, as a result of lateral friction force, are 
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expressed as Lagrangian multipliers. The longitudinal contact forces are included in the input vector 

[15]. Many authors assume that the lateral force acting on a tire is proportional to the angle of slip. This 

assumptions is valid for small slip angles. They must be smaller than the values of slip angle 

corresponding to the peak lateral force [16]. It allows determination of the slip angles without using 

trigonometric functions [17]. However, this assumption has some limitations. The model can represent 

a drive only in the smooth passing. It does not involve drifting or aggressive race [18]. The side-slip 

angles are determined by analyzing the constituents of wheel velocity vectors.  

 In this paper, the authors want to present a dynamic model of a multibody system, i.e. a tractor 

towing multiple trailers, which can allow visualization of its trajectory under different drive conditions. 

The additional goal is to provide animations when slip occurs. This can help to indicate the steering 

system which is the most and least susceptible to slipping. The aim is also to show an alternative way 

to determine the slip angle without analyzing the velocity vectors. This is possible by determining the 

velocities by calculating the derivative over time from the position of the wheel. This simplifies the 

determination of the slip angle.  

2. Dynamic model 

This section presents dynamic models of three types of logistic trains with various steering systems. 

Each system consists of a tractor with four trailers. Conventional and virtual clutch examples have the 

same kinematic model, which means that they also have the same dynamic model. We consider 

dynamic models with some simplifications. In this study, the air resistance, vertical or pitch motion are 

neglected as their impact on the system is potentially marginal. We assume that friction force is 

proportional to the side-slip angle in a full range including slipping. The main equation of motion for 

holonomic system by the Lagrange formula can be given as: 

𝐌(𝐪)�̈� + 𝐂(𝐪, �̇�) = 𝐐(𝐪). (1) 

𝛇(𝐪, �̇�) is a vector representing the left side of the main equation (1) and it can also be expressed as:  

𝛇(𝐪, �̇�) =
𝑑

𝑑𝑡
(

𝜕ℒ

𝜕�̇�
) −

𝜕ℒ

𝜕𝐪
, (2) 

where ℒ is a Lagrangian of the system and it is the difference between kinetic energy 𝑇 and potential 

energy 𝑈. For these systems potential energy is null. It causes that ℒ = 𝑇. System inertia matrix can be 

expressed as: 𝐌(𝐪) = [
𝜕𝛇(𝐪,�̇�)𝑘

𝜕�̈�𝑗
], where k is a number of matrix row, j is a number of matrix column 

and they also indicate number of constituents of the vectors 𝛇(𝐪, �̇�),  �̈�. The centripetal and Coriolis 

matrix can be denoted as: 𝐂(𝐪, �̇�) = 𝛇(𝐪, �̇�) − 𝐌(𝐪)�̈�. 
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2.1. Tractor 

In our model, the tractor can be described using a tricycle model, where a single front wheel is powered 

[19]. The input parameters for this system are: drive torque 𝜏 and steering angle of the front wheel 𝜓𝑓0. 

Basic geometrical parameters are shown in Fig. 1a.  

  

Figure 1.    a) geometrical parameters, b) friction forces and slip-side angles for a tractor 

𝑃0 is a point of center of mass. The configuration of the tractor can be expressed with generalized 

coordinate vector as 𝐪 = [𝑥 𝑦 𝛽0]𝑇. The kinetic energy of the tractor 𝑇𝑏 can be denoted as: 

𝑇𝑏 =
1

2
 𝑚𝑏(�̇�𝑃0

2 + �̇�𝑃0
2 ) +

1

2
 𝐼𝑏𝛽0̇

2
+ 𝑚𝑤0(�̇�2 + �̇�2 ) + (𝐼𝑤0 + 𝑚𝑤0  (

1

2
 𝑣0)

2
) 𝛽0̇

2
+

1

2
 𝑚𝑤0𝑠(�̇�𝐴0

2 + �̇�𝐴0
2 ) + 𝐼𝑤0𝑠𝛽0̇

2
, (3) 

where: 𝑥𝑃0 = 𝑥 + 𝑐0 cos(𝛽0), 𝑦𝑃0 = 𝑦 − 𝑐0 sin(𝛽0), 𝑥𝐴0 = 𝑥 + ℎ0 cos(𝛽0), 𝑦𝐴0 = 𝑦 − ℎ0 sin(𝛽0).  

The side-slip angle is obtained for each wheel separately. It is the ratio of longitudinal and lateral 

velocity relative to the wheel. The idea of marking of the side slip angles is presented in Fig. 1b. The 

side-slip angles for a rear wheels 𝛼𝑟𝐿0, 𝛼𝑟𝑃0 and the front wheel 𝛼𝑓0 are expressed in the arctg function 

as: 𝛼𝑟𝐿0 = −arctg (
�̇�𝐸0

�̇�𝐸0
) − 𝛽0, 𝛼𝑟𝑅0 = −arctg (

�̇�𝐹0

�̇�𝐹0
) − 𝛽0, 𝛼𝑓0 = −arctg (

�̇�𝐴0

�̇�𝐴0
) − 𝛽0 − 𝜓𝑓0. They can 

be written as 𝑥𝐸0 = 𝑥 +
1

2
 𝑣0 sin(𝛽0), 𝑦𝐸0 = 𝑥 +

1

2
 𝑣0 cos(𝛽0), 𝑥𝐹0 = 𝑥 −

1

2
 𝑣0 sin(𝛽0),  

𝑦𝐹0 = 𝑥 −
1

2
 𝑣0 cos(𝛽0). Forces acting to the tractor are presented in Fig. 3. These forces can be 

expressed as vector in a local coordinate system of the tractor:  

𝐅𝐯 = (
𝐹𝜏 cos(𝜓𝑓0) + 𝐹𝑦𝑓0 sin(𝜓𝑓0) + 𝐹𝑥𝐷0

𝐹𝑦𝑟𝑅0 + 𝐹𝑦𝑟𝐿0 − 𝐹𝜏 sin(𝜓𝑓0) + 𝐹𝑦𝑓0 cos(𝜓𝑓0) + 𝐹𝑦𝐷0

), (7) 

where: 𝐹𝜏 = 𝜏 𝑟0𝑓⁄  is a driven force, 𝐹𝑥𝐷0 and 𝐹𝑦𝐷0 are elements of vector 𝐅𝐯𝐃𝟎. For the tractor without 

trailers 𝐅𝐯𝐃𝟎 is a null vector, 𝐹𝑦𝑓0 = 𝐶0𝑓 sin(𝛼𝑓0), 𝐹𝑦𝑟𝑅0 = 𝐶0𝑟 sin(𝛼𝑟𝑅0), 𝐹𝑦𝑟𝐿0 = 𝐶0𝑟 sin(𝛼𝑟𝐿0). 
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𝐶0𝑓 = 𝜇0𝑓  𝐹𝑛𝑓0 and 𝐶0𝑟 = 𝜇0𝑟  𝐹𝑛𝑟0 are friction forces derived from the stiffness of the tire. 𝐹𝑛𝑟0 and 

𝐹𝑛𝑓0 are the normal forces acting on the wheels denoted as: 𝐹𝑛𝑓0 = 𝑐0 g 𝑚𝑏 ℎ0⁄ ,  

𝐹𝑛𝑟0 = (ℎ0 − 𝑐0) g 𝑚𝑏 (2 ℎ0⁄ ), where g is a gravity acceleration. In order to transformation forces to 

the global coordinate system 𝐅𝐯𝐆 can be calculated using rotation matrix 𝐑(−𝛽0): 𝐅𝐯𝐆 = 𝐑(−𝛽0) ∙ 𝐅𝐯. 

For the tractor, a vector of generalized force can be denoted as 𝐐(𝐪) = [𝐹𝑥 𝐹𝑦 𝐹𝛽0]𝑇 , 𝐹𝑥 is a first 

and 𝐹𝑦 is a second element of vector 𝐅𝐯𝐆. 𝐹𝛽0 is a sum of momenta for generalized coordinate 𝛽0:  

𝐹𝛽0 = 𝐹𝑦𝑟𝑅0𝑐0 + 𝐹𝑦𝑟𝐿0𝑐0 + 𝐹𝜏 sin(𝜓𝑓0) (ℎ0 − 𝑐0) − 𝐹𝑦𝑓0 cos(𝜓𝑓0) (ℎ0 − 𝑐0) + 𝐹𝑦𝐷0(𝑑0 + 𝑐0), (11)  

2.2. Conventional and virtual clutch with drawbar system 

Conventional and virtual clutch with drawbar system follow the same kinematics. The only difference 

is the ratio of the length of the drawbar to the length of the hitch. For this reason, these two systems are 

presented in this one section. For this systems, we assume that front wheels has no effect on trajectory. 

Basic geometrical parameters for analyzed cases are presented in Fig. 2. The configuration of the system 

can be expressed with generalized coordinate vector as 𝐪 = [𝑥 𝑦 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4]𝑇 . The 

kinetic energy of the i-th trailer 𝑇𝑡𝑖 can be denoted as: 

𝑇𝑡𝑖 =
1

2
 𝑚𝑡𝑖(�̇�𝑃𝑖

2 + �̇�𝑃𝑖
2 ) +

1

2
 𝐼𝑡𝑖�̇�𝑖

2 + 𝑚𝑤𝑖 ((�̇�𝐵𝑖
2 + �̇�𝐵𝑖

2 ) + (�̇�𝐴𝑖
2 + �̇�𝐴𝑖

2 )) + 2 (𝐼𝑤𝑖 +

𝑚𝑤𝑖  (
1

2
 𝑣𝑖)

2
) �̇�𝑖

2,    (12) 

where i is a number of the trailer and 𝑥𝐵𝑖 = 𝑥 − ∑ 𝑑𝑗
𝑖−1
𝑗=0 cos(𝛽𝑗) − ∑ (ℎ𝑗 + 𝑑𝑓𝑗)𝑖

𝑗=1 cos(𝛽𝑗),  

𝑦𝐵𝑖 = 𝑦 + ∑ 𝑑𝑗
𝑖−1
𝑗=0 sin(𝛽𝑗) + ∑ (ℎ𝑗 + 𝑑𝑓𝑗)𝑖

𝑗=1 sin(𝛽𝑗), 𝑥𝑃𝑖 = 𝑥𝐵𝑖 + 𝑐𝑖 cos(𝛽𝑖), 𝑦𝑃𝑖 = 𝑦𝐵𝑖 − 𝑐𝑖 sin(𝛽𝑖), 

𝑥𝐴𝑖 = 𝑥𝐵𝑖 + ℎ𝑖cos(𝛽𝑖), 𝑦𝐴𝑖 = 𝑦𝐵𝑖 − ℎ𝑖sin(𝛽𝑖). Total energy of the system can be denoted as the sum 

of the energy of individual units: 𝑇 = 𝑇𝑏 + ∑ 𝑇4
1 𝑡𝑖

.  

 

Figure 2.   Drawbar system: a) basic geometrical parameters b)  characteristic points 
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Side-slip angles and friction forces acting for this system are presented in figure 3.  

 

Figure 3.   Friction forces and slip side angles 

The side-slip angles for rear wheels of the i-th trailer can be expressed in the arctg function as:  

𝛼𝑟𝐿i = −arctg(�̇�𝐸i �̇�𝐸i⁄ ) − 𝛽i, 𝛼𝑟𝑅i = −arctg(�̇�𝐹i �̇�𝐹i⁄ ) − 𝛽i, where coordinates can be written as:  

𝑥𝐸𝑖 = 𝑥𝐵𝑖 +
1

2
𝑣𝑖  sin(𝛽𝑖), 𝑦𝐸𝑖 = 𝑥𝐵𝑖 +

1

2
𝑣𝑖 cos(𝛽𝑖), 𝑥𝐹𝑖 = 𝑥𝐵𝑖 −

1

2
𝑣𝑖 sin(𝛽𝑖), 𝑦𝐹𝑖 = 𝑥𝐵𝑖 −

1

2
𝑣𝑖  cos(𝛽𝑖). 

VsFi and VsEi are the directions of velocity of the wheel for i-th trailer. The forces can be expressed as 

vector in a local coordinate system of i-th unit: 𝐅𝐯𝐢 = [𝐹𝑥𝑖 𝐹𝑦𝑖]𝑇, where 𝐹𝑥𝑖, 𝐹𝑦𝑖 is a sum of forces 

acting longitudinally (subscript x) and laterally (subscript y) relative to the unit. These sums can be 

saved as 𝐹𝑥𝑖 = 𝐹𝑥𝐷𝑖, and 𝐹𝑦𝑖 = 𝐹𝑦𝐷𝑖 + 𝐹𝑦𝑟𝑅𝑖 + 𝐹𝑦𝑟𝐿𝑖. For a last trailer 𝐹𝑥𝐷𝑖 and 𝐹𝑦𝐷𝑖 do not occur, so 

they are equal to zero. Forces 𝐹𝑥𝑖, 𝐹𝑦𝑖 also are acting on front trailer (i-1), but they must be transformed 

to the local coordinate system of front trailer by rotation matrix 𝐑(𝛽i−1 − 𝛽𝑖):  

𝐅𝐯𝐃(𝐢−𝟏) = 𝐑(𝛽i−1 − 𝛽𝑖) ∙ 𝐅𝐯𝐢, where 𝐅𝐯𝐃(𝐢−𝟏) =  [𝐹𝑥𝐷(𝑖−1) 𝐹𝑦𝐷(𝑖−1)]𝑇 . The resulting vector contains 

forces acting on point 𝐷𝑖−1. For trailers, we note that 𝐹𝑦𝑟𝑅𝑖 = 𝐶𝑖𝑟 sin(𝛼𝑟𝑅𝑖), 𝐹𝑦𝑟𝐿𝑖 = 𝐶𝑖𝑟 sin(𝛼𝑟𝐿𝑖). 

𝐶𝑖𝑟 = 𝜇𝑖𝑟  𝐹𝑛𝑟𝑖 are friction forces derived from the stiffness of the tire. 𝐹𝑛𝑟𝑖 is a normal force acting on 

the wheel denoted as: 𝐹𝑛𝑟i = (ℎ𝑖 − 𝑐i) g 𝑚𝑡𝑖 (2 ℎi)⁄ . For this system generalized force vector can be 

denoted as 𝐐(𝐪) = [𝐹𝑥 𝐹𝑦 𝐹𝛽0 𝐹𝛽1 𝐹𝛽2 𝐹𝛽3 𝐹𝛽4]𝑇. 𝐹𝛽𝑖 for trailers can be expressed as sum of 

moment for generalized coordinate 𝛽𝑖:  

𝐹𝛽i = (𝐹𝑦𝑟𝑅i + 𝐹𝑦𝑟𝐿i)(ℎ𝑖 + 𝑑𝑓𝑖) + 𝐹𝑦𝐷𝑖(𝑑i + ℎ𝑖 + 𝑑𝑓𝑖), (17) 

where 𝐹𝑦𝐷𝑖 does not occur for last trailer.   

2.3. Double Ackermann steering system 

A higher number of articulations (DOFs) causes a greater number of generalized coordinates for this 

system. Comparing with the previous systems, vector of generalized coordinates has been extended by 

angles defining the position of the drawbar 𝛽𝑖2. In this system angles defining the position of the trolley 
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are marked 𝛽𝑖1. Using the above assumptions, a vector of generalized coordinates can be obtained:  

𝐪 = [𝑥 𝑦 𝛽0 𝛽11 𝛽12 𝛽21 𝛽22 𝛽31 𝛽32 𝛽41 𝛽42]𝑇. The kinetic energy of the i-th trailer 

𝑇𝑡𝑖 can be expressed as: 

𝑇𝑡𝑖 =
1

2
𝑚𝑑𝑝𝑖(�̇�𝑃𝑖1

2 + �̇�𝑃𝑖1
2 ) + 𝐼𝑑𝑝𝑖�̇�𝑖1

2 +
1

2
 𝑚𝑡𝑖(�̇�𝑃𝑖2

2 + �̇�𝑃𝑖2
2 ) +

1

2
 𝐼𝑡𝑖�̇�𝑖2

2 + 𝑚𝑤𝑖 ((�̇�𝐵𝑖
2 + �̇�𝐵𝑖

2 ) +

(�̇�𝐴𝑖
2 + �̇�𝐴𝑖

2 )) + 2 (𝐼𝑤i + 𝑚𝑤i  (
1

2
 𝑣i)

2
) �̇�𝑖2

2 , (18) 

where 𝑥𝐵𝑖 = 𝑥 − 𝑑0 cos(𝛽0) − ∑ 𝑑𝑗
𝑖−1
𝑗=1 cos(𝛽𝑗2) − ∑ 𝑑𝑝𝑗

𝑖
𝑗=1 cos(𝛽𝑗1) − ∑ ℎ𝑗

𝑖
𝑗=1 cos(𝛽𝑗2),  

𝑦𝐵𝑖 = 𝑦 + 𝑑0 sin(𝛽0) + ∑ 𝑑𝑗
𝑖−1
𝑗=1 sin(𝛽𝑗2) + ∑ 𝑑𝑝𝑗

𝑖
𝑗=1 sin(𝛽𝑗1) + ∑ ℎ𝑗

𝑖
𝑗=1 sin(𝛽𝑗2),  

𝑥𝐴𝑖 = 𝑥𝐵𝑖 + ℎ𝑖cos(𝛽𝑖2), 𝑦𝐴𝑖 = 𝑦𝐵𝑖 − ℎ𝑖sin(𝛽𝑖2), 𝑥𝑃𝑖1 = 𝑥𝐴𝑖 + 𝑐𝑖1cos(𝛽𝑖1), 𝑦𝑃𝑖1 = 𝑦𝐴𝑖 − 𝑐𝑖1sin(𝛽𝑖1), 

𝑥𝑃𝑖2 = 𝑥𝐵𝑖 + 𝑐𝑖2cos(𝛽𝑖2),  𝑦𝑃𝑖2 = 𝑦𝐵𝑖 − 𝑐𝑖2sin(𝛽𝑖2). Total energy of the system can be denoted as the 

sum of the energies of individual units: 𝑇 = 𝑇𝑏 + ∑ 𝑇4
1 𝑡𝑖

 . Basic geometrical parameters for these 

systems are presented in Fig. 4. 

 

Figure 4.   Double Ackermann steering system a) Basic geometrical parameters b) characteristic points 

Side-slip angles and friction forces acting on the systems are presented in Fig. 5. The steering angle for 

double Ackermann steering system can be denoted as: 

𝜓𝑓𝐿𝑖 = arctg (
ℎ𝑖

𝑣𝑖+ℎ𝑖ctg(𝛽𝑖1−𝛽𝑖2)
) and 𝜓𝑓𝑅𝑖 = arctg (

ℎ𝑖

−𝑣𝑖+ℎ𝑖ctg(𝛽𝑖1−𝛽𝑖2)
). (20) 

For rear wheels value of the steering angle is the same as in the front, but direction is opposite, so it can 

be expressed as 𝜓𝑟𝐿𝑖 = 𝜓𝑓𝐿𝑖, 𝜓𝑟𝑅𝑖 = 𝜓𝑓𝑅𝑖 . 
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Figure 5.   Forces and slip angles 

The side slip angles for this system of the i-th trailer can be expressed as:  

for front wheels: 𝛼𝑓𝐿i = −arctg(�̇�𝐻i �̇�𝐻i⁄ ) − 𝛽i2 − 𝜓𝑓𝐿𝑖 , 𝛼𝑓𝑅i = −arctg(�̇�𝐺i �̇�𝐺i⁄ ) − 𝛽i2 − 𝜓𝑓𝑅𝑖 ,  

for  rear wheels: 𝛼𝑟𝐿i = −arctg(�̇�𝐸i �̇�𝐸i⁄ ) − 𝛽i2 + 𝜓𝑟𝐿𝑖, 𝛼𝑟𝑅i = −arctg(�̇�𝐹i �̇�𝐹i⁄ ) − 𝛽i2 + 𝜓𝑟𝑅𝑖, where: 

𝑥𝐸𝑖 = 𝑥𝐵𝑖 +
1

2
𝑣𝑖sin(𝛽𝑖2), 𝑦𝐸𝑖 = 𝑦𝐵𝑖 +

1

2
𝑣𝑖 cos(𝛽𝑖2), 𝑥𝐹𝑖 = 𝑥𝐵𝑖 −

1

2
𝑣𝑖 sin(𝛽𝑖2),  

𝑦𝐹𝑖 = 𝑦𝐵𝑖 −
1

2
𝑣𝑖cos(𝛽𝑖2), 𝑥𝐺𝑖 = 𝑥𝐴𝑖 −

1

2
𝑣𝑖sin(𝛽𝑖2), 𝑦𝐺𝑖 = 𝑦𝐴𝑖 −

1

2
𝑣𝑖 cos(𝛽𝑖2),  

𝑥𝐻𝑖 = 𝑥𝐴𝑖 +
1

2
𝑣𝑖sin(𝛽𝑖2), 𝑦𝐻𝑖 = 𝑦𝐴𝑖 +

1

2
𝑣𝑖 cos(𝛽𝑖2). VsFi, VsEi, VsGi, VsHi are the directions of velocity 

of the wheel for i-th trailer. The forces can be expressed as vector in a local coordinate system of i-th 

unit: 𝐅𝐯𝐢𝟐 = [𝐹𝑥𝑖2 𝐹𝑦𝑖2]𝑇, where 𝐹𝑥𝑖2, 𝐹𝑦𝑖2 is a sum of forces acting longitudinally (subscript x) and 

laterally (subscript y) relative to the unit. These sums can be expressed as 

 𝐹𝑥𝑖2 = 𝐹𝑥𝐷𝑖 − 𝐹𝑦𝑟𝑅𝑖sin(𝜓𝑟𝑅𝑖) − 𝐹𝑦𝑟𝐿𝑖sin(𝜓𝑟𝐿𝑖) + 𝐹𝑦𝑓𝑅𝑖sin(𝜓𝑓𝑅𝑖) + 𝐹𝑦𝑓𝐿𝑖sin(𝜓𝑓𝐿𝑖),  (25) 

 𝐹𝑦𝑖2 = 𝐹𝑦𝐷𝑖 + 𝐹𝑦𝑟𝑅𝑖cos(𝜓𝑟𝑅𝑖) + 𝐹𝑦𝑟𝐿𝑖cos(𝜓𝑟𝐿𝑖) + 𝐹𝑦𝑓𝑅𝑖cos(𝜓𝑓𝑅𝑖) + 𝐹𝑦𝑓𝐿𝑖cos(𝜓𝑓𝐿𝑖).  (26) 

For a last trailer 𝐹𝑥𝐷𝑖 and 𝐹𝑦𝐷𝑖 do not occur, so they are equal to zero. Forces 𝐹𝑥𝑖2, 𝐹𝑦𝑖2 also are acting 

on front drawbar of the trailer, but they must be transformed to its local coordinate system by rotation 

matrix 𝐑(𝛽i1 − 𝛽𝑖2): 𝐅𝐯𝐀𝐢 = 𝐑(𝛽i1 − 𝛽𝑖2) ∙ 𝐅𝐯𝐢𝟐, where 𝐅𝐯𝐀𝐢 =  [𝐹𝑥𝐴𝑖 𝐹𝑦𝐴𝑖]𝑇 . 𝐅𝐯𝐢𝟏 = 𝐅𝐯𝐀𝐢, where 

𝐅𝐯𝐢𝟏 = [𝐹𝑥𝑖1 𝐹𝑦𝑖1]𝑇. Forces 𝐹𝑥𝑖1, 𝐹𝑦𝑖1 also act on front trailer (i-1), but they must be transformed to 

the local coordinate system of front trailer by rotation matrix 𝐑(𝛽(i−1)2 − 𝛽𝑖1):  

𝐅𝐯𝐃(𝐢−𝟏) = 𝐑(𝛽(i−1)2 − 𝛽𝑖1) ∙ 𝐅𝐯𝐢𝟏, where 𝐅𝐯𝐃(𝐢−𝟏) =  [𝐹𝑥𝐷(𝑖−1) 𝐹𝑦𝐷(𝑖−1)]𝑇 . The resulting vector 

contains forces acting on point 𝐷𝑖−1. For trailers 𝐹𝑦𝑟𝑅𝑖 = 𝐶𝑖𝑟 sin(𝛼𝑟𝑅𝑖), 𝐹𝑦𝑟𝐿𝑖 = 𝐶𝑖𝑟 sin(𝛼𝑟𝐿𝑖),  

𝐹𝑦𝑓𝑅𝑖 = 𝐶𝑖𝑓 sin(𝛼𝑓𝑅𝑖), 𝐹𝑦𝑓𝐿𝑖 = 𝐶𝑖𝑓 sin(𝛼𝑓𝐿𝑖).  𝐶𝑖𝑟 = 𝜇𝑖𝑟  𝐹𝑛𝑟𝑖, 𝐶𝑖𝑓 = 𝜇𝑖𝑓 𝐹𝑛𝑓𝑖 are friction forces derived 

from the stiffness of the tire. 𝐹𝑛𝑓𝑖 is normal force acting on the wheel denoted as: 𝐹𝑛𝑓i = (𝑐i g 𝑚𝑡𝑖) ℎi⁄  

and 𝐹𝑛𝑟i = (ℎ𝑖 − 𝑐i)g 𝑚𝑡𝑖 (2 ℎi)⁄ . For this system generalized force vector can be denoted as  

404



𝐐(𝐪) = [𝐹𝑥 𝐹𝑦 𝐹𝛽0 𝐹𝛽11 𝐹𝛽12 𝐹𝛽21 𝐹𝛽22 𝐹𝛽31 𝐹𝛽32 𝐹𝛽41 𝐹𝛽42]𝑇. 𝐹𝛽𝑖1
 for drawbar can 

be denoted as: 𝐹𝛽i1 = 𝐹𝑦𝐴𝑖  𝑑𝑝𝑖 . 𝐹𝛽𝑖2 for trailers can be expressed as sum of moment for generalized 

coordinate 𝛽𝑖:  

𝐹𝛽i2 = (𝐹𝑦𝑟𝑅𝑖 cos(𝜓𝑟𝑅𝑖) + 𝐹𝑦𝑟𝐿𝑖 cos(𝜓𝑟𝐿𝑖))ℎ𝑖 + (𝐹𝑦𝑟𝑅𝑖 sin(𝜓𝑟𝑅𝑖) − 𝐹𝑦𝑟𝐿𝑖 sin(𝜓𝑟𝐿𝑖) −

𝐹𝑦𝑓𝑅𝑖 sin(𝜓𝑓𝑅𝑖) + 𝐹𝑦𝑓𝐿𝑖 sin(𝜓𝑓𝐿𝑖))
1

2
𝑣𝑖 + 𝐹𝑦𝐷𝑖(𝑑i + ℎ𝑖), (32) 

where 𝐹𝑦𝐷𝑖 is not present for the last trailer.  

3. Numerical experiments 

In this section, we present results of numerical simulations, which were conducted for the all three 

systems discussed in this paper. In the simulations, coefficient of friction for the tractor wheels is 

constant: 𝜇0𝑓 = 30 and 𝜇0𝑟 = 30. Friction coefficient for trailer wheels for each of the systems were 

equal 20; 0.01; 0.0005; 0.0003. Initial conditions for all scenarios are the same as 𝑞 = 𝑞0 and �̇� = �̇�0, 

where 𝑞0, �̇�0 are null vectors. The steering angle of the tractor front wheel 𝜓𝑓0 is constant and equal 

𝜋/18. Tractor drive torque 𝜏 is a function of time and its value was chosen so that the visualization 

most clearly showed the differences between rides. For 𝑡 < 200 𝜏 = 100 𝑁𝑚 and otherwise 𝜏 =

40 𝑁𝑚. Simulations have been conducted in Wolfram Mathematica. The results are obtained by solving 

a system of differential equations with the residual method [20]. The geometric parameters and mass 

properties of the system are given in Table 1. The results are presented in Fig. 6.  

Table 1. Geometric parameters and mass properties 

PARAMETERS Conventional Clutch Virtual Clutch Double Ackermann 

Mass [kg] 

𝑚𝑏 1100 1100 1100 

𝑚𝑤0, 𝑚𝑤0𝑠 2 2 2 

𝑚𝑑𝑝𝑖 - - 5 

𝑚𝑡𝑖 500 500 500 

𝑚𝑤𝑖 1.5 1.5 1.5 

Moment of inertia 

[𝑘𝑔 𝑚2] 

𝐼𝑏 300 300 300 

𝐼𝑤0, 𝐼𝑤0𝑠, 𝐼𝑤𝑖 0.02 0.02 0.02 

𝐼𝑑𝑝𝑖 - - 100 

𝐼𝑡𝑖 100 100 100 

Dimensions [mm] 

ℎ0 1000 1000 1000 

𝑣0 500 500 500 

𝑐0, 𝑐𝑖/𝑐𝑖2 300 300 300 

𝑟0𝑓 200 200 200 

𝑟0𝑟  100 100 100 

𝑑0, 𝑑𝑖 200 800 300 

ℎ𝑖 500 500 700 

𝑑𝑓𝑖/𝑑𝑝𝑖 800 200 400 

𝑐𝑖1 - - 200 

𝑣𝑖 300 300 300 

𝑟𝑖𝑟 80 80 80 
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𝜇 Virtual clutch Conventional Clutch Double Ackermann 
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   Figure 6.   Train trajectories, where Red, Blue, Green, Orange, Pink and Black are for different time values in 

seconds: 0, 200, 400, 600, 800, 1000 respectively.   

 The obtained trajectories differ significantly in individual simulations. The high coefficient of 

friction (30) ensures no slip.  A low coefficient of friction (0.0003 and 0.0005) causes slip effect for 

each system. It is most evident for the virtual clutch. In other systems, this effect is more subtle, but it 

still occurs. The slipping in the conventional clutch causes the trolleys to move away from the center 

of the circular trajectory due to centrifugal force. The double Ackermann steering system is less prone 

to the slip than the other systems. The reason for this is the influence of the front wheel and the 

possibility of their turning. In that case friction forces acting on the trolley both in longitudinal and 

lateral directions. In the others systems, only lateral friction forces act on the trailer.  
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 Furthermore, the location of the tractor in time is different depending on the scenario for high 

values of coefficient of friction. This is due to the difference in kinetic energy. As the coefficient of 

friction decreases, the differences in the position of the tractor are greater, except for the virtual clutch 

system. This effect is the least visible for the double Ackermann system as friction forces decelerate 

the tractor. There is no this relationship for the virtual clutch with two the lowest friction coefficients. 

This is due to the velocities of the system at the beginning of the slip. Virtual clutch system is the most 

prone to the slipping. It means that the trolleys easily position themselves sideways to the direction of 

the motion. Then the friction forces are greatest because the slip angle is the highest, what causes 

deceleration.  

4. Conclusions 

In this paper, we showed the dynamic models of the three most popular steering systems for logistic 

trains. The obtained results allow comparison of their behavior in the presence of the slip effect. 

Kinematic analysis can help to choose the best system for non-slip rides. The slip effect affects the 

analyzed systems differently. Virtual clutch system is not very stable in contrast to the double 

Ackermann steering system. Factor favorable to the Ackermann steering system can be number of 

active wheels. This means that for virtual clutch system, only the weight acting on the rear axle of the 

trailer participated in the friction forces, as front castor wheels adapt their movement to the actual 

direction of motion.  
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of the control model on the motion of a motorcar with a trailer 

in a critical situation 
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Abstract: The study covers an analysis of the selection of parameters and performance 

curves of one of the modules of the algorithm of controlling the movement of an 

autonomous motorcar with a trailer when an obstacle suddenly appearing in front of the 

vehicle is to be avoided. The algorithm is based on a “driving controller” model where 

the signals measured during motion of the car-trailer unit are processed with using fuzzy 

logic and the information received from the environment perception system is utilized 

by the model to identify the situation where a driver’s reaction is required. The resulting 

hazards arise from the complexity of the interactions taking place between the car, 

trailer, controller, and environment. The critical situations include trailer sway and 

jackknifing, specific to car-trailer units and caused by the trailer acting on the car and 

by the coupling between them. The issue in question covers an analysis of cooperation 

between several non-linear models (of the tractor, trailer, tyre-road interaction, and 

driving controller). Important areas of limiting the stability of functioning of such a 

combination of the models, especially when an obstacle suddenly appears in front of 

the vehicle moving with a high speed, have been identified. During experimental tests, 

attention was chiefly focused on validating the model representing the car-trailer unit 

and the behaviour of the car and the trailer during the obstacle avoidance manoeuvre. 

As an outcome of that research stage, the symptoms of critical situations resulting from 

the motion of the car-trailer unit were defined. Within the next step, the selection of the 

parameters and performance curves that may be decisive for the dynamics and stability 

of functioning of the models in the specific situation was analysed. The signals and 

indicators chosen for the analysis, describing the behaviour of the car-trailer unit, were 

treated as input data for the driver model. The values of the said signals and indicators 

rapidly increase with growing speed of the car-trailer unit and rising tow car’s steering 

wheel angle. The signals that are particularly sensitive in various road conditions have 

been indicated. 

1. Introduction 

Trailers are now universally used and this will not change in the next years. The adding of a trailer to 

a motorcar (used as a tow vehicle) offers a lot of benefits in passenger and cargo transport applications. 

However, difficulties in controlling car-trailer units when performing challenging road manoeuvres 

make a considerable drawback of such a vehicle combination. 
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The participation of autonomous motor vehicles in the road traffic is based on a few elementary 

driving models: following of the preceding vehicle; using of reference models; and using of lane-change 

models [2, 4]. The design of such models is based on results of the observation of road traffic and most 

frequent drivers’ behaviours [3, 7]. This is of critical importance for the safe operation of autonomous 

vehicles in the environment and road traffic, where motor vehicles driven by human drivers will 

undoubtedly remain predominating for many years. 

The autonomous vehicles move to follow the “preset trajectory”, i.e. continually generated models 

of the vehicle trajectory immediately planned.  This is also the case when the avoidance of an obstacle 

takes place. Two basic methods of generating (planning) the preset vehicle trajectory are used. In the 

first one, the vehicle trajectory is determined on the grounds of a vehicle drive pre-simulated by a simple 

reference model [4]. In the other one, curves are defined that describe the lateral displacement of the 

centre of vehicle mass in the form of algebraic equations, which may represent sequences of circular 

arcs, polynomial splines, clothoid splines, Bézier curves, etc. [8, 9, 10]. It is essential that the desired 

vehicle trajectory should be determined with considering the basic limitations dictated by the properties 

of real motor vehicles [16]. As an example, a method of generating the vehicle trajectory with taking 

into account the maximum acceptable values of the lateral (centripetal) acceleration of the motor vehicle 

under consideration has been presented in [11]. 

In most of the models examined hitherto, the controllers substituted for vehicle drivers minimize 

the distance between the current position of the centre of vehicle mass and the preset vehicle trajectory 

and minimize the difference between the angles of vehicle position and the position of the tangent to 

the preset vehicle trajectory. In this role, PID controllers and controllers based on fuzzy logic 

predominate. As an example: in [9], the control process is based on tracking the preset vehicle trajectory 

by a PID controller; the effective use of fuzzy logic in the controllers of mobile robots and motor 

vehicles has been shown in [3, 12]. A good result of controlling the drive of mobile platforms ([16]) 

was achieved by the use of two different control techniques. The controlling of a motor vehicle with a 

trailer in typical road situations has been analysed in [1], where the current obstacle position and the 

space limitations posed by the road infrastructure have been taken into account. 

Most of the reported methods of generating the desired vehicle trajectory apply to typical 

manoeuvres often performed in road traffic. In the situation of an obstacle suddenly appearing in front 

of a vehicle, the on-board computer has a very short time for making the necessary calculations to 

determine the desired vehicle trajectory. There is a lack of vehicle and controller models applicable to 

critical situations with autonomous vehicles travelling with a high speed, where the vehicle and the 

obstacle move along collision paths in an environment that has been only partly defined. 

In this study, a critical road situation will be analysed that may arise in result of e.g. other vehicle 

driver’s failure to yield the right of way on a road intersection. This usually causes front-to-side 
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collisions of moving vehicles and the percentage of such collisions in the total number of road accidents 

in Poland shows an upward trend (amounting to 31 % at present) [15]. It should be added here that the 

safety at front-to-side vehicle collisions has been for many years within the main areas of scientific 

interest of the authors of this study (cf. [5]). 

This work is aimed at determining the impact of some controller characteristics on the possibility 

of safe avoidance of a suddenly appearing obstacle that is moving along a collision path in relation to 

an autonomous car with a trailer (“car-trailer unit”) travelling with a high speed. The advantageous 

values of the input parameters for a fuzzy logic controller and the areas of acceptable control values for 

the road situation under analysis will be indicated. An assumption has been adopted that in a critical 

situation of this kind, the information sent by the environment perception system (i.e. the data 

recognition and interpretation) will cause the controller settings to be adjusted for the time of the 

obstacle avoidance process. Such settings will differ from those used to ensure stable vehicle motion 

before and after the obstacle avoidance manoeuvre. 

The degree of difficulty of the controller operation in the case under analysis is very high. This is 

not only due to the short time available for the perception of a specific road situation but also because 

of the dilemmas arising from the situation where a non-collision solution does not exist. 

2. Road situation under analysis 

In the problem addressed here, a cargo trailer has been added to an autonomous car and the motion of 

such a car-trailer unit in analysed in a situation where an object moving along a collision path suddenly 

appears in front of the said vehicle and may be expected to block a part or the whole width of the lane 

used by this vehicle. Such a situation has been generally illustrated in Fig. 1. 

 

Fig. 1. Road situation under analysis: DL − distance of environment recognition by the perception 

system; Dobs − distance over which the preset vehicle trajectory yT is analysed by the controller; 

yT0, yT1 − preset vehicle trajectory; yP0, yP1 − obstacle position; K − foremost edge of the obstacle 

road lane 

road lane 

yT0 – preset trajectory 
at the instant t = 0 
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At the instant when the car environment perception system (Fig. 2) finds out that such an obstacle 

begins to come out (yP0 > 0), distance x0 between the car and the obstacle is shorter than the braking 

distance Sh of the car-trailer unit. Therefore, a safe solution may be a circumvention of the obstacle 

(with using the adjacent road lane) to avoid a collision. 

The process of avoiding a suddenly appearing obstacle is usually based on the results of: 

− analysis of the critical situation; 

− determination of the forecasted position of the point of intersection of the trajectories of 

the objects under analysis (point P in Fig. 1); 

− generation of the preset vehicle trajectory yT(x,t); 

− immediate adjustment of the preset trajectory according to obstacle motion. 

In the situation of sudden intrusion of an obstacle, as analysed in this study, the method with 

detection of the foremost obstacle edge K may be relatively effective. The determination of the current 

positions of edge K and point P (see Fig. 1) makes it possible to start the trajectory planning process, 

necessary for the controller to function. 

3. Control system and model of dynamics of the vehicles 

A schematic diagram of the control system has been shown in Fig. 2. 

 

Fig. 2. Structure of the control system 

In the next part of this study, particular attention has been paid to the models of the driving 

controller and the car-trailer unit. Important aspects of the controller operation have been described 

within the analysis of the critical situation. In turn, a model of the car-trailer unit has been presented in 

Fig. 3. In this model, the tow car body is treated as a rigid body with 6 degrees of freedom and each of 

the wheels has a degree of freedom related to its rotational motion. Hence, the car and trailer models 

have 10 degrees of freedom each. 
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Fig. 3. Car-trailer unit with the global {O} and local {C } coordinate systems 

The following generalized coordinates were used to describe the vehicle body motion: 

T]zyx[q =
 (1) 

where: 

x, y, z – global {O} coordinates of the origin of a local coordinate system {CA or CB}; 

φ, θ, ψ – quasi-Euler angles defining the orientation of system {C} relative to system {O}. 

The equations of motion were expressed in the form of vectorial relations as follows: 

( ) 
=

=+
n

i

im
1

Fvωv

 (2) 

 (3) 

where: 

m, T – vehicle mass and tensor of inertia in relation to the centre of mass in {C}; 

rv =,r , rv  =  – vector extending from the origin of the global coordinate system to the 

centre of vehicle mass in {C} and vectors of the velocity and acceleration 

of the centre of mass in the global coordinate system {O}; 

Fi and Mj – external forces and moments, respectively, acting on the vehicle body 

in {C}; 

ω  – vector of the angular velocity of the vehicle body in {C}. 

In the vehicle models, a few important non-linear characteristic curves plotted for the tyres and 

suspension systems were taken into account. The courses of these curves are essential as regards the 

analysed aspect of the vehicle motion at high values of vehicle body roll angle, steering angle, as well 

as tyre slip ratio and sideslip angle during the experimental and simulation tests, due to high vehicle 

speeds and curvatures of the vehicle trajectory during the obstacle avoidance process. 


=

=+
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j

j

1

MωTωωT 
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Fig. 4. Examples of non-linear characteristics of the tyre-road interaction in the motorcar and trailer 

models 

Fig. 4 shows an example comparison of tangential force curves FX(sX) and FY(sY) for several tyre 

slip values sX and sY . For the model, the course of these curves was determined with using a semi-

empirical model TMeasy [6, 13], which enables the approximation of the actual forces and moments 

generated by the tyre (even at high tyre slip values) based on experimental tyre slip characteristics: 

FX(sx) = μ ∙ [μx(sx) ∙ FZ]    FY(sy) = μ ∙ [μy(sy) ∙ FZ] (4) 

where: 

FZ – normal component of the force acting at the tyre-road contact point; 

FX and FY – forces acting at the tyre-road contact point, limited by the tyre to road adhesion 

force Fμ; 

μ(μx, μy) – tyre-road adhesion coefficient and unit tangential forces at the tyre-road contact 

point. 

The model of dynamics of the car-trailer unit was validated in conditions corresponding to the 

avoidance of a suddenly appearing obstacle [14], with taking into account conformity between the 

results of experimental measurements and the results of simulation carried out with a model of 

avoidance of a suddenly appearing obstacle. The conformity was assessed by comparing the trajectory 

of the centre of vehicle mass, lateral accelerations at the centre of mass, vehicle body yaw and roll 

angles, and front and rear tyre sideslip angles. Fig. 5 shows photos of the experimental tests and 

comparisons of several curves, such as trajectory of the motorcar, lateral acceleration of the centre of 

mass of the car and the trailer, and trailer yaw angle ψB. 
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Fig. 5. Comparison of results of experimental and simulation tests with avoiding an obstacle suddenly 

appearing in front of the vehicle moving with a speed of v = 60 km/h 

The validation confirmed good conformity between the results of experimental and model tests. 

4. Analysis of the critical situation 

The primary objective of the analysis is to determine the vehicle trajectory yT(t, x). It is assumed that 

the perception system is continuously monitoring the road situation and should detect the instant when 

the situation begins to be hazardous, i.e. when the yP0 value begins to be positive (yP0 > 0). Then, the 

process of analysis of the critical situation (see Fig. 2) should result in determining: 

− yP0 and vP, i.e. the position and velocity of the obstacle at the instant t0; 
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− x0 and vS based on the state of motion of the car; x0 is the distance from the car 

to the obstacle at the instant t0 (when the obstacle just appears in front of the car); 

− whether x0 < Sh; if yes, then the obstacle avoidance procedure should be started; Sh is the 

braking distance of the car-trailer unit in the current local road conditions; 

− next position of point K (at the instant t1);  

and in calculating: 

𝑦𝑃1 = 𝑣𝑃𝑡𝑆 𝑡𝑆 =
𝑥0

𝑣𝑆
, and (5) 

− forecasted position of the target point (P in Figs 1 and 6) 

𝑦𝑃 = 𝑦𝑃1 + 𝑏2 + 𝑦𝑊 − 0.5𝑑 (6) 

where: b2 – half of the width of the car-trailer unit; d – width of the road lane;  

yW – clearance necessary for the safe avoidance of the obstacle (Figs 1 and 6). 

When the position of point P is determined, it will be possible to generate the preset vehicle 

trajectory yT(t, x) as a continuation of the previous path (yT0 → yT1; Figs 1 and 6), but with taking into 

account the critical situation detected. Additionally, it should be kept in mind that braking in the 

situation of x0 < Sh may be risky because it will cause the values of tS and yP1 to increase; moreover, the 

braking will also “consume” a part of the tyre to road adhesion force Fμ available. 

The preset vehicle trajectory yT(t, x) is designed in a two-dimensional space, based on the 

information obtained from the system of perception of the situation in front of the car. The working 

space thus described is told to be “partially defined”. To generate the vehicle trajectory yT in such 

a space, the functions describing the necessary lateral displacement y (Fig. 6) of the centre of mass of 

the car-trailer unit during the transition from rectilinear to curvilinear motion were taken as the point of 

departure. The following functions were considered: 

a) cosine curve   

𝑦 = 𝑦𝑃 (1 − 𝑐𝑜𝑠𝛽);   𝛽 =
𝑥

𝑥0
1800;    𝑥 ∈ (0, 𝑥0)    (7) 

b) composition of two circular arcs 

for 𝑥 ∈< 0,  𝑥𝐷 >, 𝑦 = 𝑅 − √𝑅2 − 𝑥2  (8) 

for 𝑥 ∈ ( 𝑥𝐷 ,   𝑥0 >, y = yP − R + √R2 − (x − x0)2   

 𝑥𝐷 =
𝑥0 

2
 

c) composition of two parabola segments 

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2, (9) 
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Fig. 6. Example preset vehicle trajectories during the obstacle avoidance process,  

v = 60 km/h, Dobs = 6 m, yw = 1 m 

The preset vehicle trajectory was calculated with taking into account the following limitations 

dictated by the properties of the specific car-trailer unit (examples calculated for the three functions 

mentioned above and the properties of the fuzzy logic model have been shown in Fig. 6): 

δ ≤ δMAX = 30 … 35o (design confinement of the steering angle) (10) 

𝑣𝑆 ≤ 𝑣𝑀𝐴𝑋   (11) 

𝑅𝑆 𝑀𝐼𝑁 ≥
𝐿

𝑡𝑔𝛿𝑀𝐴𝑋
       𝑅𝑃  𝑀𝐼𝑁 ≥ √𝑅𝑆  𝑀𝐼𝑁

2 + 𝑙ℎ
2 − 𝑙ℎ𝑝

2    (12) 

𝐹𝑄 = 𝑚
𝑣𝑠

2

𝑅𝑠
≤ 𝐹𝜇 = 𝜇𝑔𝑚   (13) 

where: 

𝑅𝑆 𝑀𝐼𝑁 , 𝑅𝑃 𝑀𝐼𝑁 – minimum radii of curvature of the car and trailer trajectories, respectively; 

vS – vehicle speed; 

𝑎𝑌  𝑀𝐴𝑋 – maximum acceptable lateral acceleration; 

L – motorcar wheelbase. 

Hence: 𝑅𝑆  𝑀𝐼𝑁 >
𝑣𝑠

2

𝑎𝑌  𝑀𝐴𝑋
; 𝑎𝑌  𝑀𝐴𝑋 < 𝜇𝑔   (14) 

The difference between the radii of curvature RP − RS has an impact on the necessary clearance yw 

between the vehicle and the obstacle in the curvilinear motion. 

The results obtained hitherto from the experimental and simulation tests [14] provide grounds for 

identifying the following important criteria for the assessment of the quality and nature of the course of 

the obstacle avoidance process: 

− effective avoidance of the obstacle; 
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− stable form of the vehicle trajectory; 

− short time of “adjusting” the vehicle position (measured to 5 % of the deviation value) 

and limited value of the extreme overshoot in the trajectory; 

− short time spent on the adjacent road lanes; 

− as low as possible extreme values of the steering angle, steering wheel angle, tyre sideslip 

angles, lateral acceleration, roll angle, and drawbar turning angle. 

The simulation test results were analysed with taking the above criteria into account. 

5. Simulation test results 

Extensive simulation research was carried out to determine the impact of the vehicle control model on 

the motion of the car-trailer unit when avoiding a suddenly appearing obstacle. In the tests, the PC-

Crash program [13] was used and the calculations were made for the motion of the vehicle combination 

with speeds ranging from 40 km/h to 80 km/h. The following main assumptions were adopted for the 

simulations: 

− The vehicle combination consisted of a motorcar with a mass of 1 800 kg and a centre-

axle trailer with a mass of 1 800 kg as well. 

− Before the critical situation occurred, the car-trailer unit moved rectilinearly with 

a constant speed in the middle of the right lane of a carriageway. 

− The road had two lanes in each direction. 

− The lane width was d = 4 m and the maximum width of the car-trailer unit was 2.4 m. 

At the initial stage of the tests, the impact of the method of generating the preset vehicle trajectory 

and the reaction time or the Dobs distance (Fig. 1) on the functioning of the control system (Fig. 2) was 

determined. The assessment of this impact was based on results of the simulation of behaviour of the 

vehicle combination in the critical road situation. The following curves and values determined for the 

car and the trailer were assessed: 

− trajectory of the centre of vehicle mass (Fig. 7); 

− length of the distance x(t) travelled by the vehicle before the lateral displacement yCA and 

yCB equal to 3 m is achieved and the yCA and yCB values actually achieved at the instance 

of passing-by the obstacle; 

− extreme values of the steering wheel angle (𝛿𝐻𝑀𝐴𝑋 , 𝛿𝐻𝑀𝐼𝑁) and tyre sideslip angles 

(∝𝑀𝐴𝑋, ∝𝑀𝐼𝑁) in the initial phase of the obstacle avoidance process. 
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Fig. 7. Example trajectories of the car and trailer centres of mass during the obstacle avoidance 

process, v = 60 km/h, yw = 1 m 

Fig. 7 shows curves representing the trajectories of the vehicle centres of mass, obtained for three 

different Dobs values. The curves show that the selection of this value has an impact on the rate of 

growth in the lateral vehicle displacement and on the value of the first overshoot (yMAX) during the 

obstacle avoidance process. Example curves representing the dependence of some characteristic values 

determined from the x(yCA), x(yCB)  as well as αA(x) and αB(x) curves on the yT generation method chosen 

and on the selection of the Dobs value have been juxtaposed in Fig. 8. 

   

 

Fig. 8. Juxtaposition of some characteristic values to compare the simulation results for various 

methods of defining the preset vehicle trajectory yT and selecting the Dobs distance;  

the calculations were carried out for v = 40-80 km/h and yw = 1 m 

419



In Fig. 8, the course of the xA and xB curves (Figs 8A, 8C) below 30 m shows that the car and the 

trailer can avoid the obstacle that would appear at a distance of x0 = 30 m. In Fig, 8C, there is one curve 

above 30 m indicating that the trailer moving with a speed of v = 80 km/h would hit the obstacle if the 

preset vehicle trajectory were designed as a composition of circular arcs. The curves in Figs 8B and 8D 

show that the collision would be accompanied by skidding of trailer wheels, with the skidding beginning 

to occur even at v = 60 km/h. 

At the initial stage of the tests, the following could be determined: 

− yT(t, x) generation method that would be advantageous in the critical road situation; 

− minimum yw value; 

− Dobs length. 

This in turn enabled passing to the second stage, at which the findings made at the initial stage 

were used and when the range of the acceptable 𝛿𝐻𝑀𝐴𝑋   and  𝛿𝐻
𝑃𝑅𝑀 values, such that a stable vehicle 

trajectory could be achieved during the obstacle avoidance process, was determined. The calculations 

revealed that the range of acceptable steering wheel angle values was very restricted (Fig. 9). 

 

Fig. 9. Example of the restricted area of values of the 𝛿𝐻𝑀𝐴𝑋   and  𝛿𝐻
𝑃𝑅𝑀 settings of the control system 

under test at which a stable vehicle trajectory could be achieved during the obstacle avoidance 

process 

6. Recapitulation and conclusions 

In order to verify the possibility of safe avoidance of an obstacle moving along a collision path and, 

moreover, the adopted concept of functioning of the control system, extensive experimental and 

simulation research was carried out. During the experimental tests, some characteristic curves 

representing non-linear properties of vehicle tyres and suspension systems were determined and 

measurement results describing the car-trailer unit motion when avoiding a suddenly appearing obstacle 

were collected. This made it possible to validate the computer model used for testing the control system. 
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The simulation tests were carried out for a complex road situation; as early as at the initial stage, 

they revealed that the possibilities of controlling a motor car so that it could avoid an obstacle were 

very limited (cf. Figs 8 and 9). The conditions of vehicle motion and the controller settings were 

indicated at which the vehicle would hit the obstacle because the collision would be unavoidable. 

The findings made within the two stages of the tests include the following: 

− To generate yT in the critical situation under analysis, the use of a composition of parabola 

segments would be recommendable. 

− The Dobs length should be 7-8 m. 

− The yw distance should exceed 1 m. 

The acceptable areas of selection of the steering wheel angle values in the initial phase of the 

obstacle avoidance manoeuvre were also determined. The values indicated are applicable to the range 

of the necessary adjustment of controller parameters for the time of duration of the obstacle avoidance 

manoeuvre. Comprehensive fragments of the calculation results will be shown during the presentation 

of this paper. 
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Study of the Duffing van der Pol system dynamics using RQA

measures

Andrzej Rysak, Magdalena Gregorczyk

Abstract: This work presents a detailed study of the Duffing van der Pol sys-
tem dynamics in different ranges of the driving force frequency. Bifurcation
diagrams reveal the evolution of the system dynamics, from periodic and quasi-
periodic to chaotic regimes. The specific dynamic states of the system are then
distinguished by Lyapunov exponents and phase diagrams. In the current re-
search, these methods are used as a reference to assess the system variability
through the use of recurrence analysis. The application of recurrence anal-
ysis provides new variables confirming the changes observed in the system
dynamics. It is shown that recurrence analysis can clearly distinguish between
dynamic states singled out by Lyapunov exponents. In addition, the recur-
rence measures indicate some modifications in the system dynamics, which are
not detectable by other well-established methods. In particular, interesting
changes in system recurrences in periodic and quasi-periodic areas are ana-
lyzed in detail.

1. Introduction

The non-linear Duffing van der Pol (DvP ) system [2, 6] is of great importance both in

theoretical and practical studies due to its two coexisting dynamic properties: double-well

potential and non-linear damping. Studies aimed at better understanding, control and detec-

tion of systems defined by the DvP equations usually make use of well-established analytical

and numerical methods that yield easy-to-interpret results. Recurrence analysis is a method

that achieves significant results in the study of dynamic systems; in spite of this fact, its

interpretation basis is still being developed. The recurrence plot (RP ) method as a tool for

testing nonlinear systems was first proposed by Eckmann [3], and further developed by Web-

ber and Zbilut [7], Casdagli [1], Marwan et al. [4] and others. From the very beginning, the

study of transient dynamics in nonlinear systems was one of the important directions for the

method’s application [5]. In the present work, we aim to show the great inherent potential

of this method by examining the DvP system and comparing the RQA results with those

obtained by well-established numerical tools. Bifurcation diagrams and Lyapunov exponents

were chosen as the reference methods. The numerical results show that the RQA measures

change surprisingly clearly in the areas where the reference methods indicate unchanging

dynamic characteristics.
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2. Duffing van der Pol system

The DvP system was developed as a result of combining two nonlinear systems: the Duffing

system with non-linear potential, and the van der Pol system characterized by non-linear

damping. The DvP system with external excitation is determined by the following general

non-linear equation:

ẍ = −(α+ βx2)ẋ+ γx− δx3 + fcos(ωt), (1)

where the coefficients α, β, γ and δ are real. Choosing β = 0, α > 0 transforms this equation

to the damped Duffing system with external excitation [2]

ẍ = −αẋ+ γx− δx3 + fcos(ωt), (2)

whereas taking δ = 0 leads to the van der Pol externally excited system [6]

ẍ = −(α+ βx2)ẋ+ γx+ fcos(ωt), (3)

In this work the Duffing - van der Pol equation is adopted in a form with reduced number

of parameters:

ẍ = µ(1− x2)ẋ+ ax− bx3 + fcos(ωt) (4)

and with constant coefficients: µ = 0.1, a = 0.5, b = 0.5, and f = 0.17.

3. Numerical analysis

3.1. Simulation, bifurcation and Lyapunov exponents

This work analyzes the changes in the system dynamics caused by changes in the angular

frequency ω of the excitation force. The main result under analysis was obtained by per-

forming 960 simulations for the ω parameter, changing it from 0.475 to 0.535 with the step

∆ω = 6.25 · 10−5. The period T of the excitation force varies with the angular frequency,

but the number of simulation steps per period nT is maintained constant at 24,000. Due to

the high point density, it was checked that the simple Euler method is sufficient to integrate

differential equations derived from (4). For every omega value, the settle time needed to fully

develop the system dynamics Ts = ST · T , where ST = 3000. The solutions collected in

subsequent NS = 300 periods were used to determine Poincareé points and Lyapunov expo-

nents. The bifurcation digram and results of Lyapunov exponents obtained for the full range

of changes in the bifurcation parameter ω are compared in Fig. 1. The Lyapunov exponents

clearly distinguish four main areas with different dynamics: A (0.4750 < ω < 0.4935) with
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Figure 1. The Lyapunov exponents (λ1, λ2) are compared with the bifurcation diagram.

The letters indicate four areas with different dynamics: quasi-periodic (A) , chaotic (B),

periodic (C), and chaotic (D).

quasi-periodic variability, B for (0.4935 < ω < 0.5054) where the system is chaotic, C for

(0.5054 < ω < 0.5278) -periodic and D for (0.5278 < ω < 0.5343) where the system returns

to chaos. Phase diagrams for the results selected from these four ranges are shown in Fig. 2.

With the change of ω, the trajectories of phase diagrams are continuously modified in indi-

vidual ranges (A,B,C,D) which is not demonstrated either in the variability of the Lyapunov

exponents or in the bifurcation diagrams.

3.2. Recurrence analysis

A RP is a graphic representation of the system’s returns to its previous states. It is con-

structed by plotting the distance matrix Rεi,j which determines the neighbors for each element

of the vector time series vi. The recurrence matrix is defined as

Rεij = Θ
(
ε− ||vi − vj ||

)
, (5)

where ε is the threshold parameter. An example RP for a harmonically excited, chaotically

vibrating non-linear system (Duffing), is shown in Fig. 3. The RP method does not require

the use of many points. Therefore, prior the recurrence analysis, the number of points in

the analyzed time series is reduced to 200 points per period (ppT = 200). The recurrence

variables are determined on the basis of the recurrence plots built for a vectorial time series
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a) b)

c) d)

Figure 2. Phase diagrams for selected results obtained in individual ranges. a) quasi-

periodicity, ω = 0.483 (A); b) chaos, ω = 0.5 (B); c) periodicity, ω = 0.5175 (C); d) chaos

ω = 0.535 (D)

0 500 1000 1500 2000

0

500

1000

1500

2000

Figure 3. Sample RP of the Duffing system in chaotic mode

of 50 periods duration. This gives 10,000 points in the analyzed time series and 108 points

in the RP . The four variables of recurrence quantification analysis (RQA): RR (recurrence

rate), 〈D〉 (average length of diagonal lines), LEnt (laminar entropy), and V Ent (entropy of

vertical lines) are chosen for studying the DvP system due to the fact that they show clear

and interesting changes in the analyzed regions: A, B, C and D. These variables are defined
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in the following way:

RR(ε,N) =
1

N2 −N

N∑
i=j=1
i6=j

Rεi,j , 〈D〉 =

∑N−1
l=2 lHD(l)∑N−1
l=2 HD(l)

,

LEnt = −
N−1∑
l=2

pL(l)log(pL(l), pL(l) =
HD(l)∑N−1
l=2 HD(l)

,

V Ent = −
N∑
v=2

pV (v)log(pV (v), pV (v) =
HV (v)∑N
v=2HV (v)

(6)

where N is the number of points in time-series, l is the length of diagonal lines and v is

the length of vertical lines. All measures are defined based on geometric statistics of the ar-

rangement of colored points. HD(l), HV (v) are the histograms of diagonal and vertical lines,

respectively. RR is the density of colored points in the RP . The meaning of other vari-

ables is described by their names. The entropy of diagonal and vertical lines are calculated

according to the Shannon formula.

4. RQA variables vs. Lyapunov exponents and bifurcation diagrams

A comparison of the results obtained for the RQA variables with the Lyapunov exponents

and bifurcation diagrams is presented in Fig. 4. Individual plots show the results of selected

a) b)

c) d)

Figure 4. Plots comparing the results of RQA measures (magenta) with bifurcation dia-

grams (gray) and Lyapunov exponents (blue). a) RR(ω), b) 〈D〉(ω), c) LEnt(ω), d) V Ent(ω)

RQA (magenta line) variables against the background of the bifurcation diagram (gray

points) and the largest Lyapunov exponent (blue line).
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5. Discussion

An analysis of the results reveals unique properties of the RQA variables enabling the de-

tection of subtle changes in the dynamics of the system under study. Starting from the

quasi-periodic area A, it can be observed that the Lyapunov exponents change only slightly

with the ω parameter. In contrast, some RQA measures clearly change over a wide range

of the A area. In addition, the sharp RQA peaks indicate in this area repeated changes in

the system dynamics occurring in narrow ranges of the ω parameter (Fig. 5a). The B and

a) b)

c) d)

Figure 5. Selected exceptional results given by the RQA variables

D chaotic areas highlighted by the Lyapunov exponents are not clearly distinguished by the

selected recurrence variables. They detect - as typical of chaos - rapid changes in dynamics

that occur when the circular frequency of the excitation force changes. However, particularly

pronounced peaks of the RR variable are visible in the B region (Fig. 5b). In the periodic

area C, the bifurcation diagram shows two subareas with a basic period of 4T and 2T , and

with a bifurcation point for ω = 0.5112. The RQA measures detect this point and distinguish

both sub-areas. Some of them show specific variability along with the forcing frequency that

occurs in the periodic region and leads to the transition 4T → 2T (Fig. 5a). Changes in the

Lyapunov exponents in this area are limited to a few small peaks. One of them indicates a

bifurcation point. The narrow omega area (0.5176 < ω < 0.5199) visible in the bifurcation

diagram, in which the periodic solution switches between two orbits, is well identified by

the RQA variables. Again, these changes are not visible in the Lyapunov exponents. In the

periodic area C, the LEnt measure shows an intriguing value modulation reflecting slight

modifications of the periodic orbit (Figs. 5c). Analyzing the results of RQA and Lyapunov
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exponents in the area of transition of the system dynamics from the quasi-periodic area to

chaos, one can notice a coincidence between both methods. Figure 6 shows this using the

example of the 〈D〉 variable and the largest Lyapunov exponent λ1. As it can be seen in the

Figure 6. Coincidence between the Lyapunov exponents and the 〈D〉 measure near the

boundary between quasi-periodicity (A) and chaos (B)

figure, the sharp peaks of the λ1 exponent find their counterparts in the 〈D〉 measure. To

distinguish the possibilities of the RQA method out, Fig. 7a presents the result obtained

in the 3D RQA subspace selected from the multidimensional space of recurrence measures.

The letters denote individual areas of the dynamics of the system dynamics that are clearly

AC

D

B

a) b)

Figure 7. RQA variables in one of the possible 3D RQA subspaces

distinguished in this figure. The colors of the points in the RQA subspace are determined

by the ω values in accordance with Fig. 7b.

6. Conclusions

The most important results obtained in the study of the DvP system can be summarized

as follows. The bifurcation diagram indicated the presence of four areas with different

dynamics. The Lyapunov exponents identified them as: quasi-periodicity (A), chaos (B),

periodicity (C), and chaos (D). In these specified areas of dynamics, the RQA measures show
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variability, while the observed changes in the Lyapunov exponents are relatively small. The

RQA variables provide a particularly valuable information about the areas A and C. The

dynamics of the DvP system did not change in these areas, but the changes in the frequency

of excitation led to the modification of the trajectories in the phase space. Similar effects

were not detected by the reference methods, which means that the recurrence analysis is

particularly useful for studying and controlling nonlinear dynamic systems that vibrate in

both stationary and transient modes.
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Control of tremors of human’s arm by a passive nonlinear absorber

Alireza Ture Savadkoohi, Claude-Henri Lamarque, Célien Goossaert

Abstract: The aim of the this work is to develop a mechanical nonlinear ab-
sorber for cancellation of tremors of human’s arm due to diseases such as
Parkinson. Governing equations of the upper limb representing by a two-
degrees-of-freedom pendulum are coupled to the equation of a nonlinear ab-
sorber. A time multiple scale method is exploited for detection of the responses
of the system at different time scales, i.e. fast and slow scales. After reveal-
ing fast dynamics of the system, the characteristic points of the system are
tracked. These points should correspond to comfortable amplitude variations
of the arm. The analysis of the dynamics of the system provides tools for
tuning parameters of the absorber.

1. Introduction

Since the last century, passive control of mechanical and structural systems is mainly carried

out by linear absorbers, namely tuned mass dampers (TMD) [2]. These devices operate very

well around the tuned linear frequency. However, they lose their efficiency if the targeted

frequency of the main systems changes due to damage and nonlinearities of the system.

It is shown that by using nonlinear properties of attachments, it is possible to increase

the suppression band and so to increase the efficiency of the passive control process [9].

Since then, a lot of nonlinear passive controller devices are developed [6] from which we can

mentioned the nonlinear energy sink (NES) [12] which is a pure nonlinear oscillator causing

a one way vibratory energy channelling between main systems and the NES [3, 11]. Some

of applications of such systems are structures [10, 13], acoustics [1], and aerospace [4]. For

controlling the tremor at rest of human arm, there are some works which use the TMD [5].

The idea of this work is to use a nonlinear solution in general and the NES in detail for passive

control of tremors of the arm. The paper is structured as it follows: The mathematical model

of the system and its linearised form about an arbitrary postural position are provide in Sect.

2. Governing equations of the same model coupled to a nonlinear absorber is presented in

Sect. 3 while its analytical treatments are shown in Sect. 4. An example of passive control

of such a system which diverges mathematically is provided in Sect. 5. Finally, the paper is

concluded in 6.

431



2. The mathematical model of the system without absorber: linearisation about

a postural position

The mathematical model of locomotion of human’s upper limb has been developed by Jackson

et al. [7]. If we define the generated angles in arm and forearm as θ and φ, then following

equations can be obtained [7]: ρ11θ̈ + ρ12φ̈+ ρ13 − TI + VI = H ′

ρ21θ̈ + ρ22φ̈+ ρ23 − TII + VII = J ′
(1)

where ρsp, s = 1, 2 and p = 1, 2, 3 are defined as:
ρ11 = I +m2(l21 + l22 + 2l1l2 cos(φ)), ρ12 = m2(l22 + l1l2 cos(φ))

ρ13 = −m2l1l2(2θ̇ + φ̇)φ̇ sin(φ), ρ21 = m2(l22 + l1l2 cos(φ))

ρ22 = m2l
2
2, ρ23 = −m2l1l2θ̇φ̇ sin(φ)

(2)

m1 and l1 are mass and length of the arm; m2 and l2 are equivalent mass and length of

the forearm and hand and I is the moment of inertia of the upper arm with respect to the

glenohumeral joint. H ′ and J ′ are applied torques about glenohumeral and elbow joints,

respectively. If we linearise these equations about a postural positions as θ0 and φ0, as

θS = θ − θ0 and φS = φ− φ0 following system is obtained:

M

 θ̈S

φ̈S

 +K

 θS

φS

 =

 f1 sin(wt)

f2 sin(wt)

 (3)

Natural frequencies of the linear system of Eq. 3 can be traced as functions of postural

postions which are depicted in Figs. 5 and 2. These figures show that the system frequencies

change as functions of initial postural positions which means that the classical linear ab-

sorbers, i.e. different families of TMD, can not be efficient for passive control of the tremor.

In the next section the original governing equations of human’s upper limb are coupled to a

NES and some preliminary results are presented.

3. The mathematical model of the system with coupled nonlinear absorber

Let us consider Fig. 3: a NES with the mass mN , generalized displacement as u and with

the distance of l3 from the joint of forearm is coupled to the overall system. Equations of

such system read:
ρ11θ̈ + ρ12φ̈+ ρ13ü+ ρ14 − T1 + V1 = H ′

ρ21θ̈ + ρ22φ̈+ ρ23ü+ ρ24 − T2 + V2 = J ′

ρ31θ̈ + ρ32φ̈+ ρ33ü+ ρ34 − T3 + V3 + cN u̇ = 0

(4)
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Figure 1. Variation of the first natural frequency of the system as function of initial posture

(θ0, φ0).

Figure 2. Variation of the second natural frequency of the system as function of initial

posture (θ0, φ0).
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where ρsp, s = 1, ..., 3, p = 1, ..., 4 are functions of θ, φ, u and systems parameters. We can

linearize the angles around a postural positions and after introducing a dimensionless small

parameter ε = mN
m2
� 1, following compact form of system equations is obtained:

Figure 3. The human’s upper limb model coupled to a NES

M ′


θ̈S

φ̈S

ü

 +K′


θS

φS

u

 +N ′ +A′ + C′ =


F1 sin(Ωt)

F2 sin(Ωt)

0

 (5)

Moreover, we suppose that p = [
ω2(θ0, φ0)

ω1(θ0, φ0)
], p ∈ N∗, where [...] stands for nearest integer

function. We set:

ω1 = Ω + σ1ε, ω2 = pω1 + σ̃2ε = pΩ + σ2ε (6)

Let us apply following change of variables in modal coordinates:
θS

φS

u

 = P


W1

W2

W3

 ,with P =


V11 V12 0

V21 V22 0

0 0 1

 (7)

where P is a matrix of eigenvectors of M ′−1K′. After introducing a damping matrix in the

system, following set of equations can be obtained:
Ẅ1

Ẅ2

Ẅ3

 + (D + εΛ)


W1

W2

W3

 + εCD


Ẇ1

Ẇ2

Ẇ3

 + Ẇ3(T + εU)

+n0(W3)(X + εY ) + (A+ εB) = εH

(8)

Where T,U,X, Y,A,B and H are vector while CD is the diagonalised damping matrix.
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4. Complexification of the system and its fast/slow dynamics

Let us introduce extended version of complex variables of Manevitch [8]:
ib1 + Ψ1 exp(iΩt) = Ẇ1 + iΩW1

ib2 + Ψ2 exp(ipΩt) = Ẇ2 + ipΩW2

ib3 + Ψ3 exp(iΩt) = Ẇ3 + iΩW3

(9)

We would like to keep just first harmonics of the system. This leads to:
Ψ̇1 + i(ω1−σ1ε)

2
Ψ1

Ψ̇2 + i(ω2−σ2ε)
2

Ψ2

Ψ̇3 + i(ω1−σ1ε)
2

Ψ3

 + (D + εΛ)


− i

2(ω1−σ1ε)
Ψ1

− i
2(ω2−σ2ε)

Ψ2

− i
2(ω1−σ1ε)

Ψ3

 + εCD


Ψ̇1

Ψ̇2

Ψ̇3


+

Ψ3

2
(T + εU)+fn(X + εY ) = εH

(10)

Performing a time multiple scale leads to detection of Slow Invariant Manifold (SIM) at fast

time scale and all characteristic points of the system at slow time scale. If we set Ψj = Nje
iδj ,

j = 1, 2, 3, then the SIM becomes a function of Nj and also δ = δ1 − δ2. Some views of the

SIM for some values of δ and some system parameters are illustrated in Fig. 4 and 5.

Figure 4. The SIM of the system for δ = 0

5. An example for passive control

In this section, numerical results on the presented the model of the Sect. 2, i.e. the system

without a coupled NES, are presented via creation of an exact resonance with the external
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Figure 5. The SIM of the system for δ = π

excitations. The same system is coupled to a NES. Figures 6 and 6 show that the coupling

of the NES controls the diverging behaviours of the undaunted systems during the exact

resonance.
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Figure 6. Time history of θ for the system without and with coupled NES.

6. Conclusions

The passive control of the tremor of human’s arm by a nonlinear energy sink is presented.

The linearisation of governing equations of the system about an arbitrary postural position
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Figure 7. Time history of φ for the system without and with coupled NES.

revealed that the natural frequencies of the system change according to initial postural po-

sition. This means that using linear absorbers which are efficient at a tuned frequency will

not be sufficient for tremor control. A nonlinear energy sink is coupled to the system and

detection of fast/slow dynamics leads to tracing slow invariant manifold and characteristics

points. An example of passive control for mathematically initially diverging system is pre-

sented showing that the nonlinear absorber can control the vibration of the main system in

a considerable level.
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Alternation of stability character in systems with positional
non-conservative forces

Yury Selyutskiy

Abstract: The influence of non-conservative forces (both positional and velocity-
dependent) upon stability of equilibrium positions of mechanical systems is
discussed in many papers. In particular, it is well known that small dissi-
pative forces can lead to instability. In the present work, the evolution of
stability character of equilibrium is studied for the case when potential force
corresponding to one generalized coordinate changes in presence of positional
non-conservative forces. It is shown that, if parameters of the system satisfy
certain conditions then the alternation of the stability character is observed
(stability-instability-stability), as the stiffness in one of generalized coordinates
increases. This effect is illustrated by the example of an aeroelastic system with
two degrees of freedom.

1. Introduction

In the structure of equations of small oscillations of a mechanical system there are tra-

ditionally dostinguished dissipative, gyroscopic, positional potential, and positional non-

conservative (or circulatory) forces. A great number of works have been devoted to the

study of various aspects of their influence on the stability of the trivial equilibrium (some

results that have become classical are presented, in particular, in [3, 11]).

Currently, research in this area is actively ongoing. In particular, the problems of stabil-

ity and stabilization of a general system in the case when the potential energy in equilibrium

has a maximum are considered in [1]. In [12], the influence of the structure of matrices of the

corresponding forces on the form of oscillations near the equilibrium position is analyzed.

One of the typical sources of instability is positional non-conservative forces (see, in

particular, [9, 7]). On the other hand, it is known that these forces in certain situations are

able to stabilize the equilibrium position, unstable in their absence.

Dissipative forces with full dissipation, as a rule, have a stabilizing effect on the system.

Nevertheless, as the well-known Ziegler paradox shows, such forces can also lead to the loss

of stability of the equilibrium. The effect of destabilization under the action of dissipative

forces is discussed in detail, in particular, in [6]. It was shown in [4] that forces depending on

velocities (dissipative and gyroscopic) can also have a destabilizing effect for systems with

an infinite number of degrees of freedom.
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The effect of small dissipative forces and dissipative forces with incomplete dissipation

in systems with two degrees of freedom containing all types of forces is analyzed, e.g., in [5].

It is shown that such influence can be both stabilizing and destabilizing.

The presence of antidissipation in the system (i.e., negative eigenvalues of the matrix of

dissipative forces) is also a source of instability (although, of course, stability is also possible

in this situation).

In mechanical systems that describe technical objects, it is often difficult or impos-

sible (due to technical reasons) to change parameters that determine the positional non-

conservative forces. At the same time, parameters characterizing potential forces can often

be changed relatively easily (for example, by changing the stiffness of structural elements).

It seems interesting to describe the effect of such changes on the stability of the equilibrium

in situations when the system contains positional non-conservative forces and / or dissipative

forces without full dissipation.

Note that aerodynamic forces are a natural source of both positional non-conservative

forces and dissipative forces with partial anti-dissipation. Accordingly, such an analysis can

be useful, in particular, in the context of study of behavior of mechanical systems containing

a rigid body moving in flow.

2. General considerations

Consider a mechanical system with two degrees of freedom. Denote the vector of generalized

coordinates by q = (q1 q2)T . Assume that the system has a trivial equilibrium position.

Then, as is well known, the equations of motion linearized near this equilibrium position can

be written in the following structural form:

Mq̈ + Bq̇ + Cq = 0. (1)

Here M is the inertia matrix (positive definite), B is the matrix of velocity-dependent forces,

and C is the matrix of positional forces.

Without the loss of generality, it is possible to assume that the equations are presented

in dimensionless form.

We consider the influence of the change in stiffness in one of generalized coordinates (for

definiteness, the first one) upon the stability.

To reduce the number of parameters and simplify the subsequent analysis, we perform

a coordinate change such that a change in stiffness in the original partial system leads to a

change in stiffness in only one of new generalized coordinates.

When stiffness in the first original generalized coordinate is added, Eq.(1) take the
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following form:

Mq̈ + Bq̇ + (C + K̃′)q = 0, (2)

where

K̃′ =

κ̃ 0

0 0

 .

Since the matrix M is symmetric and positive definite, there exists a non-degenerate change

of coordinates that reduces the matrix M to identity and keep the matrix K̃′ diagonal.

The system obtained from (2) as a result of such transformation can be represented in the

following form:

ẍ + (D + G)ẋ + (K + K′ + N)x = 0, (3)

where x = (x1 x2)T is the vector of new generalized coordinates, D = DT is the matrix

of dissipative forces, G = γY is the matrix of gyroscopic forces, K = KT is the matrix

of conservative forces, N = νY is the matrix of positional non-conservative forces, and the

matrices Y and K′ have the following form:

Y =

 0 1

−1 0

 , K′ =

κ 0

0 0

 .

Thus, in the new coordinates, additional stiffness is also present only in one of the

generalized coordinates.

We assume the coefficient κ non-negative.

The characteristic polynomial of our system looks as follows:

λ4 + a3λ
3 + (a2 + κ)λ2 + (a1 + d22κ)λ+ a0 + k22κ, (4)

where

a3 = d11 + d22, a2 = d11d22 − d212 + k11 + k22,

a1 = d11k22 + d22k11 − 2k12d12, a0 = k11k22 − k212 + ν2.

As is well known, a sufficient condition for the asymptotic stability of the trivial equi-

librium of a fourth order ODE system is the positivity of all coefficients of the characteristic

polynomial and of the third principal minor of the Hurwitz matrix. In our case, these

conditions are as follows:

a0 + κk22 > 0, a1 + κd22 > 0, a2 + κ > 0, a3 > 0,

H3κ = (a1 + κb1) (a2 + κ) a3 − a23 (a0 + κk22)− (a1 + κd22)2 > 0.
(5)
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Let us analyze how the introduction of additional stiffness into the first partial system

will affect the fulfillment (or non-fulfillment) of these inequalities.

First, suppose that d11d22 < 0, i.e. there is antidissipation in one of the generalized

coordinates and dissipation in the other. In this situation, obviously, H3κ < 0 if κ is large

enough. Thus, even if in the original system the trivial equilibrium position is asymptotically

stable, addition of a sufficiently large stiffness in one of the generalized coordinates will make

it unstable. If this position in the original system is unstable, and the coefficient at κ in

(5) is negative, then it is impossible to ensure stabilization by increasing stiffness in any

generalized coordinate.

Interestingly, it doesn’t matter if stiffness is added in the coordinate, for which damping

takes place, or in the coordinate, for which anti-dissipation takes place.

Let us consider in more detail the case of κ � 1. Then the roots of the characteristic

polynomial for a system with additional stiffness can be represented as follows:

λ1,2 = ±i
√
κ− d11

2
+O(κ−1/2), λ3,4 =

−d22 +
√
d222 − 4k22

2
+ o(1),

Note that λ3,4 are the eigenvalues of the partial system corresponding to the second coordi-

nate.

As should be expected, high-frequency oscillations are present in the system. If d11 < 0

and d22 > 0, then the amplitude of these oscillations, generally speaking, increases. If d11 > 0

and d22 < 0, then these oscillations are damped. However, the real part of at least one of

λ3,4 is positive. Thus, by increasing the stiffness in the partial system corresponding to the

first coordinate, it is impossible to stabilize the second subsystem.

Now let d11 > 0 and d22 > 0, i.e. the oscillations of both partial systems are damped.

Nevertheless, one of the eigenvalues of the matrix D of system (3) can be negative (this

means that the system does not have complete dissipation).

We first consider a situation where the trivial equilibrium of the original system is

asymptotically stable, i.e. ai > 0 (i = 0 . . . 3, see (4)) and H30 > 0.

If, in this case, expression for H3κ from (5), considered as a quadratic polynomial in κ,

has no real roots or two real negative roots, then stability is preserved for any values of the

additional stiffness. If both roots of this polynomial are positive, there is a range of values

of κ, where the stability of the trivial equilibrium is lost.

In the general case, the expression for the discriminant of the mentioned quadratic

trinomial is rather cumbersome. Therefore, we consider a special case.

Suppose that the system has a small parameter ε, and H30 = εH̄30 > 0. Then, under

the condition

(d11 − d22) a1 + (d22k11 − d11k22) a3 +
(
d11d22 − d212 + γ2) d22a3 < 0 (6)
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there is a range of values 0 < κ1 < κ < κ2, where H3κ < 0:

κ1 = − εH̄30

(d11 − d22) a1 + (d22k11 − d11k22) a3 + (d11d22 − d212 + γ2) d22a3
+ o(ε),

κ2 = −
(d11 − d22) a1 + (d22k11 − d11k22) a3 +

(
d11d22 − d212 + γ2

)
d22a3

d11d22
+O(ε).

(7)

Note that stability loss occurs already at small (of the order ε) values of added stiffness.

Inequality (6) holds, in particular, if the following relations are satisfied:

d22k11/k22 < d11 < d22, det(D + G) = d11d22 − d212 + γ2 ≤ 0.

Now suppose that the equilibrium position of the original system is unstable, and all the

coefficients of the characteristic polynomial are positive, and H30 < 0. Then H3κ, treated

as a quadratic polynomial in κ, has one negative and one positive root. This means that a

sufficiently large additional stiffness ensures stabilization of the equilibrium position.

3. Example: aeroelastic system with two translational degrees of freedom

As an example, consider an aeroelastic system consisting of bodies M1 and M2 connected

with springs and able to move translationally along the axis OY (see Fig. 1). The body M2

has a shape of rectangular cylinder.

M1

y2

Vair

X

Y

V

L

D

M2

y1

�V
�V2

Figure 1. Aeroelastic system with two translational degrees of freedom.

This system is placed in the airflow; the air speed V is constant and perpendicular to

the line of motion of bodies. We assume that the body M2 interacts with the flow, while the

aerodynamic load upon the body M1 is negligible.

Systems of such kind (but containing only one body, i.e. with one degree of freedom) are

widely studied. It is known that the so called galloping can arise in such systems, when the

“natural” equilibrium becomes unstable if the flow speed gets large enough, and the bluff

body starts oscillating. This effect is of great interest from the point of view of engineering,
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on the one hand, because it can lead to the fatigue and break of structures, and on the other

hand, because it can be used for power generation purposes.

Different aspects of the influence of various parameters on the galloping behavior was

investigated numerically and experimentally, in particular, in [10, 8]. Questions of using this

phenomenon for energy harvesting were discussed, in particular, in [2].

Here, we consider a modification of the conventional system, which comprises two bodies

instead of one. Taking into account the above mentioned, the equations of motion can be

written as follows:

m1ÿ1 + k1y1 + h1ẏ1 + k2(y1 − y2) + h2(ẏ1 − ẏ2) = 0,

m2ÿ2 + k2(y2 − y1) + h2(ẏ2 − ẏ1) = L cosα−D sinα = Fy.
(8)

Here y1,2 are deformations of springs; k1,2 and h1,2 are coefficients of stiffness and damping of

springs; L, D are aerodynamic lift and drag forces acting upon the body M2, correspondingly.

These forces can be represented in the following form:

L =
ρS

2
V 2
airCl(α), D =

ρS

2
V 2
airCd(α), Fy =

ρS

2
V 2
airCy(α),

Vair =
√
V 2 + V 2

2 =
√
V 2 + ẏ22 , α = − arctan

ẏ2
V
,

where ρ is the air density, S is the cross-section area of the body M2, Vair is the speed of

this body with respect to the incoming flow, Cl, Cd, Cy are non-dimensional coefficients. We

assume that they depend only upon the angle of attack α.

From symmetry considerations, it is clear that Cy(0)=0, and the system (8)) has the

trivial equilibrium position: y1 = y2 = 0. However, it should be noted that for k1 = 0 this

equilibrium is not isolated.

Now we introduce characteristic length Lc = b (width of the body M2), characteristic

time Tc = b/V , and characteristic mass mc = µρSb/2 (where µ is a non-dimensional coef-

ficient characterizing the ratio of density of the body material to the air density). We then

choose the units of measurement in such a way that these characteristic values would be

equal to 1. This is equivalent to transition to non-dimensional variables.

Suppose, for simplicity sake, that m1 = m2 = 1. Then equations of motion linearized in

the vicinity of the equilibrium position can be represented in the following form:

Mÿ + Dẏ + Ky = 0, (9)

where

y =

y1
y2

 , M =

1 0

0 1

 , D =

h1 + h2 −h2

−h2 h2 + Cαy

 , K =

k1 + k2 −k2
−k2 k2

 .
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Here Cαy = µ−1dCy(α)/dα|α=0. From numerous experiments (e.g., [10]) it is known that

Cαy < 0 for rectangular cylinders.

In this system, there are neither gyroscopic nor positional non-conservative (circulatory)

forces. Besides, detK = k1k2 ≥ 0. Hence, if detD > 0 then the trivial equilibrium is

asymptotically stable for any k1,2 > 0.

So, we consider the case when there is no full dissipation in the system, however, the

damping in springs is large enough:

detD = h1h2 + Cαy (h1 + h2) < 0, Cαy + h1 > 0, Cαy + h2 > 0. (10)

The characteristic polynomial of (9) is as follows:

λ4 +
(
Cαy + h1 + 2h2

)
λ3 +

(
Cαy h1 + Cαy h2 + h1h2 + 2k2 + k1

)
λ2

+
(
(Cαy + h1)k2 + (Cαy + h2)k1

)
λ+ k1k2.

(11)

The third principal minor of the Hurwitz matrix is

H3 = (h1 + h2)(Cαy + h2)k21

+
(
(Cαy + h1 + 2h2)(Cαy (h1 + h2) + h1h2)(Cαy + h2) + 2h2k2(Cαy − h1)

)
k1

+ k2(Cαy + h1)((Cαy (h1 + h2) + h1h2 + 2k2)(Cαy + h1 + 2h2)− k2(Cαy + h1))

(12)

This is quadratic trinomial in k1. Note that, due to (10), the coefficient at k1 in (12) is

negative.

Obviously, if the stiffness of the second spring is small then the constant term in (12)

is negative. This means that the trivial equilibrium is unstable for small k1. However, it

becomes asymptotically stable for large enough k1.

Consider now the case when k2 is large enough, so that Cαy h1 +Cαy h2 + h1h2 + 2k2 > 0.

Then the constant term in (12) is positive. Suppose also that Cαy + h1 � 1. This situation

corresponds to one of the particular cases discussed above, and the equation H3 = 0 has two

positive roots κ1 and κ2:

κ1 =
k2(Cαy + h1)(Cαy h1 + 2k2)(Cαy + h1 + 2h2)

2h2

((
Cαy (h1 + h2) + h1h2

)
(Cαy + h2) + k2(Cαy − h1)

) + o(Cαy + h1),

κ2 =
2h2

((
Cαy (h1 + h2) + h1h2

)
(Cαy + h2) + k2(Cαy − h1)

)
(h1 + h2)(Cαy + h2)

+O(Cαy + h1).

(13)

The trivial equilibrium is asymptotically stable for k1 ∈ (0, κ1)∪ (κ2, ∞), and unstable

for k1 ∈ (κ1, κ2). This means that quite small stiffness of the first spring is sufficient to

make the trivial equilibrium isolated and asymptotically stable. However, somewhat larger
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stiffness results in stability loss. In order to make this system stable again, it is necessary to

increase k1 considerably.

In order to illustrate the dependence of the area of instability upon parameters of the

system, we use numerical calculations. In Fig. 2, the domain of instability is shown in plane

(k1, k2) for different values of damping coefficients (grey colored areas).

1

k2

k1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

1

k2

k1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

1

k2

k1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

h1+Cy
�
 = 0.05 h1+Cy

�
 = 0.05 h1+Cy

�
 = 0.05
h2 = 4.5h2 = 1.0h2 = 0.1

1

k2

k1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

h1+Cy
�
 = 0.5

h2 = 0.1 1

k2

k1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

h1+Cy
�
 = 0.5

h2 = 0.3 1

k2

k1

0.8

0.6

0.4

0.2

0 0.2 0.4 0.6 0.8 1

h1+Cy
�
 = 0.5

h2 = 0.45

Figure 2. Domain of instability depending on parameters of the system.

These results demonstrate that the equilibrium is unstable, when both springs are

“weak” (k1 and k2 are small enough), which is natural. However, for any sufficiently large

value of k2 there exists a range of values of k1, where the equilibrium is unstable. The same

holds for the stiffness coefficient of the first spring: for any large enough k1 there exists an

interval of k2, where instability occurs.

It is interesting to note that making the system more “stiff” doesn’t necessarily make

it stable. Moreover, in some situations it is sufficient to decrease stiffness coefficient of one

spring to ensure the stabilization.

Such effect of change in stiffness looks somewhat unconventional.

The influence of structural damping upon stability is rather “normal”. One can readily

see that increase in damping coefficient of the second and / or the first springs leads to

shrinking of the area of instability, which could be expected. It is quite clear that if h1 and

h2 are large enough, so that detD > 0, then the equilibrium is asymptotically stable for all

positive values of stiffness coefficients of both springs.
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4. Conclusions

The effect of change of stiffness in one of generalized coordinates on the stability of the

trivial equilibrium is analyzed for linear mechanical systems with two degrees of freedom,

where dissipative forces without full dissipation and/or positional non-conservative forces

are present.

Conditions on parameters of the system are determined for existence of a range of

values of the stiffness coefficient where the equilibrium is unstable. This means that, in

some situations, increase in stiffness in one generalized coordinate can result in stability loss.

Consideration of this rather unexpected effect can be useful for engineering applications.

As a mechanical example, oscillations of an aeroelastic system with two translational

degrees of freedom (galloping) are considered. Areas of instability in the space of parameters

of this system are constructed.
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The influence of lateral swaying on the trajectory of articulated 

rigid body vehicles 

 

Aleksander Skurjat 

Abstract: The phenomenon of snaking of articulated vehicles is affected by many 

factors. One of them is lateral swaying of the vehicle caused by driving on uneven road, 

which can significantly affect the vehicle's steering angle and the trajectory of its 

motion. Typically, articulated vehicles are fitted with a rear driving tandem axle. The 

wheels that prevent the vehicle from tipping over are the front ones, which are attached 

directly to the vehicle frame. For this reason, the front wheels are loaded with lateral 

forces while swaying much more. Since the front wheels are distant from the steering 

joint, the resulting torque caused by the lateral forces tends to rotate the front body of 

the vehicle about the steering axle. This torque is counteracted (compensated) by the 

torque created by the steering system. Changes in the steering angle are proportional to 

the hydraulic steering system stiffness. Numerous experimental tests indicate that the 

relationship between stiffness and steering angle is not linear and might be 

approximated with an exponential function. The lateral (roll axis) oscillations are 

cyclical, an alternate angle change in the steering joint is observed. There is an alternate 

change in the steering angle due to changes in lateral forces acting on the front wheels. 

The article presents the results of the research on the impact of roll oscillations about 

the vehicle's lateral symmetry axis on the trajectory of vehicle motion. 

1. Inroduction  

The phenomenon of vehicle snaking is present in almost all vehicles on the road. It is defined as a 

spontaneous sinusoidal deviation of the motion trajectory from the straight line direction assumed by 

the driver. Its frequency and amplitude depend on the design parameters of the vehicle. For cars, 

trajectory deviations caused by lateral forces, uneven ground are not a challenge for the driver, so the 

vehicle can move at high speeds. For articulated vehicles, e.g. heavy commercial vehicles, there are 

already maximum speed limits due to problems with driving and significant increase in braking 

distance. Driving problems are caused by the vehicle's design: high centres of gravity, significant 

changes in their position due to the type of load being carried. Placing heavy loads in a trailer at the 

rear, beyond the rear wheels' axles, can give rise to resonance phenomena that create oscillations 

between the tractor and trailer. Of course, this results in a change in the trajectory of the vehicle or in a 

serious traffic incident.  

Both types of vehicles have front steering wheels, which enable precise compensation of the 

resulting trajectory deviations. In the case of vehicles  with articulated steering and hydrostatic drives 
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(earth working machines), it is not possible to change the trajectory smoothly. The research conducted 

by the author showed that geometric parameters have a significant influence on the phenomenon of 

snaking, in particular: a) geometry of the steering system, b) distribution of the units' centres of gravity 

in relation to the steering joint, c) distance between the front and rear wheels in relation to the steering 

joint, d) width of the vehicle. The following can also be mentioned in the steering system: e) low bulk 

modulus of oil, f) volumetric expansion of hoses, g) leakage of valves and h) inability to compensate 

the oil volume quickly and precisely in steering cylinders. The drive type is also important: the rear one 

causes both frames to twist in relation to the steering joint (jackknife effect) and the front one- 

straightens the vehicle while pulling.  

Another important issue is to determine the influence of lateral swaying (at roll vehicle axle) of 

the whole vehicle on the changes in the steering angle and trajectory of motion. Lateral sway of the 

vehicle caused by unevenness can affect the steering angle of the vehicle. The rear rigid driving 

pendulum axle used in the earth working vehicles makes  that only the front wheels prevent the vehicle 

from tipping over. This creates extra component of lateral forces on the front wheels, which are distant 

from the articulated axle by a considerable distance. Produced lateral force is of course greater on a 

wheel with higher normal tire-ground reaction. The resulting torque is applied to turn the front frame 

of the vehicle. The torque produced by the steering system (proportional to the stiffness) tries to 

compensate torque produced by the front wheels and make articulated joint to travel straight. Because 

of too small steering system stiffness and in a result in too small compensating torque produced steering 

angle will change. The steering angle changes alternately as a result of changes in the vertical forces on 

the front wheels. It should also be noted that the action of drive/braking forces also contributes to 

changes in the vertical loads on the wheels. 

Snaking phenomenon depends strongly on a distance measured between steering joint and the 

center of gravity point position of  both vehicles frames. Higher distance makes higher torques and 

amplitude in the joint of turn () will increase. Velocity and moment of  inertia plays an important role 

in vehicle course especially when asymmetry between front and rear part exist.  

2. Basic vehicle parameters and mathematical model description 

A mathematical model has been developed to investigate the effect of lateral swaying in the joint of 

oscillations of the rear rigid pendulum axle on oscillations in the joint of turn (). The model calculates 

the normal reactions on all wheels of the vehicle on the assumption that the normal reaction of the rear 

wheels reaches equal values. A sinusoidal waveform of the rear axle rotation angle is used as the force 

input function (generator). To calculate the reaction changes of the normal front wheels, the deflection 

of the front tires resulting from the rotation of the rear section was calculated, and on the basis of the 

known radial tires stiffness, the normal forces on all wheels were obtained. Changes in the reaction of 
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front and rear wheels under the influence of vehicle acceleration were also taken into account in the 

calculations. Then, knowing the normal forces acting on the wheels of the vehicle and its swaying 

(angle of roll axle), the lateral and longitudinal forces on individual wheels were calculated. They are 

the source of torques causing changes in the steering angle in the steering joint. A sinusoidal course of 

speed changes was also assumed. The adopted symbols are shown in Fig. 1.  

 

Figure 1.   Presentation of symbols adopted for calculations 

 

As a result of the forces that cause the vehicle to sway against the longitudinal axle of the vehicle, 

the situation shown in Fig. 2 occurs. The purpose of the test is to determine the relationship between 

the lateral tilts and the angular variations in the steering joint.  

 

Figure 2.   Lateral tilt of the vehicle under external forces and resulting change in steering angle 
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Oscillations in the steering system are induced by driving the vehicle in alternating lateral tilts with 

a specified frequency and amplitude and, at the same time, changes in the driving forces (braking and 

drive) also with a specified frequency and amplitude.  

Adopted values are presented in Fig. 3.  

Wheel track width of the vehicle W 1,0 [m] 

Length of the vehicle Xwrj+Xwfj 1,66 [m] 

Distance between front/rear axle and steering joint 

Xwfj/Xwrj 

0,68/0,98 [m] 

Distance of the centre of gravity of the front/rear 

section from the centre of symmetry Xcgf/Xcgr 

0/0 [m] 

Height of the centre of gravity of the front/rear section 

from the ground Zcgf/Zcgr 

0,8/0,8 [m] 

Weight of the front/rear section mF/mR 615/300 [kg] 

Inertia moment of the front/rear section Jf/Jr 314/100 [kgm2] 

Figure 3.   Model parameters adopted for tests 

 

The following mathematical model has been prepared. The relationships were used to calculate 

the sum of reaction forces of front and rear wheels:  

 (𝑋𝑊𝑅𝐽 + 𝑋𝑊𝐹𝐽) + 𝑚𝑅𝐸𝐷𝑔 = −𝐹𝑣𝑍𝐶𝐺𝑅𝐸𝐷   (1) 

 −𝐹𝐹(𝑋𝑊𝑅𝐽 + 𝑋𝑊𝐹𝐽) = 𝑚𝑅𝐸𝐷𝑔𝑋𝑊𝑅𝐽 + 𝐹𝑣𝑍𝐶𝐺𝑅𝐸𝐷  (2) 

 𝐹𝑅 = 𝑚𝑅𝐸𝐷𝑔 − 𝐹𝐹 (3) 

To determine the static  forces of normal front and rear wheels, the following were used: 

 𝐹𝐹𝐿𝑠𝑊 = −𝐹𝐹𝑠 (
𝑊

2
) (4) 

 𝐹𝐹𝑅𝑠 = 𝐹𝐹𝑠 − 𝐹𝐹𝐿𝑠 (5) 

𝐹𝑅𝐿𝑠𝑊 = −𝐹𝑅𝑠 (
𝑊

2
) (6) 

𝐹𝑅𝑅𝑠 = 𝐹𝐹𝑠 − 𝐹𝑅𝐿𝑠 (7) 

The deflection of the front wheels is determined from the following relationship: 

 𝑢𝐹𝐿 = 𝑊𝑠𝑖𝑛 (
𝑂𝐽
) (8) 

and the normal reaction from tyre deflection as: 

 𝐹𝐹𝐿𝑑 = 𝑢𝐹𝐿𝑘𝐹𝐿 (9) 

 𝐹𝐹𝑅𝑑 = 𝑢𝐹𝐿𝑘𝐹𝑅 (10) 

which means the following is obtained: 
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 𝐹𝐹𝐿 = 𝐹𝐹𝐿𝑠 + 𝐹𝐹𝐿𝑑 (11) 

 𝐹𝐹𝑅 = 𝐹𝐹𝑅𝑠 + 𝐹𝐹𝑅𝑑 (12) 

 𝐹𝐹𝐿
𝑦
= 𝐹𝐹𝐿sin(0𝑗) (13) 

 𝐹𝐹𝑅
𝑦
= 𝐹𝐹𝑅sin(0𝑗) (14) 

 𝑀 = (𝐹𝐹𝐿
𝑦
+ 𝐹𝐹𝑅

𝑦
) ∗ 𝑋𝑤𝐹𝑗  (15) 

  =
𝑀

𝑘
 (16) 

3. Simulation testing of the anti- oscillation system in steering system 

Vehicles with articulated steering system, such as wheel loaders, have rear wheels mounted on the rigid 

pendulum drive axle, which has the ability to rotate in the range of several degrees depending on the 

type of vehicle. This is a significant difference in relation to other wheeled vehicles in which the wheels 

are mounted (suspended) usually on flexible elements e.g. springs. Since the front wheels protect the 

vehicle against tipping over, additional forces are generated on them from front and rear inertia elements 

during tilting and lateral swaying (in relation to the longitudinal axle of the vehicle). The rear wheels 

are supported at the rear in the centre line of the vehicle and they only transmit the gravity forces 

generated by the resulting position of the centre of gravity of whole vehicle. The purpose of the test is 

to determine whether such a construction of the vehicle when engaged in lateral swaying affects the 

change in the steering angle of the front and rear parts of the vehicle in their axle of rotation, i.e. whether 

the snaking occurs. The tests are carried out for equal values enforcing lateral swaying of the vehicle 

and driving forces. However, they differ in the frequency of their occurrence. The obtained results are 

presented in Fig. 4.  

Studies have shown that the oscillations of the drive forces Fnap and lateral swaying are interrelated. 

In the case when fkol = fnap= 1 Hz, the oscillations in the steering system  fskr=1 Hz are also obtained. It 

can be noticed, however, that the slowing down of the lateral swaying (fkol0) also causes a decrease 

in the frequency of oscillations in the steering system (fskr). This phenomenon can be observed e.g. in 

Fig. 4a.  
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 4.   Study of the effect of the frequency of enforcing lateral swaying and drive forces on the 

oscillations of the vehicle's steering angle for different frequencies of enforcing lateral 

swaying  fkol and drive forces fnap 

 

In the case when fkol=0.1 Hz and fnap=1 Hz the visible oscillations of the steering angle () are 

observed and are derived from the drive forces and imposed on a slow change in steering angle resulting 

from the vehicle's tilt. The amplitude increases with the vehicle's lateral tilt angle and then it decreases. 

If the drive torque frequency (fkol=0.1 Hz and fnap=2 Hz) increases, the steering angle frequency  will 

of course increase too. This means that drive forces are particularly important when asymmetrical 

vertical forces occur on the front wheels. 

The action of the drive system may cause the suppression of steering angle oscillations, as shown 

in Fig. 4b and the results fkol=1 and fnap=0.5 Hz. It may be noted that the values of the steering angle () 

alternately reach the values of ±3 and ±2.5 degrees. This is due to the fact that the front wheels are 

relieved of load as a result of vehicle accelerating forces. The situation is different for the parameters 

fkol=0.5 and fnap=0.5 Hz (Fig4b). In this situation, the steering angles   =3 degrees and  =-2.5 degrees 

are obtained. The steering system does not oscillate around the straight drive position and moves in a 

circle. The same phenomenon was also observed for fkol=1 and fnap=1 Hz (Fig4a), but it is less 
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noticeable. The above phenomena occur also for other parameters of fkol=1 and fnap simulations and are 

presented in Fig. 4c.  

Fig. 4d. presents the results of the influence of changes in the frequency of fnap drive forces on the 

oscillations  with fkol=1=const. Frequency changes between 0.1 and 1 Hz for the drive forces result in 

only minor changes to the steering angle, which confirms that the introduction of vehicle lateral swaying 

has a significant effect on the oscillations in the steering system and the trajectory of vehicle motion.   

 

Conclusions  

The paper presents a mathematical model used to check the mutual relations between the oscillations 

of drive force and lateral tilting in the vehicle on the changes in the steering angle. It has been specified 

for which group of vehicles the phenomenon of overlapping of lateral tilt oscillations and drive force 

occurs.  It was shown that engaging a vehicle into lateral swaying  with an amplitude of ±14 degrees 

affects changes in steering angle  in the range of ±3 degrees. The action of drive/braking forces only 

makes a small contribution to changes in the steering angle . The mathematical analysis of the model 

shows that an increase in the distance between the front wheels and the steering joint increases the 

values of oscillation . Initial tests in the MBS environment also confirmed the correctness of the 

obtained results. Obtained mechanism of  will be tested on  a real machine in the near future.  
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Strong mode coupling in vibrations of single-walled carbon
nanotubes

Valeri Smirnov, Leonid Manevitch

Abstract: Beam-like and shell-like nonlinear normal modes interaction of single-
walled carbon nanotubes is considered in the framework of the thin shell theory.
In order to reveal the mode interaction and the effects, which can arise as its
results, we need in the transition to the nonlinear vibration theory. We consider
the CNT oscillations in the framework of the nonlinear Sanders-Koiter theory
and demonstrate that the effective reduction in the equations of motion in
the combination with the asymptotic analysis allows us to study the nonlinear
mode coupling and to reveal new stationary oscillations, which are absent in
the linear approach, as well as to describe the non-stationary dynamics under
condition of the 1:1 resonance.

1. Introduction

The vibrational properties of the carbon nanotubes (CNTs) are important from various view-

points. If the CNTs are the part of some nano-devices (nano-electromechanical resonator,

nanodetector, atomic force microscope, etc.) their oscillations determine the working regimes

and capability of the devices [12, 11, 7, 6]. On the other hand, the deformability and transmis-

sible characteristics of the nanotube reinforced composites depend on the CNTs’ vibrational

spectra [2, 4, 9]. Therefore, the oscillations of the CNTs have been repeatedly studied since

their discovery at 1991 [3]. Because of the elementary cell of the CNT is complex enough, the

vibrational spectrum consists of many branches, which correspond to different types of the

oscillations [2]. The most low-frequency oscillations are represented by both the acoustical

type ones (longitudinal tension, bending and twisting) and the optical-type circumferential

flexure modes. The latters correspond to the shell-type oscillations when the CNT’s cross

section, which is normal to the nanotube’s axis, undergoes periodic deformation. Their spe-

cific frequency is ∼ 30 cm−1 for the (10,10) nanotubes. In spite of this mode is the optical

type one, it may be under resonant conditions with acoustic-type modes at certain values of

the longitudinal wave number k.

Taking into account the nonlinear character of the nanotube oscillations, we can expect

the non-trivial effects resulting from their interactions. Really, the resonant interactions of

the modes belongnig to the same oscillation branch lead to the capture of the oscillation
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energy in coherent domains in the case of the CNTs with finite length [17] or to the breather

creation for the CNT of infinite length [16]. In the nanotubes of finite length the intensive

energy exchange between some domains on the CNT’s surface is changed by the energy local-

ization, if the oscillation amplitude exceeds some threshold, the value of which is determined

by the inverse aspect ratio (the ratio of CNT’s radius to its length). Recently, it was shown

that the resonant interaction of the nonlinear oscillations of different types is possible too

[15], but the localization effect occurs in the finite range of the oscillation amplitude. The

analytical model of the nonlinear interaction between bending and circumferential flexure

modes has been developed in the framework of reduced Sanders-Koiter theory of thin elastic

shells [1]. In order to reveal the mode interaction some additional assumptions have been

made that allows us to study the nonlinear normal modes and their bifurcations. The anal-

ogous model has been used for the anaylis of the circumferential flexure modes and it has

been well verified in [5, 18].

2. Interaction of nonlinear normal modes

In this work we will consider the CNT as a thin elastic shell, which is specified by its

radius R, length L and ”thickness” of wall η (see fig. 2). The ”material” of the shell is

characterized by the Young modulus Y and the Poisson ratio ν. Such an approximation

describes the behaviour of the CNT well, even if the nanotube deformation is large enough

[20, 19, 8, 14, 13]. In the framework of the thin shell theory, the local deformation is expressed

via the longitudinal (u), transversal (v), and radial (w) displacements of the middle surface

of the equivalent shell (fig. 2).

Taking into account that undistorted CNT is circular, we can represent the displacement

field as the Fourrier series:

{u, v, w} =
∑
n

{Un cosnθ, Vn sinnθ,Wn cosnθ}, (1)

where n (= 0, 1, 2 . . . ) is the circumferential wave number, θ is the azimuthal angle, and

{Un, Vn,Wn} are the amplitudes of the longitudinal, transversal and radial displacements,

respectively. The acoustic-type modes mentioned above correspond to n = 0 (longitudinal

tension and twisting) and n = 1 (bending mode), while the circumferential flexure mode is

associated with n = 2.

In this work we are interested in the dynamical processes, which result in the energy ex-

change and localization during the CNT oscillations. Therefore, we start from the oscillatory

energy distribution, which is specific for the certain modes. As it will be shown below, the

bending mode with the longitudinal wave number k = 3 (it corresponds to 3 half-waves on
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Figure 1. (Color online) The CNT geometry: red curve shows the middle surface, R

and η are the radius and the effective thickness of CNT. The {u,v,w} are the longitudinal,

transversal and radial components of the displacement field, respectively.

the CNT’s length) can be under resonant conditions with the circumferential flexure mode

having the same longitudinal wave number. The energy distribution for the combination of

these modes is exhibited in figures 4(a,b).

One can see that the combination of the bending and circumferential oscillations leads

to some concentration of the energy along the generatrix at the azimuthal angle θ = π.

There are two scenarios of the energy redistribution in the nonlinear systems [10]. The

first one consists in that the localized energy domain migrates over the CNT surface from

the initial position θ = π to new one at θ = 0 with some period, which is determined by the

modal frequency difference. Such a migraton is similar to the beating in the system of two

weakly couple identical oscillators, where the oscillatory energy migrates from one oscillator

to another one and backwards. Another scenario implies that the domain of the energy local-

ization is unmovable or can uninterruptedly move over the surface. The transition between

these scenarios occurs when the amplitude of the oscillations overcomes some threshold, the

value of which is determined by the certain condition.

In order to study the energy exchange and its localization we need in the dynamical

equations, which describe the coupled bending and circumferential oscillations. Because the

equations of the thin elastic theory are extremely difficult we should use some simplifying

hypotheses. Both bending and circumferential flexure oscillations are specified by negligible
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Figure 2. (Color online) (a) The elastic energy distribution over the CNT surface for the

case of coupled bending and circumferential oscillations. (b) The energy distributions along

the azimuthal coordinate.

changes of the contour length of the CNT cross section, which is normal to the nanotube

axis. The shear deformations are also supposed to be infinitesimal. These two hypotheses

allow us to find the relationships between amplitudes of the longitudinal, transversal and

radial displacements both in linear and nonlinear approximations [16]. By such a maner,

we obtain two coupled equations for the amplitudes of radial displacement for the bending

(W1) and circumferential flexure (W2) oscillations (see details in [15]):

∂2W1

∂t2
− α2

2

∂4W1

∂t2∂ξ2
+ α4 12 + β2

24

∂4W1

∂ξ4
−
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∂
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(
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∂
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∂W2
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= 0
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+
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10
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− α4

20
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+

α4(3 + 4β2)
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∂
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9α2
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(
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)
−
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∂t2
∂

∂ξ

(
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∂W2

∂ξ

)
− ∂

∂ξ

(
∂W2

∂ξ

(
∂W2

∂t

)2
)]

= 0 (2)

The linear approximation of equations (2) leads to the dispersion relations under the

boundary conditions, corresponding to the hinged CNT:

ω2
1 =

(
12 + β2

)
12 (2 + α2κ2)

α4κ4 (3)

ω2
2 =

1

20 + α2κ2

(
12β2 + 2β2 (3 + ν)α2κ2 +

(
3 + 4β2

)
3

α4κ4

)
,
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where κ = πk (k = 0, 1 . . . ) is the longitudinal wave number. Figure 2 shows dispersion

curves (3) in comparison with the exact ones, which were calculated by the solution of the

full linearized system without the hypotheses mentioned above. One can observe that the

resonant conditions at the bending (blue curve) and circumferential (red one) modes occur

at the ”wave number” k = 3.

Figure 3. (Color online) Dispersion relations for BLOs and CFOs. Blue and red curves

corresponds to the azimuthal wave numbers n1 = 1 and n2 = 2, respectively. Solid and

dashed curves show the exact values and the values estimated by equations (3).

3. Asymptotic analysis

Equations (2) obtained in the previous section can not be solved directly in terms of functions

W1 and W2. In order to get the stationary solutions of equations (2) we use the asymptotic

analysis with a small parameter ε whose value is determined by the resonance conditions for

bending and circumferential modes. However, before performing the asymptotic expansion,

it is useful to rewrite equations (2) in terms of the complex variables, which contain both

the coordinate and the momentum:

Ψj(ξ, t) =
1√
2

(√
ωWj(ξ, t) +

i√
ω

∂Wj(ξ, t)

∂t

)
, j = 1, 2. (4)

We assume that the parameter ω is stationary frequency, which is yet undefined. In order

to obtain the stationary solutions one should extract the carrier frequency, i.e. we will find

the nonlinear normal modes as follows:

Ψj(ξ, t) = ψje
−i(ωt−κξ), j = 1, 2 (5)

assuming ψj do not depend on the time.
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Figure 4. (Color online) The relative eigenfrequency difference versus the average amplitude

of CFOs and BLOs for the CNT with α = 1/30. The wave number κ = 3π.

Taking into account expressions (4, 5) with natural relation between modulus of function

Ψj and oscillation amplitude Aj

|Ψj |2 = Xj =
ω

2
A2
j . (6)

we obtain the dispersion laws for the oscillation branches as follows:

ω2
1 =

4α4
(
12 + β2

)
κ4

96 + 48α2κ2 − 27α2κ2A2
2

ω2
2 =

4
(
36β2 + 6α2β2(ν + 3)κ2 + α4

(
4β2 + 3

)
κ4
)

3 (4(20 + α2κ2)− 36α2κ2A2
1 + 9 (9− 2α2κ2)A2

2)
. (7)

It is easy to see that the small-amplitude expansion of relations (7) coincides with linear

dispersion law (3).

Figure 3 shows the dependences of the frequencies ω1, ω2 on the CFOs amplitude under

the various BLOs amplitude at the ”resonant” wave number κ = 3π. The relative difference

(∆ω/ω) between modes’ frequencies in the vicinity of the resonance is depicted in figure 3.

To provide the processes of the energy migration in the extensive systems become per-

ceptible on the background of modal oscillations, their duration should exceed the period of

modes essentially. It means that we should separate the fast and slow processes in the system.

The natural measures of the time scales are the natural frequencies (7) and their difference.

The latter is shown in Fig. 3 as a function of the average amplitude < A >= (A1 + A2)/2.

Separating the system’s motions with the different time scales, we suppose that the am-

plitudes ψ1 and ψ2 are the functions of the slow time τ ∼ ∆ω t. The respective evolution

equations for amplitudes ψj have been developed in [15]:
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i

(
1 +

α2κ2

2

)
∂ψ1

∂τ
−
(
−ω

2
+ α2κ2ω − α4κ4 12 + β2

48ω

)
ψ1 +

9α2κ2

32
ψ2

2ψ
∗
1 = 0

i

(
1 +

α2κ2

20

)
∂ψ2

∂τ
−
(5ω2 − 3β2

10ω
+ α2κ2 (ω2 − 2β2(3 + ν))

40ω
(8)

−α4κ4 3− 4β2

120ω

)
ψ2 −

9

80

(
9− 2α2κ2) |ψ2|2ψ2 +

9α2κ2

20
ψ2

1ψ
∗
2 = 0

It is useful to rewrite equations (8) in terms of functions

χ1(τ) = ψ1(τ); χ2(τ) =
4
√

2 + α2κ2

√
20 + α2κ2

ψ2(τ), (9)

which form the set of the canonical variables for the system with the Hamilton function

H = a1|χ1|2 + a2|χ2|2 + b1|χ2|4 + b2
(
χ2
1χ

∗ 2
2 + χ∗ 2

1 χ2
2

)
, (10)

where

a1 =
−24ω2 − 12α2κ2ω2 + α4κ4

(
β2 + 12

)
24ω (2 + α2κ2)

a2 =
36β2 − 60ω2 + 3α2κ2

(
2β2(ν + 3)− ω2

)
+ α4κ4

(
4β2 + 3

)
6ω (20 + α2κ2)

(11)

b1 =
18
(
−18− 5α2κ2 + 2α4κ4

)
(20 + α2κ2)2

b2 =
9α2κ2

2 (20 + α2κ2)

The equations of motion in terms of functions χj can be obtained as:

i
∂χj
∂τ

= − ∂H
∂χ∗

j

. (12)

An essential peculiarity of equations (12) is that they admit an additional integral besides

the energy. It shows the level of the system excitation and is similar of the occupation number

of the quantum mechanics. In our case it is expressed as follows:

X = |χ1|2 + |χ2|2. (13)
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It is known [10, 16] that the description of the energy redistribution resulted from the

resonant interaction of the nonlinear normal modes needs in the introduction of the variables,

which characterize the relative excitation of the different parts of the considered system.

These variables are referred to as the ”coherent domain” coordinates and expressed via the

linear combination of the resonating normal modes:

σ1 =
1√
2

(χ1 + χ2) ; σ2 =
1√
2

(χ1 − χ2) . (14)

It can be shown that the relations σ1 � σ2 or σ2 � σ1 correspond to the energy

distributions, when the main part of the oscillation energy is concentrated at the azimutal

coordinate θ = π or θ = 0. It is essential , that introduction of domain coordinates (14)

preserves occupation number integral in the form (13). It allows us to introduce the polar

representation for variables σ1 and σ2:

σ1 =
√
X cos θeiδ1 ; σ2 =

√
X sin θeiδ2 . (15)

Here the ”angle” θ corresponds to the relative excitation of one and other domains and

the difference ∆ = δ1 − δ2 shows the corresponding phase shift. The energy of the system

turns out to be dependent on the difference of the phases ∆ = δ1 − δ2 and angle θ at the

fixed value of the occupation number X.

H =
1

4
X
(

2 (a1 + a2 − (a1 − a2) sin 2θ cos ∆) +

X
(
b1(1− cos ∆ sin 2θ)2 + b2

(
4 cos2 ∆ +

(
2− cos2 ∆

)
sin 4θ

)))
(16)

The equations of motion in the terms θ and ∆ result from the relations:

sin 2θ
∂θ

∂τ
= −∂H

∂∆
; sin 2θ

∂∆

∂τ
=
∂H

∂θ
(17)

Due to existence of the occupation number integral X the phase space turns out to

be two-dimensional and the dynamics of the system can be studied by the phase portrait

method.

To start the analysis of the system dynamics at different excitation levels, one should

remind that functions θ and ∆ depend on the slow time τ only. Therefore, in the phase

portrait (in terms of these variables) the stationary states corresponding to the nonlinear
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normal modes, are represented as the points, but not as any trajectories. On the contrary,

any dynamical processes, which describe the evolution of variables θ and ∆, appear as

the trajectories surrounding the one of the stationary points. The trajectory divides the

”domains of influence” of the stationary states an it is called the Limiting Phase Trajectory

(LPT) (see Fig. 7(a) below). The detailed analysis of the transformations of the phase space

with changing the occupation number X has been performed in [15]. Therefore, now we

discuss only the bifurcations, which lead to the principal changing the phase space topology.

The typical phase portrait at small occupation number X is shown in Fig. 7(a). One can

see two stationary points at θ = π/4 and ∆ = 0, and ∆ = π, which correspond to the

nonlinear normal modes. The trajectories surrounding these points describe the slow energy

exchange in the system. The LPT is the trajectory passing from θ = 0 to θ = π/2 with

the phase shift ∆ ≈ π/2. While the occupation number grows the new stationary points

appear and if the value of X exceeds some threshold, the phase portrait transforms as it is

shown in Fig. 7(b). The principal difference between Figs. 7(a) and (b) is that the latter

does not contain any trajectoies, which pass from θ = 0 to θ = π/2. It means that the

energy initially concentrated in one domain can not flow to another one, i.e. we observe the

capture of the oscillation energy in some part of the nanotube surface. It is not an analogy

of the true localized excitations - breathers, because the latter can exist only outside of

frequency spectrum. However, in the finite length systems the spectrum is discrete and a

partial localization can exist in the gap between nonlinear normal modes. The threshold of

energy capture is related with transformation of the LPT into the separatrix crossing the

point {θ = π/4; ∆ = π/2} and can be written via the parameters of the Hamilton function:

Xloc =
(a1 − a2)

(
b1 −

√
−b1(b1 + 2b2)

)
(b1 + 2b2)2 + 4b22

(18)

At the given parameters of the nanotube ( α = 1/30, β = 0.08, ν = 0.19) the threshold value

of occupation number is Xloc = 0.00187.

However, while the occupation number grows, the phase portrait evolves and after next

bifurcation it looks as it is shown in Fig. 7(c). The bifurcation value of the occupation

number can be calculated as:

X =
a1 − a2
b1

(19)

(X = 0.00246 at the chosen parameters of the CNT). The comparison of Figs 7(b) and (c)

shows that their topology is the mirror image of one to another one. The further growth of

parameter X leads to the phase portrait which is shown in Fig. 7(d), where the trajectories
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(a) (b)

(c) (d)

Figure 5. (Color online) Phase portraits in the variables (∆, θ) at different values of

occupation number X: (a) X = 0.001, (b) X = 0.00186815, (c) X = 0.00361645, (d) X = 0.05.

describing the full energy exchange appears again. It occurs if the occupation number exceeds

the delocalization threshold

Xdeloc =
(a1 − a2)

(
b1 +

√
−b1(b1 + 2b2)

)
(b1 + 2b2)2 + 4b22

. (20)

4. Conclusions

The nonlinear vibrations of the single-walled carbon nanotubes can be effectively studied in

the framework of the nonlinear theory of the thin elastic shells. The strong coupling between

nonlinear normal modes, even if they belong to different branches of the oscillation spectrum,

leads to the long-time processes of the energy redistribution along the CNT’s surface. The

specific time of these processes multiple exceeds the oscillation period and it is controlled

by the frequency difference of the interaction modes. The governing parameters turns out

to be the oscillation amplitude, the value of that determines the resonant conditions. Under

condition of the strong resonance the state with the localized oscillations has the infinite

lifetime, but can be undergone some migration along the CNT’s surface.
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Experimental assessment of the test station support structure 

rigidity by the vibration diagnostics method 

 

 

Anna Šmeringaiová, Imrich Vojtko 

Abstract: The paper presents the results of the impact test. The test has been done to 

assess the rigidity of the test station support frame. Test station was designed and 

constructed to test different types of gearing and belt transmissions. The test station 

allows to simulate different operating conditions. The procedure of the tests can be 

both short-term and long-term with different load levels. The basic support frame 

structure of the test station was evaluated as unsufficient based on the results of 

measurement and processing of the measured low and high frequency vibration values 

in the verification series of experimental tests. The basic failure of the original design 

were the significant resonance actions that were the results of the dominant sources of 

vibration being near the natural frequencies of the vertical and horizontal beams of the 

test station base. A structural design of the test station supporting frame was designed 

and implemented. The impact tests were used to determine the values of the natural 

frequencies of the most stressed parts of the supporting structure - vertical and 

horizontal beams, before and after implementation of structural modifications. The 

comparability of the impact test results was determined by adherence to identical 

measurement conditions. 

1. Testing station for dynamic testing of toothed and belt gear drives 

When designing the gearbox, it is appropriate to know its dynamic characteristics. With improperly 

selected gearbox parameters, especially in transient states, there can be a high dynamic stress on their 

functional parts. There was designed and built a test station to realize the dynamic tests of gears at 

Department of Technical Systems Design and Monitoring, Faculty of Manufacturing Technologies of 

the Technical University of Košice with the seat in Prešov (see Fig. 1a). Designed test station allows 

to realize both, short and long-term comparative tests of various types of gearboxes. It is possible to 

test gearboxes with various design and technological modifications, to reduce their dynamic load in 

order to improve their parameters and increase their service life. The principle scheme and functional 

description of the test station is shown in 8. 

1.1. Functional testing of the test station and verification of the proposed methodology 

for dynamic testing 

The basic requirement for functional use of the test station was the achievability of objective and 

comparable results of the experiments. The main goal of the tests first stage was to verify the 
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functionality of the test station and of used measuring instruments and equipment. From this point of 

view, the selection of methods for measuring the wear of the functional parts of gears and diagnostic 

methods to assess their technical condition were also considered. Commonly manufactured Z80-J-

010-P single-stage worm gear units were used as a test object. During the experimental operation, the 

technical conditions of the worm gear units were monitored in two different operating modes. The 

operating conditions have been deliberately designed to achieve a maximum of 70  80  of the 

nominal transmission power guaranteed by the manufacturer and to stabilize the oil temperature 

below the limit. The following parameters (dynamic characteristics) were measured and evaluated for 

the tested worm gear units: load amplitude magnitudes and frequency, oil temperature, worm gear 

teeth wear. A detailed description of the preparation and course of a series of validation experimental 

measurements are described in 8, 9. 

   

    a)      b)       c) 

Figure 1.   Dynamic Transmission Testing Station a), 3D stand model b) before and c) after the 

structural modification 

1.2. Verification test results evaluation. 

According to 9, results of measurements of dynamic quantities (temperature, vibration, ultrasound) 

were found: 

 significant difference in measured parameters depending on transmission load, 

 significant changes in the measured parameters during heating, the effect of thermal expansion 

on the clearance in the teeth of the worm gear, bearings and chain, until the temperature has 

stabilized. 
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 significant resonance events, high mechanical vibrations above the Alarm 2 recommended limit 

(hazard according to Vibration Severity Standard 2) especially in area of the vertical beam and 

the horizontal frame under the sprocket, the transmission of these vibrations to the gearbox and a 

significant deterioration of the meshing conditions on the gears, 

 unfavorable operating conditions when starting the engine (gearbox), mainly due to higher load, 

oscillation and insufficient chain guidance, and again transfer of vibrations to the gearbox. 

 

The elementary structure of the test station was evaluated as unsatisfactory based on the results 

of measurement and processing of measured values of low-frequency and high-frequency vibrations 

in the verification series of experimental tests. The main drawback of the original design were 

significant resonance events, which were due to the fact that the dominant sources of vibration were 

close to the natural frequencies of the vertical and horizontal beam of the test station base structure. 

In order to ensure acceptable measurement results of the tested gearboxes, it was necessary to 

prevent the occurrence of adverse resonance events and the occurrence of high mechanical vibrations 

inside the mechanical system (testing facility). 

2. Solving adverse resonance events 

In vibrodiagnostics and when performing rotating machine failures identification, in addition to 

common failures, we occasionally encounter a special error that is not actually a malfunction. It is a 

feature of a device that, in a given configuration, adversely affects the operation of the device. It is a 

resonance, resonance phenomenon or operation at critical speed. The problem arises with devices in 

which the excitation force frequency is identical to the intrinsic resonant frequency. For example, if 

the electric motor speed is the same as the natural resonant frequency of the mechanical system. In 

this case, even a small imbalance causes a high response in the system and high vibrations are 

generated. In order to eliminate this phenomenon, it is first of all necessary to identify it and to 

determine its intrinsic resonant frequencies. Usually, the natural frequencies are determined by the 

impact tests (Bump Test). 

In general, there are two options how to solve resonant phenomena: 

a) changing the frequency of the driving force, (engine shaft revolutions), 

b) tuning the system, that means moving the resonant band to a frequency range where there is no 

excitation. 

Generally for resonant frequency  fr :  

𝑓𝑟 =
1

2𝜋
√
𝑘

𝑚
, (1) 
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where k is force constant (rigidity) and m is weight. From the equation (1) it follows that as the 

rigidity (k) increases, the resonance frequency increases and with the increase in mass (m) the 

resonance frequency decreases. 

In this case, the option b) - optimization of the structure of the supporting frame was chosen for 

the solution of resonance phenomena. The aim is to increase the rigidity of the test station base 

structure. Frame reinforcement and other measures, such as chain guiding and adequate fastening of 

weights, should have a positive effect on eliminating vibrations and shifting the resonant band of the 

base structure beyond the frequency range of the driving forces. The design of the supporting frame 

of the testing station was developed and implemented. The 3D model of the test station with the 

designed structural modification is shown in Fig. 1c. By measuring and comparing the natural 

frequencies of the basic design of the test station before and after the design changes, the control of 

the fulfillment of the expected target was performed. 

3. Impact test (Bump test) 

The intrinsic frequencies of the mechanical system were determined by the bump test in the resting 

state of the mechanical system: 

a) Before design of the test station, after completion of the functional tests described in 9. 

b) After modification of the test station frame support design. 

The natural frequencies of the most stressed parts of the supporting structure (vertical and 

horizontal beam) and of the tested worm gearbox before and after the design modifications were 

determined. The comparability of the bump test results was conditioned by observing identical 

measurement conditions. 

3.1. Description of the bump test conditions 

Used measuring instruments and aids: 

 measurement system OKTALON, graphical programing software LabVIEW with measurement 

algorithms – recording and processing of the measured signal, 

 vibration acceleration sensor - ACC-100 mV/g, fixing - flat magnet, 

 impact hammer. 

Measurement procedure: 

 Calculation of expected excitation force frequencies (operating frequencies values) – Table 1. 

 Preparation of measuring system and vibration measuring aids. 

 Choice of united coordinate system  - Fig. 1. 

 Determination of measuring points, location of sensors, direction and sense of impact  – Fig. 2a, 

5a, 7a and Fig. 9a. 
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 Measurement at selected measurement locations: vibration acceleration sensor mounting, bump 

hammer strike near the sensor, vibration acceleration dumping time recording. 

 Signal processing: vibration velocity waveform as a result of vibration acceleration time wave 

integration, FFT vibration velocity time waveform analysis, graphical and tabular processing of 

dominant frequencies. 

 Comparison of bump test results before and after design  – Table 2. 

3.2. Bump test - Measurements Results 

At figures 2a, 5a, 7a and Fig. 9a the location and course of the bump test at selected locations are 

shown. The direction of sensing the vibration signal and the direction of the modal hammer bump are 

indicated. After bumping in the indicated direction, the vibrations generated were recorded by a 

vibration acceleration sensor. 

Measurement 1 – Measurement of the natural frequency in vertical direction.  

  

     a)                                                                   b) 

Figure 2.   Measurement 1 – Measurement of the natural frequency in vertical direction. a) 

measurement execution b) frequency spectre before the design change 

   

a)                                                                   b) 

Figure 3.   Measurement 1 a) time course of vibration acceleration b) FFT- velocity after design change 
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Figures 2b, 5b, 7b and Fig. 9b are shown details of frequency analysis of the shock damping time 

course with the indication of the dominant frequencies obtained from the measurement before test 

station redesign and at figures 3, 4, 6, 8 and 10 are shown the results of a frequency analysis time 

course of the shock damping  after design changes have been made.  

Regarding the determination of natural frequencies, it does not matter whether the spectrum is 

calculated from the ACCELERATION or VELOCITY time course. The frequencies in the spectrum 

are in the same positions on the "x" axis. The only difference is that VELOCITY is calculated from 

acceleration by integration. This proportionally amplifies the lower frequencies and suppresses the 

higher frequencies. 

 

Figure 4.   Measurement 1 – frequency spectre after design modification 

Measurement 2 – Measurement of natural frequency of the table with drive mechanism          

in horizontal direction 

  

a)                                                              b)   

Figure 5.   Measurement 2 – Measurement of natural frequency of the table in horizontal direction, a) 

measurement execution, b) frequency spectre before the design 
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Figure 6.   Measurement 2 – dominant frequencies identified after the design change 

Measurement 3 – Measurement of natural frequency of vertical frame 

             

                a)                                                                               b) 

Figure 7.   Measurement 3 – Measurement of natural frequency of the vertical frame, a) measurement 

execution, b) frequency spectre before the design modification  

 

Figure 8.   Measurement 3 - Measurement of natural frequency of the vertical frame 
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Measurement 4 – Measurement of the natural frequency of worm gear – horizontally in 

worm gear axis direction 

     

                  a)                                                            b) 

Figure 9.   Measurement 4 – Measurement of the natural frequency of the worm gearbox, a) 

measurement execution, b) frequency spectre before the design change of the frame 

 

Figure 10.   Measurement of gearbox natural frequency in worm gear axis direction 

4. Evaluation of natural frequency measurement results 

To suppress possible resonance events in the process of experimental operation of the tested 

gearboxes, we chose to tune the system by changing the rigidity of the base frame of the test station. 

Based on the analysis of the results of the above described functional tests of the worm gears and 

results of the bump test, there were found high mechanical vibrations of mainly vertical "lift" beams 

and horizontal table beam under the sprocket were found. The transmission of these vibrations to the 

gearbox during operation in the short term significantly worsened the meshing conditions in the worm 

gear. The aim of the design modifications was to increase the stiffness of the basic structure, 

especially the vertical frame and table base on which the machine drive mechanism is mounted. 
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A repeated bump test revealed a significant shift of the natural frequencies of both vertical and 

horizontal beams in the frequency spectrum (see Table 2). After the frame has been reinforced, there 

has been a significant decrease in the vibration velocity amplitude and a shift of the dominant 

frequencies far beyond the operating values of the excitation forces frequencies. This occurrence had 

happened in both the vertical and horizontal directions. For example, in the case of a horizontal table 

beam, the dominant frequencies have shifted from the range from 30 Hz to 90 Hz to near 800 Hz. 

This is a prerequisite for obtaining objective results of planned experimental measurements also for 

other transmissions and other operating conditions. 

The natural frequencies of the worm gear housing were also measured repeatedly. The drift of 

dominant frequency values with significant amplitude peaks can be explained as a result of gearbox 

disassembly and reattachment on a reinforced table. 

Table 1 Expected frequency - basic calculation 

Structural Node 
Frequency 

Cycles / min Hz 

Engine, input into gearbox, Clutch, Worm 1400 23,3 

Output of the Gearbox, Sprocket 45,16 0,753 

Transmission chain, frequency of chain links 768 12,80 

 

Table 2.  Frequencies with dominant vibration values before and after design  

 Frequency [Hz] 

Measurement 1 Measurement 2 Measurement 3 Measurement 4 

Condition before 

design change 

34,5 32,9 6,6 33,7 

45,5 36,5 10,4 78,6 

89,3 88,9 55,7 88,4 

Condition after 

design change 

797,6 137,5 68,2 68,3 

865,5 800,4 162,7 100,9 

896,2 902,6 326,59 226,2 

5. Conclusions 

Vibration diagnostics belongs to modern methods of non-destructive technical diagnostics, by means 

of which it is possible to determine the current technical state of various production machines and 

equipment directly in the process of operation. The aim of the design modifications of the testing 

station for dynamic testing of toothed and belt drives was to eliminate the danger of resonance and 

increase the stiffness of the basic stend structure. A bump test performed under the same conditions 

before and after frame reinforcement confirmed that by the structural modification of the testing 
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facility was achieved a higher rigidity of the base frame. Shifting the natural frequencies, especially 

of the vertical and horizontal beam, outside the operating frequencies of the tested transmissions is a 

necessary condition for achieving objective results of the planned experiments. 
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Parameters estimation by harmonic probing of hysteresis models of
bolted jointed

Rafael Teloli, Samuel da Silva, Gaël Chevallier

Abstract: This paper proposes parameters estimation of hysteresis effect by fit-
ting an approximation of the higher-order frequency response functions (FRFs)
described using the Bouc-Wen model. The higher-order FRFs are obtained
handling the harmonic probing of a previous smoothing of this Bouc-Wen
model. The approach is tested using the nonlinear vibrations time-series mea-
sured in an assembled structure of a bolted joint. The estimated model repro-
duces the hysteretic damping and the hysteresis restoring force for a broader
level of bolt preload torque adequately.

1. Introduction

Hysteresis effect appears in all the engineering fields, such as wind turbines, bit-rock inter-

action in drill strings, damper devices, aerospace structures, among others. In particular,

jointed structures by bolted are stimulating an international research effort which intends to

advance alternative forms of dealing with features concerning frictional contact, variations

in the stiffness and damping with the micro-slip regime or even softening effects [6].

One traditional approach to represent such systems is through numerical models [2]. In

this context, these models must be capable of capturing the nonlinear features of jointed

structures, including the presence of the hysteresis effect. There are some simplified models

in the literature to achieve this task, such as the LuGre model, the classical Iwan model,

the Bouc-Wen model, or even models with amplitude-dependent restoring force. Despite

the applicability of the Bouc-Wen model to represent many engineering systems, such as

magnetorheological dampers, piezoelectric actuators, and energy dissipation systems, its use

for capturing the dynamic behavior in jointed structures is still modest [3]. Recently, Teloli

and da Silva (2019) [1] introduced a new approach for harmonic probing of hysteretic systems

through a nonlinear smooth operator. The authors predicted, using closed-form solutions,

the output of a Bouc-Wen oscillator after rewriting the loading and unloading regimes of the

hysteresis loop through smooth operators, which are based on the Taylor series procedure.

The multidimensional Fourier transform of the Volterra kernels, so-called higher-order

frequency response functions (FRFs) and obtained through the classic harmonic probing

method in Teloli and da Silva (2019), is an attractive framework for white-box modeling,
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aiming into an alternative tool for model updating purposes. Toward this background, this

paper proposes a parameter estimation using these higher-order FRFs the of a simplified hys-

teresis model of Bouc-Wen for a cantilever aluminum beam that carries a bolted connection

at its middle.

The paper is organized as follows. First of all, an overview of the higher-order FRFs for

hysteretic systems by using harmonic probing. Next point discussed is the estimation of the

parameters of the Bouc-Wen model for the bolted joint of the assembled structure. Finally,

the conclusion pointed out the benefits of the proposed procedure.

2. Overview of the higher-order FRFs for hysteretic systems

This section compiles the main results reached in Teloli and da Silva (2019) [1], beginning

with the smoothing procedure employed for the Bouc-Wen model, and then performing the

framework for determining the analytical expressions of the higher-order FRFs.

2.1. On the smoothing of the Bouc-Wen model

The single-degree-of-freedom Bouc-Wen model is given by:

ÿ (t) + 2ζωnẏ (t) + ky (t) + Z (y, ẏ) = ũ (t) (1)

Ż (y, ẏ) = αẏ(t)− γ |ẏ(t)| |Z (y, ẏ)|ν−1Z (y, ẏ)− δẏ(t)|Z (y, ẏ)|ν (2)

where ωn is the natural frequency, ζ is the damping ratio, k is a normalized stiffness coeffi-

cient and ÿ(t), ẏ(t) and y(t) are the acceleration, velocity and displacement, respectively, of

the hysteretic oscillator when subjected to an input ũ(t), whereas Z(y, ẏ) is the hysteretic

restoring force that obeys the differential term Ż(y, ẏ). α, γ, δ and ν are the Bouc-Wen

parameters. For this paper, it set ν = 1.

The hysteretic restoring force of the Bouc-Wen model allows its division into four differ-

ent paths. Moreover, since the hysteresis force is weak, each of these paths can be smoothed

by a functional expansion through the Taylor series approach:

• path (i): ẏ 6 0,Z > 0

Z1 ≈
α

(δ − γ)

(
1−

[
∞∑
n=0

[−(δ − γ)]n (y − y0)n

n!

])
(3)

• path (ii): ẏ 6 0,Z 6 0

Z2 ≈ −
α

(δ + γ)

(
1−

[
∞∑
n=0

[(δ + γ)]n (y − y0)n

n!

])
(4)
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• path (iii): ẏ > 0,Z 6 0

Z3 ≈ −
α

(δ − γ)

(
1−

[
∞∑
n=0

[(δ − γ)]n (y + y0)n

n!

])
(5)

• path (iv): ẏ > 0,Z > 0

Z4 ≈
α

(δ + γ)

(
1−

[
∞∑
n=0

[−(δ + γ)]n (y + y0)n

n!

])
(6)

Moreover, when a BIBO hysteretic system is subjected to a harmonic excitation force

u(t) = A cos (ωt), its hysteresis loop is described by loading and unloading paths, bounded

in the displacement interval of [ymin, ymax]. Thus, since that any bounded function into a

determined interval admits a polynomial approximation, Teloli and da Silva (2019) suggested

the following bounding functions according to the order used in the Taylor series approach:

F ↑[y(t)] = λ0 + λ1y(t)− λ2y
2(t) + λ3y

3(t) for sign [u̇(t)] ≥ 0 (7)

F ↓[y(t)] = −λ0 + λ1y(t) + λ2y
2(t) + λ3y

3(t) for sign [u̇(t)] ≤ 0 (8)

where λ0 [N], λ1 [N/m], λ2 [N/m2] and λ3 [N/m3] are their coefficients. The coefficients of

the polynomial form are expressed as a function of the Bouc-Wen parameters by minimizing

an error function described by:

E(λ0, λ1, λ2, λ3) =

∫ y0

−Y

{
Z2 −F ↓[y(t)]

}2

dy +

∫ Y

y0

{
Z1 −F ↓[y(t)]

}2

dy (9)

subjected to
∂E

∂λi
= 0, for i = 0, 1, 2, 3. This results in the following expressions:

λ0 =
αy0

16
(3δY + 8γy0 − 16) (10)

λ1 = α (11)

λ2 =
α

16Y

(
8δ2Y y0 + 8γ2Y y0 + 15δγy2

0 − 8γY − 15δy0

)
(12)

λ3 =
α

96Y 5

16δ2Y 5 + 70δγY 4y0 − 70δγY 2y3
0 − 35δY 4+

105δY 2y2
0 − 105δy4

0

 (13)

where Y = |ymin| = |ymax| and y0 is a threshold displacement. These equations are valid

only for harmonic excitations that ensure a weak hysteretic force and when the force ×
displacement plane draws a single loop.
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The Bouc-Wen model holds the rate-independent property. Due to this alongside with

the symmetry of the hysteresis loop, the bounding functions present an equivalent structure.

Further, it is worthy of note that the switch between bounding functions occurs according

to sign[u̇(t)]. Thus, it is proposed an equivalent system with hysteresis:

ÿ (t) + 2ζωnẏ (t) + ky (t) + u0(t) + λ1y(t) + %y2(t) + λ3y
3(t)︸ ︷︷ ︸

=F [y(t)]

= ũ (t) (14)

where F [y(t)] is the nonlinear operator responsible for encoding the hysteretic character-

istics smoothly, and % is defined as % = λ2 (% = −λ2) for sign [u̇(t)] < 0 (sign [u̇(t)] > 0).

Additionally, the term u0(t) = λ0Φ[u̇(t)], which is considered as an additional input applied

to the equivalent system, is given by:

u0(t) =
j2λ0

π

2∑
k=1

(
e−j[1+2(k−1)]ωt − ej[1+2(k−1)])ωt

1 + 2(k − 1)

)
︸ ︷︷ ︸

=Φ[u̇(t)]

(15)

where Φ[u̇(t)] is the complex exponential Fourier series up to the second term.

2.2. Higher-order FRFs

For multi-input and single-output (MISO) systems, the functional of the Volterra series in

continuous time domain is given by [5]:

y(t) =

∞∑
η=1

yη(t) =

j∑
p=1

j∑
k=1

· · ·
j∑

n=1

∫
IRη

h
(up,uk,...,un)
η (τ1, τ2, . . . , τη)

×
η∏
i=1

up(t− τ1)uk(t− τ2) . . . un(t− τη)dτ1dτ2 . . . dτη (16)

where yη(t) is each contribution of the total output y(t), and the term h
(up,uk,...,un)
η (τ1, τ2, . . . , τη)

is called Volterra kernel related to the jth input. The multi-dimensional Fourier transform

of the Volterra kernels for multi-inputs can be calculated by [7]:

H(up,uk,...,un)
η (ω1, ω2, · · · , ωη) =

∫
IRη

h
(up,uk,...,un)
η (τ1, τ2, . . . , τη)× (17)

η∏
i=1

e−jωiτidτ1dτ2 . . . τη
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whereH(up,uk,...,un)
η (ω1, ω2, · · · , ωη) are the higher-order frequency response functions, which

can be used to describe the system output for any input with a well-known mathematical

expression. Additionally, the computation of the analytical expressions for each higher-order

FRFs is carried out through the harmonic probing method. In this work, the harmonic

probing method is applied considering the equation (14), resulting in higher-order FRFs

expressions which take into account the Bouc-Wen parameters.

3. Identification procedure based on higher-order FRFs

Figure 1 presents the jointed structure investigated. The test rig is formed of two aluminum

beams, each one with dimensions of 270× 25.4× 6.35 mm and assembled by a bolted joint

with a tightening torque of 5 Nm. The excitation of the structure was conducted by Modal

Shop 2400E shaker located at 85 mm from the clamped end of the cantilever beam. Due

to observability purposes for modeling the first vibrating mode of the structure, the system

output was measured at the free end of the beam, using a laser vibrometer Polytec R©OFV-

525/5000S. The data acquisition system is the LMS SCADAS. This paper regards the voltage

supplied by the shaker amplifier as the excitation signal.

Measurement
Points

Laser 
Vibrometer

Bolted
Joint

Shaker

Top view of the bolted joint:

(a) Experimental setup

Accelerometers

Amplifier

LMS SCADAS
Data Acquisition

Laser Vibrometer

Desktop
Signal Processing

1

2

3

4

40 m
m

270 m
m

230 m
m

85 m
m

6.35  mm

Shaker

Bolted
Joint

(b) Schematic top view of the experi-
mental setup.

Figure 1. Experimental setup and the schematic representation illustrating the cantilever

beam which carries a bolted joint connection.

Figure 2(a) illustrates the receptance calculated during a sweep sine test from 0 to 40

Hz (around the first mode) regarding different input levels supplied in the shaker amplifier,
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0.05 (low force level), 0.10 (medium force level) and 0.20 V (high force level). On the

receptance, it is worthy of remark that the FRF begins to exhibit distortions and shifts

in the resonant peak as the input force level increases. Further, Figure 2(b) depicts the

frequency response curve for a stepped sine test from 3 up to 23 Hz, which indicates that

the resonant frequency decreases when the forcing amplitude increases, revealing the bolted

joint softening operation.
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Frequency [Hz]

10−2

10−1

100

R
ec
ep

ta
n
ce

[m
/
N
]

(a) Magnitude plot of the receptance. (b) Experimental frequency response
curve for a stepped sine test.

Figure 2. Frequency response plots for different excitation amplitudes: − for low ampitude

level (0.05 V), 4 for medium amplitude level (0.10 V), and ◦ for high amplitude level (0.20

V).

Figure 3 shows the identification procedure proposed here. The initial action consists

in identifying, during the linear regime of motion, the first-order Volterra kernel, which is

given as:

H1(ω) =
1

−ω2 + j2ωζωn + ω2
n

(18)

where ωn =
√
k + α. The identification of this kernel is performed using the line-fit method

[4] procedure on the experimental FRF, which is calculated when the system is subjected to

a random noise input with low excitation level.

The second step is based on exciting the structure harmonically around one-third of the

linear resonant frequency, i. e. ωn
3

, and determining experimentally the third-order Volterra

kernel, which is given by:

Ĥ3(ω, ω, ω) =
4Y (3ω)

Ã3
(19)
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Figure 3. Description of parameters estimation procedure based on the higher-order FRFs.

where A is the input amplitude and Y (3ω) is the third-order harmonic amplitude response

obtained through Fourier filtering of the output y(t). When the system is harmonically

excited around ωn
3

, the hysteresis loop is almost closed (y0 = 0) and the metric for nonlinear

parameters estimation into the third-order Volterra kernel is given by:

min J(Θ1) =

∥∥∥Ĥ3 −H3(Θ1)
∥∥∥∥∥∥Ĥ3

∥∥∥ (20)

subject to:

0 < α 6 ω2
n and α+ k = ω2

n

0 < δ 6 500 (21)

where Θ1 = [α δ] is a vector which contains the Bouc-Wen parameters for updating, and

H3(Θ) is the analytical kernel given by:

H3(Θ1) = −H1(ω)H1(3ω)λ3(Θ1) (22)
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This work considers the sequential quadratic programming (SQP) algorithm as optimization

procedure to identify the unknown parameters, and the initial conditions were chosen as

α(ini) =
ω2
n
2

and δ(ini) = 250.

Further, it is essential to point out that these parameters derived when the hysteresis

loop is almost closed are held for the shape of the hysteretic cycle and, by this reason, this

step is vital in the identification procedure. Thus, the next step of the proposed strategy aims

to identify the last parameter γ, which controls the opening of the hysteresis loop when the

jointed structure operates under a nonlinear regime of motion. The vector parameter Θ1 to

be identified into the Bouc-Wen model are presented in equations (1) and (2). The objective

function to find the optimal parameters Θ2 = [γ] is based on the normalized mean square

error (NMSE) between the experimental output ỹ and the integrated numerical output of

the Bouc-Wen model:

min J(Θ2) =
‖ŷ − y(Θ2)‖
‖ŷ −mean(ŷ)‖ (23)

subject to:

0 < γ 6 δ (24)

where [y(Θ2) ẏ(Θ2) ÿ(Θ2)]T are obtained through a numerical integration scheme with the

4thorder Runge-Kutta method with variable time-step. The initial value for γ is selected as

γ(ini) = δ
2

and, in addition, the collected testing data for this step is based on a sweep sine

test applied for the first vibrating mode with high excitation amplitude. After that, to ensure

that the Bouc-Wen model is able to capture accurately the nonlinear physical behavior of

the experimental setup, the updated nonlinear model is evaluated and then validated.

4. Results and discussion

Figure 4(a) represents a correlation between the FRF obtained experimentally and the fitted

first-order Volterra kernel from equation (18). The jointed structure was excited with a

random excitation with an amplitude of 0.05 V to estimate the experimental FRF. Under

this operating condition, the system behaves linearly and the identified parameters were

ωn = 2π × 18.80 rad/s and ζ = 0.44%. The first-order kernel is then used for feeding the

analytical third-order kernel.

The structure was harmonically excited at the frequencies of [5, 5.5, 6, 6.5, 6.75] Hz with

an amplitude level of 0.15 V to determine the third-order harmonic amplitude to identify
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Figure 4. Estimated FRF with random input regarding an amplitude provides to the

shaker of 0.05 V. − is the first-order Volterra kernel, whereas • is the experimental FRF.

the kernel Ĥ3. After minimizing Eq. (19), the parameters α and δ were estimated with

approximated values of 500 [N/(mkg)] and 351.42, respectively. Since that ωn =
√
k + α,

the value of k is close to 1345 [N/(mkg)]. Figure 4(b) shows the identified third-order Volterra

kernel with a valid agreement comparing with the experimental amplitudes.

Figure 5. Diagonal of the third-order Volterra kernel estimated with an excitation ampli-

tude of 0.15 V: − identified Volterra kernel versus • experimental.

For minimizing the objective function in equation (23) using the SQP algorithm, the
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experimental output ŷ was measured for a sweeping sine test from 0 to 40 Hz with the

amplitude level of 0.20 V. The structure behaves non-linearly under this regime of motion

caused by the hysteretic damping, as shown in Figure 2. After identifying the parameter γ =

12.57, new data were measured for different excitation amplitudes intending the validation

of the identified model. Figure 6 illustrates the predicted response comparing the validation

data for a sweeping sine test with high excitation amplitude. This plot evidences that the

Bouc-Wen model can accommodate enough accuracy of experimental setup.

(a) Displacement output in the free end of
the beam.
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(b) Zoom between 4 and 5 seconds.

Figure 6. −identified Bouc-Wen model versus • experimental for a sweeping sine excitation

with an amplitude of 0.20 V.

Another way to evaluate the performance of the identified Bouc-Wen model is by exam-

ining its hysteresis loop. Figure 7 exhibits the measured and the predicted hysteresis loops

for different amplitudes applied in the shaker. In all cases, both hysteretic cycles enclose

substantially the same area on the restoring force × displacement plane.

5. Final remarks

This paper proposes an identification procedure of hysteresis parameters for structures with

bolted joints based on the harmonic probing method and the higher-order FRFs framework.

A white-box Bouc-Wen modeling strategy established a three-step algorithm. The effec-

tiveness of the higher-order FRFs allows us to analyze inherent properties of the hysteretic

system, for instance, the first-order Volterra kernel encoding the linear dynamics of the

jointed structure, and also the third-order Volterra kernel in identifying parameters related

to the shape of the hysteretic loop. Additionally, the method is based on traditional vibra-

tion data using random and sinusoidal tests. This paper attests that it is possible to use
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(a) 0.05 V
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(b) 0.10 V
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(c) 0.15 V
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(d) 0.20 V

Figure 7. − hysteresis loop by the the identified Bouc-Wen model versus • experimental

assuming different forcing amplitudes provides to the shaker.

Volterra series and its higher-order FRFs for a complex application involving weak hysteresis

force, despite the criticism in the literature regarding dealing with industrial cases.
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Dynamics of non-linear processes in a backward-wave tubes chain:        

Chaos and strange attractors 

 

 

Valentin B. Ternovsky, Alexander V. Glushkov, Eugeny V. Ternovsky and     
Andrey Tsudik 

Abstract: The paper is devoted to development of the effective mathematical and 

computational approach to studying and forecasting the complex nonlinear processes 

in the backward-wave tube and the backward-wave tubes chain. The general approach 

is based on the combining the backward-wave tube nonstationary theory equations 

solutions, non-linear analysis and chaos theory methods (chaos-geometric formalism). 

The chaos-geometric formalism includes a group of non-linear analysis and chaos 

theory methods such as the integral-differential equations solutions qualitative 

analysis, the correlation integral and average mutual information algorithms, the 

Lyapunov’s exponents and Kolmogorov entropy analysis, nonlinear prediction models 

etc. As illustration we present the results of the numerical studying scenarios of 

generating chaos in a chain of the relativistic backward-wave tubes and computing the 

characteristics of chaotic dynamics for different modes of operation.  The numerical 

data on the topological and dynamical invariants, namely, the correlation, embedding, 

Kaplan-Yorke dimensions, the Lyapunov’s exponents, Kolmogorov entropy are listed 

too. 

1. Introduction 

As it is well known, an actual problem of relativistic microwave electronics includes, first of all, the 

quantitative study of the mechanisms of energy conversion of high-intensity (accelerated to 

relativistic velocities) electron fluxes into powerful coherent electromagnetic radiation and, of course, 

their use in different applications. One could remind about a great interest and importance of studying 

the generators of chaotic oscillations in a microwave range for plasmas heating in fusion devices, 

modern systems of information transmission using dynamic chaos and other applications. Among the 

most studied of vacuum electronic devices with complex dynamics are backward-wave tubes (BWT) , 

for which the possibility of generating chaotic oscillations has been theoretically and experimentally 

found [1-12]. The BWT is an electronic device for generating electromagnetic vibrations of the super 

high frequencies range. Authors [3] formally considered the possible chaos scenario in a single 

relativistic BWT. Authors [4,5] have studied dynamics of a non-relativistic BWT, in particular, phase 

portraits, statistical quantifiers for a weak chaos arising via period-doubling cascade of self-

modulation and the same characteristics of two non-relativistic backward-wave tubes. The authors of 

491



 

 

[4,5] have solved the equations of nonstationary nonlinear theory for the O-type BWT without 

account of the spatial charge, relativistic effects, energy losses etc. It has been shown that the finite-

dimension strange attractor is responsible for chaotic regimes in the BWT.  The multiple studies [1-

8], increasing the beam current in the system implemented complex pattern of alternation of regular 

and chaotic regimes of generation, completes the transition to a highly irregular wideband chaotic 

oscillations with sufficiently uniform continuous spectrum.  

In this paper we present the results of studying dynamical characteristics of non-linear processes 

in the chain of relativistic BWT and analysis and modeling the parameters for of the corresponding 

chaotic time series, which are the solutions of the BWT  integral-differential dynamical equations.  

The computational chaos-geometric approach includes a combined set of non-linear analysis and 

chaos theory methods such as an autocorrelation function method, correlation integral approach, 

average mutual information, surrogate data, false nearest neighbours algorithms, the Lyapunov’s 

exponents and Kolmogorov entropy analysis, spectral methods and nonlinear prediction (predicted 

trajectories, neural network etc) algorithms (in versions [8-23]). The chaotic dynamics data for the 

chain of the relativistic BWTs are firstly obtained. All computing is performed with using “Geomath” 

and “Quantum Chaos” computational codes [8-12,23-31]. 

2. Dynamics of relativistic backward-wave tube and chain of tubes 

As it is known (c.g., [3-8]), a nonlinear dynamics of the BWT system is described by means 

of the non-stationary nonlinear theory equations for an  amplitude of an electromagnetic 

field and a motion of the beam:  

                         {  ⁄  [               ]}                                (1a) 

              [   ∫        
  

 
]   ⁄  [           ]                               (1b) 

with boundary conditions: 

          , 

             ,                                                                                                             (2)                                                                                                

           . 

Here  (  , , 
0
) is a phase of the electron, which runs  in a space of interaction with the 

phase  
0 

in a field,  F( ,) is a dimensionless complex amplitude of the wave 

,  =0Cx is the dimensionless coordinate, parameter 

L=0lC=2CN is the dimensionless length of the interaction space, l is a length of the 

system, N is a number of slow waves, covering over the length of system, 
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is the known Pierce parameter, I0 is a current of beam, U is an 

accelerated voltage, K0 is a resistance of link of the slowing system, 

(i.e.         ) is the dimensionless "retarded" 

time,        
     is the known  relativistic parameter,  C- modified gain parameter,    

-  the ratio of the electron energy to the rest energy on entering into the interaction space. 

     As the solutions of the system (1) give the field distributions F( ,)  for any > ,’, within 

chaos-geometric approach and dynamical systems theory, a set of the possible functions F 

can be treated as a phase space, where every point corresponds to the definite state. When a 

state changes in time according to solutions of the system (1), the corresponding point 

moves in a space of functions along some phase trajectory. The control (governing) 

parameter is provided by the normalized length L. As a rule, this parameter is usually varied  

by changing the current of the electron beam I0 through variation of voltage on the 

governing electrode in an electron gun ( 3/1

0~ IL ).  It is known that for a single relativistic 

backward-wave TUBE the stable state is realized for the little values of L. At the same time 

for L=Lst=1.97327 there is a bifurcation of loss of the unmoved point stability [3,4]. In order 

to reduce the threshold of the transition to the development of chaos, in this paper we 

propose to use a chain of two relativistic BWTs. The master system of evolution equation 

for the system is as follows: 

                            {  ⁄     [                
     ]},                (3a) 

                    [   ∫           
  

 
]   ⁄     [              ].            (3b) 

where      are the phases of electron relative to the wave,    - the initial phase,       are the 

dimensionless slowly varying amplitudes of the fields,   and   are the dimensionless 

coordinate and time, respectively. The equation (3a) represent equation of motion of 

electrons in the field of the electromagnetic wave and equation (3b) is the non-stationary 

equations of excitation of a decelerating structure by a current of the slowly varying 

amplitude. The subscripts indicate the item number of the chain. The dynamics of the partial 

generator depends on a single bifurcation parameter       . When the first oscillator 

acts on the second one, then the boundary conditions for equations (3a) and (3b) can be 

written as follows: 

    |   
    [    ],                                                                                                               (4a) 

     

  
|
   

  ,                                                                                                                                (4b) 
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         ,                  . ,                                                                               (4c) 

where R is a coupling parameter, which can be assumed real without the loss of  generality. 

3. Analysis of nonlinear dynamics of the relativistic backward-wave tube chain: 

Results and conclusions 

Below we present the results of studying nonlinear dynamics of the single relativistic BWT and a 

chain of BWT using an analysis and simulation of the model (1) solutions and the chaos-geometric 

approach. The approach includes nonlinear analysis and prediction technique [1-3], namely, the 

wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, 

false nearest neighbours algorithm, the Lyapunov’s exponents and Kolmogorov entropy analysis,  

surrogate data method, different prediction models etc (see details in Refs. [4,5,13-31]).  

 As usually, one should consider a set of measurement (or calculational) data 

s(n) = s(t0 + nt) = s(n), where t0 is the start time, t is the time step, and is n the number of the 

measurements. The next step is to reconstruct phase space using as well as possible information 

contained in the s(n).  Such a reconstruction results in a certain set of d-dimensional vectors y(n) 

replacing the scalar measurements. Usually one should  use the Packard et al method of the time-

delay coordinates (c.g. [14-16]). There one should determine  the embedding dimension dE in order to 

reconstruct a Euclidean space Rd. In accordance with the embedding theorem, the embedding 

dimension, dE, must be greater, or at least equal, than a dimension of the corresponding attractor, dA, 

i.e. dE > dA. There are several standard approaches to reconstruct the attractor dimension (see, e.g., 

[14-18]), but in our technique we use two methods: the correlation integral one (or  algorithm of 

Grassberger and Procaccia [17]) and method of the false neighbours. The multifractal spectral 

calculations can be performed with using the algorithm, which is presented in [9].  

 The prediction block includes computing the Lyapunov’s exponents which are the dynamical 

invariants of the studied nonlinear system.  

As example, in Figure 1 we present the numerical temporal dependence of the output signal 

amplitude of the relativistic BWT for L=4.1 (a) and L=6.1 (b). We carried out the numerical 

realization of the prediction model for the relativistic  BWT in the chaos (I) and hyperchaos regimes 

(II).  

In Table 1 we present our data on the correlation dimension d2, the embedding dimension 

determined based on the algorithm of false nearest neighboring points (dN) with percentage of false 

neighbors (%) calculated for different values of time lag . In Table 2 we list the results of computing 

the Lyapunov’s exponents, the, Kolmogorov entropy Kentr. For the studied series there are positive 

and negative values of  the Lyapunov’s exponents.    
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Figure 1.   Numerical temporal dependence of the output signal amplitude of the relativistic BWT for 

L=4.2 (a) and L=6.1 (b). 

Table 1. Correlation dimension d2, the dimension of the attachment determined based on the 

algorithm of false nearest neighboring points (dN) with percentage of false neighbors (%) 

calculated for different values of time lag  

Chaos (I) Hyperchaos (II) 

 d2 dN  d2 dN 

60 3.6 5 (5.5) 67 7.2 10 (12) 

6 3.1 4 (1.1) 10 6.4 8 (2.1) 

8 3.1 4 (1.1) 12 6.4 8 (2.1) 

 

Table 2. Numerical values of the parameters of chaotic self-oscillations in the backward-wave 

tube: 14 are the Lyapunov exponents in descending order, K is the Kolmogorov entropy 

Regime 1 2 3 4 K 

Chaos (L=4.2) 0.261 0.0001 0.0004 0.528 0.26 

Hyperchaos (L=6.1) 0.514 0.228 0.0000 0.0002 0.74 

 

 Further let us consider two results  on studying dynamics of the chain of the backward-wave 

tubes. In the first modeling we accept that the BWTs are operating in regime of the periodical 

automodulation (in full analogy with the non-relativistic case [5]).  The values of the L parameter  are 

as follows: L1=4.05, L2=4.55; The analysis shows that with growth of R the oscillations become 

chaotic and scenario of destroying quasi-periodic motion is main. Note that the similar picture is 

principally observed in the non-relativistic case except some quantitative differences including 

additional peaks.  In Figure 2 we present data on the temporal dependence of the output amplitude 

and signals spectrum for two different sets of the parameter values: (In) - input BWT and (Out) -
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Output BWT for R=0.050. In the first case one deals with the Feigenbaum type scenario. In the 

second case there is the transition “chaos-order” through intermittency. 

 

                               (In)                                                       (Out) 

Figure 2.   The temporal dependence of the output amplitude and the signals spectrum:  (In) - input 

BWT; (Out) -Output BWT R=0.050; 

In conclusion we note that quantitative modeling chaotic dynamics of nonlinear processes in 

relativistic BWTs (single one and chain) is carried out using the same uniform chaos-geometric and 

multi-system approach. It is important to note that the chaos generation features in dynamics of a 

chain of the relativistic tubes are firstly found. 
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Bifurcations and transitions in railway vehicle dynamics 

 

 

Hans True 

Abstract: The Railway Vehicle Dynamical problems are multibody problems with 

from 7 to 80+ degrees of freedom. The mathematical models are nonlinear and non-

smooth and most often with tabulated constraints. Only autonomous problems are 

considered in this paper. The dynamics depend on the speed V as a control parameter 

and the vehicle can run steady, oscillate symmetric or asymmetric periodically, multi- 

periodically, quasi-periodically or chaotic, possibly with multiple attractors. Several 

kinds of bifurcations and transitions exist. The theoretical dynamical models are 

investigated numerically. Some interesting bifurcations will be shown. 

1. Introduction, the object 

We investigate the dynamics of moving railway vehicles. The main objective is the investigation of 

critical values of the speed, especially ‘the critical speed’ VC, which is the lowest speed where self-

oscillating motions occur.  A typical railway vehicle is shown on figure 1. 

 

 

Figure 1. A four-axle bogie railway passenger car. 

 

The car body is supported on the frames of two two-axle small carriages – called bogies (bougies) - 

through the secondary suspension. The bogie frames are supported on two wheel sets that run on the 

rails by the primary suspension. The suspension elements have in general nonlinear characteristics but 

in many cases, they can be assumed linear. Due to the deformation of both the wheels and the rails 

under the load of the vehicle a contact surface develops between them in which tangential strains 

develop with components in the tangential plane called creep and a normal rotation component called 

spin creep. The creeps normalized by the forward speed V0 are called creepages. Due to the dry 

friction, resultant longitudinal and lateral creep forces and a spin creep torque are created. The creep 
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forces are handled as forces and a torque that attack in one point in the contact surface, but with 

realistic rail/wheel contact geometries there may be multi point contact (see Fig. 2). The creep forces 

depend nonlinearly and non-smoothly on the creepages (see Fig. 3). When the slope of the contact 

surface, the conicity, is small, which on a straight track most often is the case, then the spin creep can 

be neglected. 

 

Figure 2. The wheel/rail creepages vx, vy and φ and the creep forces Tx, Ty and M 

 

                        

Figure 3. The general form of the dependence of the normalized creep force on the creep. N is the 

normal force in the contact point and μ is the coefficient of adhesion 
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The mathematical dynamical models are all formulated in a Cartesian coordinate system that is 

centered in the track and moving with the speed, V, of the vehicle. Since all the interesting 

phenomena that govern the nonlinear behavior depend on the bogie design and the wheel/rail contact, 

we shall concentrate on the dynamics related to them. First, we have investigated the so-called 

Cooperrider bogie with linear suspension elements in detail (see Fig. 4). 

 

 

 

 

 

   Figure 4. A diagram of the Cooperrider bogie 

 

2. Some bifurcations and transitions 

2.1. The non-smooth bifurcation in V = 0 

Christian Kaas Petersen [1] calculated the bifurcation diagram (see Fig. 5) for the Cooperrider bogie. 

He assumed that the conical wheels has a constant conicity and run on rails with a circular profile. 

The wheel flanges were approximated by very stiff linear springs with a clearance. The diagram was 

calculated numerically using CKP’s program ‘PATH’ [2] that could follow stable as well as unstable 

steady and periodic motions. A is a bifurcation point from where an unstable periodic solution 

bifurcates subcritically to the critical speed VC in a tangent bifurcation in point B where flange 

contact occurs. The periodic motion above the critical speed is called hunting. 
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  Figure 5. The Cooperrider bifurcation diagram. The full lines indicate asymptotically stable 

      solutions, and the dotted lines indicate unstable solutions 

 

CKP observed that when V→ 0, then the positive real part of a large number of the eigenvalues of the 

linearized problem converge towards zero, indicating that V = 0 is a bifurcation point. It is indeed! 

When the bogie rolls at a low speed, then there exists one asymptotically and globally stable motion, 

an equilibrium point. When the bogie stands still under the normal load, there exists a bounded 

domain of a quadruple infinite number of neutrally stable combinations of the lateral and yaw 

positions of the two wheel sets on the rail. They are all equilibrium points. This is a non-smooth 

bifurcation from one equilibrium point into a bounded quadruple infinity of equilibrium points. 

 

2.2 The Slivsgaard bifurcation 

In her master’s thesis, Eva Slivsgaard [3] investigated the dynamics of a single-axle bogie that is 

virtually the half of a Cooperrider bogie without the dampers. The first bifurcation point into a 

periodic solution is at a much lower speed than in the Cooperrider bogie, and it is a supercritical 

bifurcation. Slivsgaard made an enlarged figure of the solutions in the neighborhood of the 

bifurcation point (see Fig. 6) and found that the amplitude of the bifurcating periodic solution initially 

grows linearly with growing speed in contrast to the expected square root growth of the expected 

Hopf bifurcation. We first thought it might be a numerical fluke, but the author succeeded in 

formulating a kind of normal form for this bifurcation [4] and thereby to demonstrate that the  
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                                    Figure 6. The Slivsgaard bifurcation 

 

bifurcation is a new non-smooth type of bifurcation. It is now fashionable to name bifurcations after 

the person, who first found it, so this bifurcation therefore should be named a Slivsgaard bifurcation. 

The non-smoothness is connected with the analytic expression of the creep/creep force curve in figure 

3. It must represent an odd function in order to hold also for negative values of the creep, and the 

correct formulation is therefore: 

 

 F/μN = c – c|c|/3 + c3/27          |c| ≤ 3  

F       =  μN                               |c| > 3 

Now the non-smoothness is obvious. 

  

The second derivative of F jumps in c = 0, so Hopf’s basic assumption of a continuous second 

derivative in the bifurcation point is violated. 

Joos Kalker [5] told me that the non-smoothness in c = 0 is physically realistic. In rolling contact with 

friction, Hertz [6] found that the contact surface between the wheel and the rail is divided into two 

domains, one with stick and one with slip between the wheel and the rail. The slip zone grows from 0 

to the entire contact zone when the creep grows from 0 to 3 (see Fig. 3) and it lies in the rear end of 

the contact zone relative to the direction of travel of the wheel. When the creep (and the direction of 

travel) changes direction, the slip zone jumps when the creep changes sign, see Fig. 7. 
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         Figure 7. The domain of pure sliding in the contact surface (shaded) jumps when c changes sign 

 

                               

Figure 8. The total bifurcation diagram showing the bifurcations from a trivial solution into an 

asymptotically stable symmetric periodic solution 

 

Slivsgaard [3] calculated numerically the bifurcation diagram in Fig. 8. After the supercritical 

bifurcation at V = 10.050 m/s the amplitude of the periodic solution grows fast and reaches flange 

contact at V = 10.0555 m/s with an amplitude of 9.1 mm. The contact is modeled by a very stiff linear 

spring. The change into chaos starts with a symmetry breaking pitchfork bifurcation that creates two 

asymmetric limit cycles. The two solutions are reflections of each other in the centre line of the track. 

Each of these undergoes a complete periodic doubling cascade into chaos. The details cannot be seen 

in Fig. 8 but Slivsgaard [3] describes them. It is interesting to notice the split of the chaotic attractor 

into two asymmetric chaotic attractors at V~ 10.26 m/s. Each of them splits into two-band chaos 

when the speed grows through 10.28 m/s. The four bands narrow down to two asymmetric periodic 

solutions, which undergo a reverse period doubling bifurcation at V = 10.303 m/s. As the speed is 

increased further, the symmetry is restored at V = 10.596 m/s. The amplitude of the symmetric limit 

cycle then grows monotonically with the speed.  

The examples presented were investigated numerically using Kaas-Petersen’s path following routine 

PATH [2] with the LSODA solver [7]. The time integration across the non-smoothnesses was 
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performed either by the routine itself or by a smoothing function. They gave the same dynamical 

results. 

 

3. On the dynamics of a European two-axle freight wagon 

In the next example, events were introduced in all encounters with the non-smoothnesses. When a 

non-smoothness was detected, the time step integration was stopped, and the position of the point of 

non-smoothness was found with a Newton iteration. Then the time integration was re-started from the 

point of non-smoothness using the mathematical model of the non-smoothness as the initial value. 

The path following was done by ramping using an implicit Runge-Kutta solver with error control as 

the solver, see Hoffmann [8]. 

Hoffmann investigated in his Ph.D. thesis [8] the dynamics of a European two-axle freight wagon. 

The wheel/rail contact was modeled realistically using the UIC S1002 profile for the wheel profile 

and the UIC60 profile for the rail profile. The position of the contact points in dependence on the 

lateral displacement of the wheel set relative to the track was calculated with the RSGEO routine [9] 

and tabulated. The contact angle and the lateral position of the contact point on the wheel have several 

points of non-smoothness as a function of the lateral displacement of the wheel set on the track. 

Multiple points of contact occur, and in those cases the creep forces were calculated using the 

approximation by Pascal and Sauvage [10] [11]. In European two-axle freight wagons the most used 

suspension is the UIC standard suspension see Fig. 9. The car body is supported by a leaf spring and 

hangs in links with dry friction contact surfaces that deliver the damping forces. The dry friction 

introduces stick/slip in the dynamics between the elements of the construction as well in the spring as 

in the links. Furthermore, there is a lateral as well as a longitudinal clearance between the axle box 

and the guidances see Fig. 10. They introduce non-smoothness in the dynamical system. The rails 

have a cant towards the center of the track. In Europe, the cant is 1/20, 1/30 or 1/40. Hoffmann [8] 

calculated the bifurcation diagrams on Fig. 11 for all the three values. The maximum lateral 

displacements of the leading wheel set and the car body are shown in dependence on the speed. They 

all have in common that the position of the wheel set in the steady motion for low speed is 

undetermined (the shaded domain). In all the diagrams a stable periodic flange-to-flange attractor, 

the hunting, develops in a tangent bifurcation at V = 40 m/s. In the diagram denoted 5.1 the unstable 

periodic solution stems from a subcritical bifurcation into an unstable periodic motion at V = 52 m/s. 

In the two other diagrams, the development of the flange-to-flange attractor is more complicated and 

may be read on the diagrams. 
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                                   Figure 9. The UIC suspension 

                              

                       Figure 10. The clearances between the axle box and the guidances 

 

In the two lower diagrams there exist also a periodic medium amplitude attractor with an increasing 

amplitude for decreasing speed. The sudden increase is the consequence of a resonance motion of the 

wagon that was suggested by Stichel [12]. He suggested that a resonance between the lateral 

excitation frequency of the wheel sets and the yaw eigenfrequency of the carbody might occur. 

Hoffmann [8] made realistic estimates of the frequences see Fig. 12, and it is seen that the excitation 

frequency, the socalled Klingel frequency, which grows linearly with the speed, coincides with the 

yaw eigenfrequency of the carbody at V = 12 m/s, 18 m/s and 49 m/s respectively. The peaks of the 

medium amplitude attractor in the 1/30 and the 1/40 case are due to this resonance. There is no 

medium amplitude attractor in the 1/20 case, however, the resonance still occurs at 49 m/s as 

predicted, but it is in the speed interval for which the wheel sets are on the flange-to-flange attractor. 

The car body oscillates violently in that case. 
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             Fig. 11. The bifurcation diagrams. A full line indicates an asymptotically stable motion, and 

             a dotted line indicates the existence somewhere in between of an unstable motion. 

 

On the flange-to-flange attractor in the cases with 1/30 and 1/40 cants the lateral excitation frequency 

of the wheel sets is far beyond the yaw eigenfrequency of the car body, hence no resonance occurs 

and the result is a weak car body response. 

The shaded domains on the oscillating branches for the car body indicate varying amplitudes. The 

kind of motion has not been determined, but a spectral analysis of the frequency of the wheel set 
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oscillations in that domain shows that their oscillations are aperiodic with an almost constant 

amplitude. 

It should be noted that several features on the bifurcation diagrams that Hoffmann calculated have 

been found in real life with real railway wagons 

 

                                

Figure 12. The horizontal line shows the estimated yaw eigenfrequency of the car body, and the 

inclined lines show the estimated Klingel frequencies for the three different cants of the rails. 

 

4. Conclusions 

In this article, we have shown some of the many different kinds of bifurcations and transitions that 

may occur in railway vehicle dynamics. Several are related to the non-smoothness in the 

mathematical dynamical model. One bifurcation, (section 2.1), although known for some time, has 

not been described earlier. 

In most cases, the railway vehicles will not be allowed to run with speeds above the critical speed. 

The reader may wonder that the world speed record for a conventional train set is 574.8 km/h set by a 

French TGV train set in 2007, but the critical speeds in this article are significantly smaller. It is 

possible to achieve a high critical speed by the use of special designs of the suspension, but they are 

expensive. They are therefore only used in passenger trains that are especially designed for high-

speed travel, and they do not contain dry friction elements in the suspension. Dry friction elements are 

cheap and simple in manufacture, and they are therefore extensively applied in freight wagons, where 

the price of the vehicle is a very important factor. An example is the freight wagon presented in 

section 3. 
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The American three-piece-freight truck is the most widespread bogie in the world due to its low price, 

simplicity and durability. It has dry friction wedge shaped damping elements called ‘snubbers’. The 

critical speed of a wagon with the original design of the bogie is around 74 km/h, but the wagons run 

with higher speeds around the world. They run supercritically. Xia [13] investigated the dynamics of 

a wagon with three-piece-freight trucks in detail. A supercritical bifurcation leads to an 

asymptotically stable periodic solution, which soon after loses stability, and a jump to a large-

amplitude stable chaotic motion takes place. Tests have confirmed Xia’s results. Today many three-

piece-freight trucks have been modified so the critical speed is higher, but they still run supercritically 

and chaotic. 

Chaos seems to be the usual supercritical behavior, when dry friction with stick/slip enters the design. 

True and Asmund 2002 [14], True and Trzepacz 2002 [15] and True and Brieuc [16] analyzed 

simpler models that all oscillate chaotically. 

Finally, it should be noticed that Isaksen and True [17] treat the ultimate transition to chaos in the 

dynamics of the Cooperrider bogie in section 2 in detail. The transition takes place in a narrow speed 

range 203 m/s < V < 204 m/s. There are series of bifurcations and different transitions involving 

symmetry breaking, quasi-periodicity and periodic windows with multiperiodicity, where an 

asymmetric period 11 solution plays an important role. We calculated the highest Lyapunov 

exponents to verify the results of the numerical calculations, and the highest Lyapunov dimension 

found is 3.03. 
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Systems with fast limit cycles and slow interaction

Ferdinand Verhulst

Abstract : We will review the theory of slow-fast systems that started with
papers by Tykhonov, Pontryagin, Levinson, Anosov, Fenichel and other scien-
tists. After this review we focus on systems with limit cycles. The Pontryagin-
Rodygin theorem for slow-fast systems has an ingenious proof; also it has as
advantage that it can be applied if the slow manifolds of the slow-fast system
are all unstable. A serious disadvantage is that for application we have to
know the fast solutions explicitly with the slow part in the form of parameters.
Another disadvantage is the relatively short timescale where the results are
valid. In practice there are very few cases where the theorem applies. How-
ever, the Pontryagin-Rodygin idea can be used again on assuming that the fast
limit cycle arises in higher order approximation; this allows an approximation
approach to study the slow motion. At this point we have still a restricted
timescale but extension is then possible by looking for continuation on stable,
in particular slow manifolds. We will demonstrate this extension of the theory
by studying various types of self-excited, coupled slow and fast Van der Pol
oscillators.

1. Introduction

We will be concerned with slow-fast systems of the form:

ε
dy

dt
= f(t, x, y) + εR1,

dx

dt
= g(t, x, y) + εR2. (1)

x ∈ Rn, y ∈ Rm, ε is a small, positive parameter.

With excuses to people left out we mention the following founding scientists:

1. Tikhonov (1952)

2. Flatto and Levinson (1955)

3. Anosov (1960)

4. Pontryagin - Rodygin (1960)

5. Tikhonov expansions, Vasil’eva (1963), O’Malley (1968)

6. Fenichel (1971 - 1979)
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7. Jones and Kopell (1994)

The early developments in the period 1952-1970 were concerned with asymptotic approxi-

mations and periodic solutions. In the second period new developments were stimulated by

invariant manifold theory and new dynamics results.

2. Early results

We start with an example of (1): a prey-predator system with unequal interaction.

The population N preyed upon is abundant with respect to the predators P ; the prey-

population grows fast (we will return to the example later on):

εṄ = r(t)N

(
1− N

K(t)

)
− εNP, Ṗ = cNP − dP − P 2. (2)

The growth rate r(t) and carrying capacity K(t) are positive for t ≥ 0 and T -periodic, c and

d are positive constants; we have N,P ≥ 0. Think for r(t),K(t) of seasonal variations.

Tikhonov [13] studied system (1) by putting ε = 0 and supposing that y = φ(t, x) is an

isolated, asymptotically stable root of the equation f(t, x, y) = 0 (with t, x as parameters).

He proved then that y(t) jumps fast to the ’slow’ solution of the equation:

dx

dt
= g(x, φ(t, x)). (3)

The resulting approximation is valid on a time-interval O(1) for the slow motion of x. Ex-

amples show that without further assumptions this result is optimal. Vasil’eva [14] and

O’Malley [10] improved Tikhonov’s theorem in a practical way by assuming in addition that

the stability of the root y = φ(t, x) is exponential:

ReSp
∂f(t, x, y)

∂y
|(y = φ(t, x)) < 0. (4)

With this assumption the jumps take time O(ε) and we can obtain asymptotic expansions in

ε valid on time intervals O(1). Vasil’eva [14] uses matched asymptotic expansions, O’Malley

[10] introduces multiple timescale expansions for this singular perturbation problem.

Qualitative results regarding the existence of periodic solutions of system (1) were ob-

tained by Flatto and Levinson [8] and by Anosov [1]. Suppose that the slow equation (3)

contains an isolated T0-periodic solution, with only one multiplier 1, then the original system

contains a Tε-periodic solution with Tε → T0 as ε → 0. The theorems in [8, 1] show minor

differences in formulation, the important step is that they involve structural stability of the

asymptotic phenomena, they anticipate in a sense Fenichel’s results.

An interesting quantitative result was produced by Pontryagin and Rodygin [11]. Con-

sider again the slow-fast system (1) in autonomous form and assume:
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1. For x fixed the fast equation for y contains an exponentially stable limit cycle of the form

y∗(τ, x) with period T (x) (x a parameter, τ = t/ε).

2. For fixed positive T1, T2 we have T1 ≤ T (x) ≤ T2.

3. Replace t by ετ and average g(x, y) over the limit cycle.

Then with corresponding initial values we have with x̄(τ) from the averaged equation:

y(τ, ε)− y∗(τ, x̄) = O(ε), x(τ, ε)− x̄(τ) = O(ε), δ(ε) ≤ τ ≤ L/ε. (5)

For the Pontryagin-Rodygin theorem, weak and strong points are:

• The timescale of validity is restricted to O(1/ε) in τ , so O(1) in t.

• To apply the theorem we have to know x∗(τ, y) with period T (y) explicitly; this will

be rarely the case.

• Strong point: the result is also useful if the system contains an unstable slow manifold.

So in practice the Pontryagin-Rodygin theorem is useless but, as we shall see, it can be an

inspiration for a related approach. First an example to show the weak points:
εẋ1 = x2 + y(x1 − 1

3
x31),

εẋ2 = −x1 − yx21,

ẏ = 1− y, 0 ≤ y ≤ 1.

(6)

There are two roots of the fast equation, called slow manifolds, both are unstable. Differen-

tiation of the 1st equation with x1 = x produces:

d2x

dτ2
+ x+ yx2 = yx′(1− x2) + ε(1− y)(x− 1

3
x3). (7)

Doelman and F.V. [3] showed that at parameter value y = 1/
√

7 the limit cycle vanishes;

see for an illustration fig. 1.

3. Modern results

Fenichel [4, 5, 6, 7] formulated geometric singular perturbation theory with many conse-

quences for the existence of slow manifolds leading to a reformulation of quantitative results.

The theory was introduced for autonomous systems where the geometric interpretation is

easier, but it can be generalised to systems with periodic coefficients in time. Consider sys-

tem (1) with the vector fields time-independent. Put ε = 0 and suppose as in Tykhonov’s
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Figure 1. Left eq. (7) if y is constant, right varying y.

theorem that y = φ(x) is an isolated root of the (fast) y-equation with x as parameter.

Fenichel: If y = φ(x) defines a compact manifold M0 and

ReSp
∂f(x, y)

∂y
|(y = φ(x)) 6= 0

then system (1) contains an invariant manifold Mε ε-close to M0.

The dynamics on the slow manifold Mε is approximated by the flow of the slow equation

dx/dt = g(x, y(x)).

The theorem does not require asymptotic stability of the root, it has to be structurally stable

and so be stable or unstable. Note that the existence and approximation of periodic solutions

in a slow manifold is much easier than in the theorems of Flatto-Levinson and Anosov as we

“got rid of” the fast dynamics and can restrict our attention to the slow manifold equation.

One drawback is that the overall condition of compactness and the spectral assumption is

sometimes not met in applications.

For an example of obtaining existence and approximation of a periodic solution we return

to the time-periodic case of system (2), a prey-predator system with unequal growh of prey

N . The growth rate r(t) and carrying capacity K(t) are T -periodic. The slow manifolds

SM1, SM2 are described by: SM1 : N = 0, SM2 : N = K(t). SM1 is unstable, SM2 is

stable. N = K(t) is a first order periodic approximation of the prey population in SM2. We

will find co-existence of prey and predator from the next approximation (omitted here).

Discussion of the Tikhonov theorem versus Fenichel.

The Tikhonov theorem can describe transient motion. Consider the Van der Pol equation

with µ� 1:

ẍ+ x = µ(1− x2)ẋ, (8)
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with Liénard transformation producing:

1

µ
ẋ = z + x− 1

3
x3, ż = − 1

µ
x. (9)

With 1/µ = ε we identify root z = −x + 1
3
x3. Along the stable parts of the cubic curve

Figure 2. Slow manifolds and fast motion for Van der Pol relaxation.

we have slow motion, during a cycle 2 fast jumps take place. We obtain the well-known

relaxation oscillation with slow motions periodically followed by fast transitions from one

stable manifold to the other one; µ = 20. The jumps are described by Tikhonov’s theorem,

choosing compact parts of the stable cubic curves we can apply Fenichel; the complete picture

arises by patching parts together using singular perturbation theory.

4. Slow-fast limit cycles at higher order

Consider again the system of ODEs (1). Assume that leaving out the εR1, R2 and O(ε2)

terms, the system does not contain a limit cycle but suppose that, adding these perturba-

tions, one or more limit cycles emerge by a bifurcation. A well-known example is the Hopf

bifurcation arising in the Van der Pol-equation. Suppose we can solve the system when

omitting the perturbation terms to construct the so-called variational equations in τ = t/ε:r
′
f = εF1(rf , φf , rs, φs) +O(ε2), r′s = ε2G1(rf , φf , rs, φs) +O(ε3),

φ′f = Ω1 + εF2(rf , φf , rs, φs) +O(ε2), φ′s = εΩ2 + ε2G2(rf , φf , rs, φs) +O(ε3),
(10)

where ′ represents differentiation with respect to τ , the index f indicates a fast variable,

s indicates slow. The dimensions of rf , φf , rs, φs depend on system (1). In this way we

have reduced the system to a quasi-periodic system where averaging over angles is possible,

see [12] ch. 5. If the limit cycle of the fast equation is asymptotically stable it is natural

to average over the fast limit cycle which means averaging over φf . Averaging over angles
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involves the analysis of resonance manifolds. This theory has many aspects that are difficult

to capture in one theorem. We summarize the procedure as it runs in general.

1. Average over the fast angles φf with attention to the possible presence of resonance

manifolds. We obtain a system without angle φf .

2. Consider the resonance manifolds separately, see [12] ch. 5.

3. We can rescale τ → t or alternatively use the slow angles φs as a timelike variable.

The resulting slow-fast system may contain a slow manifold M .

4. Consider the dynamics in the slow manifold M by eliminating rf . We can average

over the slow angle φs in the slow manifold. Critical points will correspond with

periodic solutions or tori producing interesting phenomena in the original slow-fast

system (10).

5. This procedure enables us to extend the description of the dynamics to 3 timescales:

t/ε, t and εt, expressed in the corresponding angles. Some aspects of this analysis

corresponds with the treatment of slow-fast systems in [2].

In actual applications we will meet problems of normal hyperbolicity of slow manifolds and

certain degeneracies. This is not uncommon in applications as in practice symmetries and

specific parameter values may destroy aspects of the general mathematical theory.

Example 1

Interaction of slow-fast Van der Pol limit cycles.

We assume (x1, x2) ∈ Γ1, (y1, y2) ∈ Γ2 with Γ1,Γ2 ⊂ R2, compact subsets containing the

origin. This produces a relatively simple interaction problem as we have only one fast angle

(or time). Consider the system with parameters a1, a2, positive frequency ω, parameter

µ > 0:x
′
1 = x2 + ε(x1 − 1

3
x31), x′2 = −x1 − εa1y21x′1,

ẏ1 = y2 + µ(y1 − 1
3
y31), ẏ2 = −ω2y1 − µa2x21ẏ1.

(11)

Differentiation is respectively with respect to τ = t/ε and t. The slow manifold of system

(11) is given by the plane x1 = x2 = 0. If ε = 0 the slow manifold is Lyapunov (neutrally)

stable. It contains an asymptotically stable slow limit cycle corresponding with the Van

der Pol-oscillator in (y1, y2) coordinates. Another invariant manifold is given by the plane

y1 = y2 = 0 where a fast Van der Pol-oscillator is found in (x1, x2) coordinates. The question

of interest is the interaction of the two oscillators outside the 2 coordinate planes.
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Figure 3. Numerical approximation of a stable torus of system (12). Left the projection of

x1(t), ẋ1(t) (fast), right the projection of y1(t), ẏ1(t) (slow) with x1(0) = 2, ẋ1(0) = 0, y1(0) =

2, ẏ1(0) = 0, ε = µ = 0.1, a1 = 0.5, a2 = 0.3, ω = 2. The choice of parameters corresponds with

the analysis of the slow manifold (16) leading to a stable torus.

The more familiar (equivalent) scalar equations in respectively τ and t are:
d2x1
dτ2

+ x1 = ε(1− x21 − a1y21) dx1
dτ
,

d2y1
dt2

+ ω2y1 = µ(1− y21 − a2x21) dy1
dt
.

(12)

We transform to amplitude-angle variables: x1 = r1 sinφ1, x
′
1 = r1 cosφ1, y1 = r2 sinφ2, ẏ1 =

r2ω cosφ2. The equations from system (12) produce with differentiation with respect to τ :

r′1 = ε cos2 φ1[1− r21 sin2 φ1 − a1r22 sin2 φ2],

φ′1 = 1 + ε sinφ1 cosφ1[1− r21 sin2 φ1 − a1r22 sin2 φ2],

r′2 = εµr2 cos2 φ2[1− r22 sin2 φ2 − a2r21 sin2 φ1],

φ′2 = εω − εµ sinφ2 cosφ2[1− r22 sin2 φ2 − a2r21 sin2 φ1].

(13)

We can average over the fast angle φ1 to obtain the approximating system:
r̃′1 = 1

2
ε[1− 1

4
r̃21 − a1r̃22 sin2 φ̃2],

r̃′2 = εµr̃2 cos2 φ̃2[1− r̃22 sin2 φ̃2 − a2
2
r̃21],

φ̃′2 = εω − εµ sinφ2 cosφ2[1− r22 sin2 φ2 − a2
2
r̃21].

(14)

Starting at the same initial values as r1, r2, φ2, the approximations r̃1, r̃2, φ̃2 have validity

O(ε) on the timescale 1/ε in τ (as in the Pontryagin-Rodygin theorem). We conclude from

system (14) that the only possibility to quench the fast oscillator completely is if a1 > 0.

We will consider the case µ = O(ε).
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Put µ = εµ0 with µ0 a positive constant independent of ε. In this case φ̃2 is timelike with

respect to r̃2 and we can reformulate system (14) as:
dr̃1
dφ̃2

= 1
2ω

[1− 1
4
r̃21 − a1r̃22 sin2 φ̃2] +O(ε),

dr̃2
dφ̃2

= εµ0
ω
r̃2 cos2 φ̃2[1− r̃22 sin2 φ̃2 − a2

2
r̃21] +O(ε2).

(15)

System (15) has a slow manifold given by

1− 1

4
r̃21 − a1r̃22 sin2 φ̃2 = 0. (16)

The slow manifold is stable if we find a positive solution for r̃1. Eliminating r̃1 with (16) we

find for the dynamics in the slow manifold:

dr̃2

dφ̃2

= ε
µ0

ω
r̃2 cos2 φ̃2[1− 2a2 − r̃22(1− 4a1a2) sin2 φ̃2] +O(ε2). (17)

There is no obstruction to average again, this time over φ̃2 . We find in the slow manifold

the equation:

d˜̃r2

dφ̃2

= ε
µ0

2ω
˜̃r2[1− 2a2 −

1

4
(1− 4a1a2)˜̃r22]. (18)

The solutions of eq. (18) are valid to O(ε) on an 1/ε timescale in φ̃2, which means a long

timescale in t. A periodic solution in φ̃2 arises if

˜̃r22 = 4
1− 2a2

1− 4a1a2
(19)

with positive righthand side. If in addition both 1 − 2a2 and 1 − 4a1a2 are positive, the

periodic solution ˜̃r2(φ̃2) is stable. A corresponding approximation in the slow manifold for

r̃1 can be found from eq. (16). The approximations for r1 and r2 represent a torus in 4-space;

a finite-dimensional torus will contain quasi-periodic solutions. See fig. 3 for an illustration.

The analysis of coupled slow-fast Van der Pol-oscillators is more complicated if we have

more than 2 oscillators. To avoid discussing too many cases we reduce the number of free

parameters.

Example 2

The case of one fast and two slow Van der Pol-oscillators.

We will present an abbreviated account with an illustration. Consider the system of 3 scalar

equations with parameters a, b > 0:
x′′ + x = ε(1− x2 − by2 − bz2)x′,

ÿ + y = ε(1− ax2 − y2 − z2)ẏ,

z̈ + z = ε(1− ax2 − y2 − z2)ż,

(20)
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where again a prime indicates differentiation with respect to τ = t/ε, a dot indicates differ-

entiation with respect to time t. The coordinate planes correspond with invariant manifolds,

we consider the dynamics outside the coordinate planes.

Using amplitude-angle variables and fast time τ also for the 2 slow equations we have

the equivalent system:

r′1 = εr1 cos2 φ1(1− r21 sin2 φ1 − br22 sin2 φ2 − br23 sin2 φ3),

φ′1 = 1− ε
2

sin 2φ1(1− r21 sin2 φ1 − br22 sin2 φ2 − br23 sin2 φ3),

r′2 = ε2r2 cos2 φ2(1− ar21 sin2 φ1 − r22 sin2 φ2 − r23 sin2 φ3),

φ′2 = ε− ε2

2
sin 2φ2(1− ar21 sin2 φ1 − r22 sin2 φ2 − r23 sin2 φ3),

r′3 = ε2r3 cos2 φ3(1− ar21 sin2 φ1 − r22 sin2 φ2 − r23 sin2 φ3),

φ′3 = ε− ε2

2
sin 2φ3(1− ar21 sin2 φ1 − r22 sin2 φ2 − r23 sin2 φ3).

(21)

As before we can average over the fast angle φ1 to find:

Figure 4. Numerical approximation of a stable torus of system (20). Left the projection

of the phaseplane x1(t), ẋ1(t) (fast), middle r1(t) =
√
x2(t) + ẋ2(t), right the projection of the

phaseplane y1(t), ẏ1(t) (slow) with x1(0) = 1, ẋ1(0) = 0, y1(0) = 1.5, ẏ1(0) = 0, z(0) = 1.3, ż(0) =

0, ε = 0.1, a = b = 0.3. The choice of parameters corresponds with the analysis of the slow

manifold (27) leading to a stable torus.



r̃′1 = ε
2
r̃1(1− 1

4
r̃21 − 2br̃22 sin2 φ̃2 − 2br̃23 sin2 φ̃3),

r̃′2 = ε2r̃2 cos2 φ̃2(1− a
2
r̃21 − r̃22 sin2 φ̃2 − r̃23 sin2 φ̃3),

φ̃′2 = ε−O(ε2),

r̃′3 = ε2r̃3 cos2 φ̃3(1− a
2
r̃21 − r̃22 sin2 φ̃2 − r̃23 sin2 φ̃3),

φ̃′3 = ε−O(ε2).

(22)
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System (22) has in τ a relatively fast amplitude r1, fast angles φ2, φ3 and slow amplitudes

r2, r3. We will average over the fast angles outside the resonance domain determined by

φ̃′2 = φ̃′3. We find for the slow amplitudes:r̃
′
2 = ε2

2
r̃2(1− a

2
r̃21 − 1

4
r̃22 − 1

2
r̃23),

r̃′3 = ε2

2
r̃3(1− a

2
r̃21 − 1

2
r̃22 − 1

4
r̃23).

(23)

Interesting dynamics may happen if the following 2 ellipsoids intersect:

a

2
r̃21 +

1

4
r̃22 +

1

2
r̃23 = 1,

a

2
r̃21 +

1

2
r̃22 +

1

4
r̃23 = 1.

This leads to

r̃2 = r̃3,
a

2
r̃21 = 1− 3

4
r̃22. (24)

In this case the dynamics of system (20) reduces to the case of 1 fast and 1 slow oscillator

which we discussed before. Looking for solutions in system (20) of the form y2 = z2 gives a

shortcut to the problem.

The resonance cases φ2 − φ3 = 0, π lead to a first integral:

r2 =
r2(0)

r3(0)
r3. (25)

Replacing φ3 or φ3 + π by φ2 we can average over φ2 to obtain in the 2 resonance cases:
˜̃r′2 = ε2

2
˜̃r2(1− a

2
˜̃r21 − 1

4
˜̃r22 − 1

4
r̃23),

˜̃r′3 = ε2

2
˜̃r3(1− a

2
˜̃r21 − 1

4
˜̃r22 − 1

4
˜̃r23).

(26)

Another approach is to consider first the slow manifold obtained from system (22) for

r̃1. We find (leaving out the tildes)

r21 = 4− 8b(r22 sinφ2
2 + r23 sinφ2

3). (27)

Eliminating r̃1 from the equations for r̃2, r̃3 in system (22) we have after averaging over the

angles for the dynamics in the slow manifold:
˜̃r′2 = ε2

2
˜̃r2[1− 2a− ( 1

4
− ab)˜̃r22 − 2( 1

4
− ab)˜̃r23].

˜̃r′3 = ε2

2
˜̃r3[1− 2a− 2( 1

4
− ab)˜̃r22 − ( 1

4
− ab)˜̃r23].

(28)

We can draw several conclusions from system (28). An important one is that we find in the

slow manifold of system (22) a stable torus if

0 < a <
1

2
, 0 < ab <

1

4
. (29)
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See fig. 4. We leave out the figures for other cases suggested by conditions (29); for instance

changing in the data of fig. 4 b to b = 1, the slow solutions y, z tend to a stable periodic

solution (if the y, z frequencies would be different we would obtain a stable 2-dimensional

torus), the fast oscillator is quenched and tends to the x, ẋ coordinate plane. Reversing the

role of the parameters by putting a = 1, b = 0.3 the slow solutions y, z are quenched and tend

to the 2 coordinate planes, the fast solution tends to a limit cycle in the x, ẋ phaseplane.

The examples of slow-fast oscillators with Van der Pol self-excitation that we discussed

have common features like averaging first over a fast angle, averaging after that over slow

angles, the presence of slow manifolds and the possibility of local resonance manifolds. To

facilitate the demonstrations we have in the examples only a few parameters. A consequence

of this is more symmetry producing sometimes non-generic reductions in the analysis. It

would be of interest to repeat studying the examples with more parameters. Many more

bifurcations are to be expected.

5. Conclusions

1. Slow-fast systems arise naturally in applications involving interactions and quenching.

2. Limit cycles obtained in a perturbation framework can be used to study long time

slow-fast interactions described by 3 timescales: t/ε, t and εt.
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Multibody models for gait analysis 

 
Wiktoria Wojnicz, Bartłomiej Zagrodny, Michał Ludwicki,                                          
Jerzy Mrozowski, Jan Awrejcewicz, Edmund Wittbrodt 

Abstract: The aim of this study was to create multibody biomechanical models to 
analyze a normal gait of the human. Proposed models can be used to identify joint 
moments of the lower limbs during normal gait in the single and double support phases. 
Applying Newton-Euler formulation, following  planar models were developed: 1) a 
mathematical 6DOF model describing a gait in the sagittal plane of the body for single 
support phase and double support phase; 2) a mathematical 7DOF model describing a 
gait in the sagittal plane of the body for single support phase and double support phase; 
3) a mathematical 7DOF model describing a gait in the frontal plane of the body for 
single support phase and double support phase. Proposed mathematical models can be 
applied to solve a forward dynamic task or inverse dynamic task. A validation of these 
models had been performed by comparing results measured over examination of normal 
human gait and results calculated by solving an inverse dynamic task.   

1.   Introduction  

From the mechanical point of view a gait of the human is considered as periodical movements of lower 

limbs that alternately generate stable and unstable states. Over each phase of the gait a body weight is 

propelled by maintaining a stable posture due to functioning of posture-stabilizing mechanisms 

controlled by the human nervous system. A normal gait occurs when the right and left parts of the 

human body perform similar motions with respect to the anatomical planes of the body. This gait can 

be analyzed by deriving planar dynamic models describing motions occurring in a sagittal and frontal 

plane of the body. A pathological gait occurs when the right and left parts of the human body perform 

asymmetrical motions in space. To analyze this gait the spatial dynamic models should be derived.      

A human body is treated as a musculoskeletal system composed of  segments having defined 

number of degrees of freedom (DOFs). Net joint moments, net joint intersegmental forces and net joint 

powers generated in this system during gait can be estimated by using an inverse dynamics approach 

[11]. To solve an inverse dynamic task, the following data should be assessed: 1) biomechanical data 

of the subject (segment masses and dimensions; segment radii of gyration; segment moments of inertia); 

2) kinematic data of human segments (joint centers, proximal and distal points of segments that are 

used to calculate angular displacement, angular velocity and angular acceleration of body parts); 3) 

kinetic data (reaction forces of interaction with the ground that can be measured by using a force plate); 

4) EMG data (to estimate activity of muscles producing motion and muscle excitation timing). 
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A gait is composed of single and double support phases. During each double support phase a 

system becomes a closed system. This demands to solve an indeterminacy problem referring to 

estimation of external force/moment distribution. 

The aim of this study was to create multibody biomechanical models to analyze a normal gait of 

the human and to identify joint moments of the lower limbs during all gait phases. The scope of the 

study was to derive dynamic models to analyze: 1) single support phase (open sagittal 6DOF model, 

open sagittal 7DOF model and open frontal 7DOF model); 2) double support phase, which occurs due 

to interaction between the sole of the swinging leg and a ground (closed sagittal 6DOF model, closed 

sagittal 7DOF model and closed frontal 7DOF model)..  

2. Materials and Methods 

A human body was treated as a multibody system composed of two ankle joints, two knee joints and 

one hip joint (sagittal models) or two hip joints (frontal models). An influence of the upper part of the 

body (the pelvis, torso, head, neck and upper limbs) was modelled by using two approaches. The first 

one implies that the upper part of the body is modelled as one concentrated force applied at the center 

of gravity of the upper body part. An influence of this force is modelled as a load (force and its moment) 

transmitted through the hip joint to the stance leg (single support phase) or both legs (double support 

phase). This approach was adapted to create a sagittal 6DOF model and a frontal 7DOF model. The 

second approach treats the upper part of the body as one additional segment, which is connected to the 

hip joint. This approach was adapted to create a sagittal 7DOF model.   

To simulate behavior over single and double support phases (Fig.1) there were proposed two 

different type of models: open sagittal 6DOF model and closed sagittal 6DOF model; open sagittal 

7DOF model and closed sagittal 7DOF model; open frontal 7DOF model and closed frontal 7DOF 

model. It should be mentioned that the Fig.1 illustrates behavior of the 6DOF model (behavior of each 

7DOF model is similar). 

Biomechanical multibody models presented in this paper were derived by applying Newton-Euler 

formulation [1,4]. Proposed biomechanical model can be applied to analyze forward or inverse 

dynamics problems. It is worth noticing that proposed models are more complex ones with respect to 

the models presented in [5-6, 12]. 

It should be mentioned that real biomechanical system is composed of joints that are linkung 

neighboring segments through passive tissues (bursa, ligaments, tendons) and active tissues (muscles). 

An influence of both tissues can be considered by inputting rheological models composed of 

viscoelastic elements. These elements are also implemented in the joints of proposed biomechanical 

models.  
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An approach to solve a problem with interaction, which occurs when the heel of the swing leg 

strikes the ground (initiation of the double support phase), is described in the below subsection referring 

to the interaction modelling. Considering a homogeneous mass distribution, the segmentation (i.e. body 

partitioning) was performed according to Zatsiorsky’s method [2-3]. Proposed biomechanical models 

were implemented in MATLAB software by creating author programs. 

 

A) Foot-flat of the right 
leg, Two-off of the left leg 

 
 

 

B) Midstance end of the right 
leg, Midswing end of the left leg 

 

 

C) Midstance end of the right 
leg, Heel-strike of the left leg 

 
 

 

Figure 1. Structural 6DOF model  in the single support phase (A, B) and double support phase (C):  
MGround1 – the ground moment during the single support phase (A), MGround2 – the ground moment 

during the single support phase (B), MGround3 – the ground moment during the double support phase 
(C); Ryj – the y-th component of the leg reaction force (anterior-posterior component) during the j-th 
single support phase (j = 1,2); Rzj – the z-th component of the leg reaction force (vertical component) 

during the j-th single support phase (j = 1,2); Rz3R  and Rz3L – the z-th components of the reaction force 
of the right and left leg during the double support phase; Ry3R and Ry3L – the y-th components of the 
reaction force of the right and left leg during the double support phase; MiL – i-th moment acts at the 

i-th joint of the left leg; MiR – i-th moment acts at the i-th joint of the right leg 
 

Sagittal 6DOF model  

Considering the body as a structure composed of six segments serially linked through the hinge joints 

in a sagittal plane, there were created two models (Fig. 2): 1) open sagittal 6DOF model, which can be 

applied to model a single support phase (in this case both y-th (Fy) and z-th  (Fz) components of reaction 

force of the swing leg are equal to zero); 2) closed sagittal 6DOF model, which can be used to describe 

a double support phase. Both models can be applied to analyze kinematics and dynamics of normal gait 

in a sagittal plane over specific phases. An influence of the upper part of the body was modelled as one 

concentrate force G7 (it is a gravity force of upper part of the body) and the moment of this force MG7. 

It was assumed that this force and its moment influence the stance leg. The hinge joint O models the 

metatarsophalangeal joint of the stance feet by assuming that it does not cause any dissipation 

phenomenon. A complete mathematical models of the open sagittal 6DOF model and closed sagittal 

6DOF model are described in [8-9].  
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Figure 2. The sagittal 6DOF model (O – the point between the support foot and the ground (the 
metatarsophalangeal joint); A1 – the ankle joint of stance leg; A2 – the knee joint of stance leg; A3 – 

the hip joint; A4 – the knee joint of swing leg; A5 – the ankle joint of swing leg;  αi – the angle of the i-
th segment (each angle is measured as an absolute coordinate); Gi – the gravity force of the i-th 

segment that acts at its center of gravity Ci ; Mij – the net joint moment between the i-th segment and 
j-th segment (Mij = Mji); Mexti – the external moment loading the i-th segment; Ry1 – the y-th 

component of stance leg reaction force (anterior-posterior component); Rz1 – the z-th component of 
the stance leg reaction force (vertical component); Fy and Fz – the y-th and z-th component of reaction 
force of the swing leg during double supporting phase; y – the sagittal axis; z – the vertical axis) [9] 

 

Sagittal 7DOF model  

Considering the body as a dendritic structure composed of seven segments in a sagittal plane, there 

were created (Fig. 3): 1) the open sagittal 7DOF model, which can be applied to model a single support 

phase (in this case both the y-th (Fy) and z-th  (Fz) components of reaction force of the swing leg are 

equal to zero); 2) the closed sagittal 7DOF model, which can be applied to model a double support 
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phase. These models can be applied to model kinematics and dynamics of normal gait in a sagittal plane 

over specific phases. An influence of the upper part of the body was modelled as the seventh segment, 

which gravity force acts at the center of mass placed at the point C7. Mathematical models of the open 

sagittal 7DOF model and closed sagittal 7DOF model are described in detail in [9]  

 

 

Fiure 3. The sagittal 7DOF model (symbols are described in the Figure 2) [9] 
 

Frontal 7DOF model  

Considering a frontal plane and treating a body as a structure composed of seven segments serially 

linked through the hinge joints, there were created (Fig. 4): 1) the open frontal 7DOF model, which can 

be applied to model a single support phase (in this case both the x-th component of reaction force (RF
x2) 

and the z-th component of reaction force (RF
z2) are equal to zero); 2) the closed frontal 7DOF model, 

which can be used to describe a double support phase. Both models can be applied to analyze kinematics 

and dynamics of normal gait in a frontal plane during specific phases. An influence of the upper part of 
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the body was modelled as one concentrate force G7 (it is a gravity force of upper part of the body) and 

its moment M(b).  

 

 

 

Figure 4. The frontal 7DOF model: (OF – the point between the support foot and the ground; AF
1 

– the ankle joint of stance leg; AF
2 – the knee joint of stance leg; AF

3 – the stance leg hip joint; AF
4 – 

the swing leg hip joint; AF
5 – the knee joint of swing leg; AF

6 – the ankle joint of swing leg;  βi – the 
angle of the i-th segment in the frontal plane (each angle is measured as an absolute coordinate); G – 
gravity force of the upper part of the body; MF

exti – the external moment influenced the i-th segment 
in the frontal space; RF

x1 – the x-th component of stance leg reaction force (medio-lateral component); 
RF

z1 – the z-th component of the stance leg reaction force (vertical component); RF
x2 – the x-th 

component of reaction force during double support phase; RF
z2 – the z-th component of reaction force 

during double support phase;  x – the transverse axis; y – the sagittal axis; z – the vertical axis)  
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A general mathematical description of the open frontal 7DOF model is a non-linear system of 

seven differential equations: 
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where βi  – the i-th angular displacement of the i-th segment (the i-th joint angle) in the frontal 

plane;  ���  – the i-th angular velocity of the i-th segment in the frontal plane;  ���   – the i-th angular 

acceleration of the i-th segment in the frontal plane, ������ , ��� – the ij-th coefficient depending on the 

mechanical characteristics.  

A general mathematical description of the closed sagittal 7DOF model, which is an overactuated 

system, is a non-linear system of seven differential equations: 
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where ����
 �
 and ����

#�
 – moments originating from the components of interaction reaction 

that influence the seventh segment AF
6AF

7 (Fig. 4); ��– length of the i-th segment that is placed under 

the i-th angle ��. 

Approaches for interaction modelling 

In order to study an influence of interaction one could apply two approaches: the first one for inverse 

dynamic problem solution; the second one for forward dynamic task solution.  According to the first 

approach, measured ground force values (the y-th component (Fy) and z-th component (Fz) in each 

sagittal model; the x-th component (��
 �) and z-th component (��

#�) in the frontal model) influenced 

by an interaction with the ground can be inputted into the chosen model. These values can be measured 

by using a second force plate. According to the second approach, an interaction with a ground can be 

modelled by applying an additional analytical model that estimates the value of external load needed to 

stay a strike foot in the narrow range of the ground level [9]. 

3. Results  

A validation of proposed biomechanical models had been performed by solving an inverse dynamic 

task without using any optimization approach. To compare measured data with calculated ones the 

experimental researches had conducted on the group of health males. In this paper there are presented 

results of validation for one random chosen male person (body mass 72.2 kg and body height 177.5 cm) 

(Fig.5A). To obtain kinematic data there was used a marker setting (Rizzoli protocol) of OPTITRACK 

system composed of six cameras working with 120 Hz frequency and dedicated software (Fig.5B-5C). 

To measure kinetic data (interaction forces) the Steinbichler force plate was applied. A subject was 

given an oral instruction. This subject did five successful trials (each trial contained three full steps) by 

walking barefoot in preferred speed with open eyes. Specific gait phases were defined on the base of 

the analysis of the posture reproduced by the motion capture system (Fig. 6). 

Applying Zatsiorsky’s segmentation method and principles of mechanics, centers of gravity of all 

segments (right and left foot, right and left calf, right and left thigh, upper body part) were calculated 

for each frame recorded by the motion capture system. It was also assumed that the subject examined 

was in a homogenous gravity field (gravity acceleration equals to g = 9.8 m/s2).  

On the base of markers’ displacements there were calculated angular displacements of all segments 

of the body: a) in a sagittal plane (in Fig. 7 relative angular displacements are given as Hip = �� − ��, 

Knee = �� − �� and Ankle = �� − �� − $ 2⁄  [7]); b) in a frontal plane (Fig. 8). To estimate segment 

angular velocities and segment angular acceleration, the kinematic data were processed by applying: 1) 

filtering (the Butterworth filter of the fourth order with 5Hz cut-off frequency was applied); 2) cubic 

spline interpolation; 3) differentiation by applying three-point difference method.  
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                    A)                              B)                                                        C) 

Figure 5. A) a subject examined; B) marker setting (anterior); C) marker setting (posterior) 
 

A validation was performed by comparing a vertical component of interaction measured during 

single phase with a vertical component of interaction calculated by applying a sagittal 6DOF model 

(Fig. 9), sagittal 7DOF model (Fig. 10) and frontal 7DOF model (Fig. 11). Moreover, there were also 

compared data referring to a horizontal component of interaction measured during this phase and a 

horizontal component of interaction calculated by applying a sagittal 6DOF model (Fig. 12), sagittal 

7DOF model (Fig. 13) and frontal 7DOF model (Fig. 14). Due to the fact that only one force plate was 

available in practice, we limited a validation of our models only to the single phase of the gait.  

 

 

A)               B)             C)               D)                E)                F)             G)              H) 

Figure 6. Posture setting during the one full step of the gait: A) Double support phase; B) Single 
support phase (foot-flat of right leg and toe-off of left leg); C) Single support phase (stance of right 

leg and deceleration of swing left leg); D) Double support phase; E) Single support phase (foot-flat of 
left leg and toe-off of right leg); F) Single support phase (stance of left leg and swing right leg); G) 

Single support phase (stance of left leg and deceleration of swing right leg); H) Double support phase 
[8-9] 
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Figure 7.  Kinematic data (sagittal plane)  
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Figure 8.  Kinematic data (frontal plane)  
 

 
Figure 9. Vertical component of interaction: measured component and calculated component for 

sagittal 6DOF model 
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Figure 10. Vertical component of interaction: measured component and calculated component for 

sagittal 7DOF model 

 
Figure 11. Vertical component of interaction: measured component and calculated component 

for frontal 7DOF model 
 

 
Figure 12. Horizontal component of interaction: measured component (towards sagittal axis) and 

calculated component for sagittal 6DOF model 
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Figure 13. Horizontal component of interaction: measured component (towards sagittal axis) and 

calculated component for sagittal 7DOF model 
 

 
Figure 14. Horizontal component of interaction: measured component (towards transverse axis) 

and calculated component for frontal 7DOF model 

4. Discussion 

On the base of the obtained data (measured and calculated) given in the section 3, we concluded that 

over single support phase:  

• all three vertical components of interaction calculated by using a sagittal 6DOF model (Fig. 9), 

sagittal 7DOF model (Fig. 10) and frontal 7DOF model (Fig. 11) have very similar shapes and values 

that are approximate to the measured one. Values of absolute relative error of calculated component 

with respect to the measured one are following: 26.7% (sagittal 6DOF model (Fig. 9)), 22.2% 

(sagittal 7DOF model (Fig. 10)) and 31.4% (frontal 7DOF model (Fig. 11));   

• the horizontal component calculated by the sagittal 6DOF model (Fig. 12) and sagittal 7DOF model 

(Fig. 13) is closely approximated to the measured horizontal one;  
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• the horizontal component calculated by the frontal 7DOF model (Fig. 14) has only slightly similar 

shape with respect to the measured horizontal one. This discrepancy is observed in the small range 

of force value.   

It is worth emphasizing that calculated components were obtained without applying any 

optimization approach that could be used to fit the calculated data with the calculated ones. Considering 

presented results of validation, one should keep in mind that following factors are very crucial and have 

a big impact on the calculated results: 

1) a method of segmentation used to calculate segment masses, segment lengths, segment radii of 

gyration (in the study it was applied Zatsiorsky’s method, which assumes that each segment is a 

homogenous cylinder);  

2) segment moments of inertia that influence dynamics of system considered (in this study a 

Zatsiorsky’s method was used to calculated segment moments of inertia);  

3) methods applied for kinematic data processing that are used to calculate segment angular 

velocities and segment angular accelerations (data processing should constrain non-physiological 

jerks); 

4) data that describe the upper body part influence in each planar model (location of mass of upper 

body with respect to the hip joints of each model);  

5) data that describe the seventh segment of the sagittal 7DOF model (mass m7, length L7, radius 

of gyration S7 and moment of inertia J7). 

5. Conclusions 

The aim of this study was to create multibody biomechanical models that can be used to analyze a 

normal gait of the human and to identify joint moments of the lower limbs during normal gait in the 

single and the double support phase. Applying Newton-Euler formulation, six planar biomechanical 

models were developed: 1) a mathematical 6DOF model describing gait in the sagittal plane of the body 

for single support phase (open sagittal 6DOF model); 2) a mathematical 6DOF model describing a gait 

in the sagittal plane of the body for double support phase (closed sagittal 6DOF model); 3) a 

mathematical 7DOF model describing a gait in the sagittal plane of the body for single support phase 

(open sagittal 7DOF model); 4) a mathematical 7DOF model describing a gait in the sagittal plane of 

the body for double support phase (closed sagittal 7DOF model); 5) a mathematical 7DOF model 

describing a gait in the frontal plane of the body for single support phase (open frontal 7DOF model); 

6) a mathematical 7DOF model describing a gait in the frontal plane of the body for double support 

phase (closed frontal 7DOF model). Proposed mathematical models can be applied to solve a forward 

dynamic task or an inverse dynamic task. A validation of these models had been performed by 

comparing results measured over examination of normal human gait with calculated ones obtained by 
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solving an inverse dynamic task. Applying a sagittal 7DOF model, the influence of the moment of 

inertia of the upper body is taken into account, whereas the sagittal 6DOF model and the frontal 7DOF 

model only consider an influence of upper body load. Due to the fact that proposed biomechanical 

models only describe planar motions, they should be applied with caution to analyze an asymmetrical 

gait.  

Applying models presented in this paper, one can assess joint moments and joint intersegmental 

forces that origin due to influence of elements linking neighboring segments. These elements model an 

influence of soft tissues that are bending each joint (ligaments, bursa, muscles with tendons) and also 

affecting acceleration or deceleration of segments, especially at the end of the range of motion. 

Moreover, joint moments and joint intersegmental forces are produced due to interaction (contact) 

between the components of musculoskeletal system. On the base of calculated kinematic and kinetic 

data one can assess power produced by the chosen segments and joint powers produced by the chosen 

joints of the lower limb. However, one should take in mind that application of an inverse dynamic 

approach does not allow to consider influence of multi-joint muscles and to detect a co-contraction 

phenomenon that is very important to maintain a stable posture [9]. Proposed biomechanical models 

can be used to obtain data to design a mechanical construction of the exoskeleton used to enhance 

performance of the lower limbs. Also, these models can be used to design a control system of this 

exoskeleton to enhance the given motion performance by keeping the chosen range of the human 

locomotive stability. Moreover, considering motions of the human, one should keep in mind that all 

motions are performed in some range of variability [10].  

It is worth remembering that planar models presented in this paper cannot model phenomena 

occurring due to rotations in the transverse plane, since presented models only describe phenomena 

occurring towards a medio-lateral axis of rotation (in the sagittal plane of the body) and anterior-

posterior axis of rotation (in the frontal plane of the body).   
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On the dynamics of blood through the circular tube along with magnetic 
properties 

 

Azhar Ali Zafar, Jan Awrejcewicz 

Abstract: In this article, we will investigate a blood flow model with suspended 

magnetic particles. The fluid is influenced by an external magnetic field and an 

oscillating pressure gradient. Exact solutions for the velocity of fluid and velocity of 

magnetic particles will be obtained by means of integral transforms. Obtained results 

will be expressed in terms of post transient and transient parts. Moreover, to study the 

influence of the material parameters, numerical simulations and graphical illustrations 

will be used and useful consequences will be summarized. 

1. Introduction 

 Basically, blood consists of multiple components, a mixture of various cells in plasma which 

behaves like an incompressible Newtonian fluid [1]. Moreover, plasma in a capillary flow behaves 

like Newtonian fluid [2]. It is more likely a bio-magnetic fluid, so its flow is effected by the magnetic 

field [3]. Furthermore, blood magnetic property is significantly influenced by the state of oxygenation 

[4]. The use of magnetic field for streamlining the flow of blood in the body could be utilized to 

control poor circulation of blood and the risk of heart attack to a person [3]. In [5] Haik et al. 

developed a bio fluid dynamics model closely resembling to the ferro-hydrodynamics. Further 

Varshney et al. [6] numerically investigated the effect of magnetic field on the blood flow in artery 

having multiple stenosis,  Bourhan  and Magableh [7] studied the effects of magnetic field on heat 

transfer and fluid flow characteristics of blood flow in multi-stenosis arteries. In 2015, Sharma et al. 

[4] have numerically investigated the fluid flow parameters of blood together with magnetic particles 

in a cylindrical tube.  

Our aim is to investigate the dynamics of proposed blood flow model with magnetic particles 

through a cylindrical tube under the influence of magnetic field and oscillatory pressure gradient in 

the axial direction [4]. However, we look for the exact solutions for the dimensionless form of the 

fluid velocity and magnetic particles velocity and express the obtained results in terms of steady state 

and transient parts. Furthermore, influence of the external magnetic field, particles concentration 

parameter and particles mass parameters on the dynamics of fluid and particles is investigated via 

numerical simulations and graphical illustrations. 
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2. Description of the problem 

 The artificial blood (75% water and 25% Glycerol) along with magnetic particles (iron oxide) is 

assumed to be flowing in a cylindrical glass tube under the influence of axial pressure gradient. The 

magnetic particles are supposed to be uniformly distributed throughout the blood. The blood is 

flowing in the axial direction and a uniform transverse magnetic field is applied.  We assume that: 

a. No-slip condition at the wall of tube is applied that the blood and magnetic particles have 

zero velocities at the wall of the tube. 

b. The magnetic Reynolds number is very small; hence the induced magnetic field effect is 

neglected [7]. 

2.1. Proposed geometry of the model 

 

 

Figure 1. Proposed geometry of the model 

 

Nomenclature 

J   Current density  

     Electrical conductivity 

E     Electric field intensity 

V     Velocity vector 

B     Magnetic flux intensity 

0   
Magnetic permeability 


    

Density of the fluid  

     Dynamic viscosity of the fluid 



    

Kinematic viscosity of the fluid 

N    Number of magnetic particles per unit volume 

S     Stokes constant 
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Ha

  

Hartmann number 

C     Particles concentration 

M    Particles mass parameter 

2.2. Mathematical model 

Based on the fact that, when a magnetic field is applied on an electrically conducting fluid, an 

electromagnetic force is generated due to the interaction of current with magnetic field. In our model, 

iron oxide (magnetic particles) are suspended in blood (bio-magnetic fluid) which makes the blood 

more conducting and a strong electromagnetic force is experienced (due to the interaction of current 

with magnetic field). The strength of this electromotive force also depends on the speed of motion of 

the magnetic particles as well as magnetic flux intensity [8]. The governing equations of our problem 

involves both Navier-Stokes equations describing the fluid flow and Maxwell’s relations for magnetic 

field interactions. Now, from 

  (Ohm’s law)                                          ,J E V B  
                                                                

(1) 

  (Maxwell’s equations)             0 , .
B

J E
t




        


                                              

(2) 

  (Electromagnetic force included 

  in the momentum equation)    
^

2 ,zm bF J E V B B B u e         
                                     

(3) 

where ( , )bu r t  is the axial velocity of the blood. 

Consider blood is flowing in an axi-symmetric cylindrical tube of radius “a” with axis of the 

cylinder along z  - axis, subject to the pressure gradient  
p

z




 and transverse magnetic field of 

strength B . The governing momentum equation for fluid flow in cylindrical polar coordinates is 

given by [4], [5] 

2 2

2

1 1
( ) ,b b b b

p b

u u u B up SN
u u

t z r rr




  

      
               

                                                       

(4) 

where ( , )pu r t    is the velocity of the particles. For small Reynolds number of the relative velocity the 

force between blood and magnetic particle is proportional to the relative velocity. 

Moreover, motion of the magnetic particles is governed by  

( u ),b
av b p

u
m S u

t


  


                                                                                                                   

(5)  

where avm  is the average mass of the magnetic particles. 

Like in [9], pressure gradient is considered as 
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0 1 cos( ),
p

t
z

  


   


                                                                                                              

(6) 

where 0 is the constant amplitude of the pressure gradient and 1  is the amplitude of the pulsatile 

component giving rise to systolic and diastolic pressure. In experiments this kind of pressure gradient 

is maintained by peristaltic pump. 

The initial and boundary conditions on the velocity field are given by [4] 

      ( ,0) ( ,0) 0b pu r u r      for (0, ),r a
                                                                                           

(7) 

0

( , )
0b

r

u r t

r 

  



 

for 0,t 
                                                                                                        

(8) 

       ( , ) ( , ) 0b pu a t u a t      for 0,t                                                                                                    (9) 

By introducing the following dimensionless variables and parameters [4] in to Eqs. (4) – (9) 
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and dropping star notation, we have the following dimensionless initial-boundary problem 
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3. Solution of the problem 

  Applying Laplace transform to Eqs. (11), (12) and (15) and using initial conditions (13), we get 
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(1, ) 0, (1, ) 0.b pu q u q 
                                                                                                            

(18) 

Using Eq. (17) into Eq. (16), we obtain 
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Eq. (19) can be written in an equivalent form 
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Applying finite Hankel transform [10] of order zero and using the boundary conditions, we get 
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Taking the inverse Laplace transform, we obtain 
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Taking the inverse Hankel transform [11], we obtain 
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or  as the sum of steady-state part ( , )stu r t  and transient part ( , )tu r t   can be written 

( , ) ( , ) ( , ),b b st btu r t u r t u r t 
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The particles velocity ( )pu r,t  can be obtained introducing Eq. (24) into (12) and using Eq. (18), we 

get 
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Moreover, in more elegant form we can write 

            ( , ) ( , ) ( , ),p p st p tu r t u r t u r t                                                                                                    (30) 
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the steady-state and transient components of the particles velocity.  
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4. Numerical results and discussion 

In this section our interest is to analyze the influence of the system parameters i.e. 

Hartmann number, particles concentration parameter and particles mass parameter on the 

velocity of the fluid as well as the flow velocity of the magnetic particles. In order to 

evaluate numerical values of the velocities, we need the positive roots of the Bessel 

function 0J . These roots are generated by a numerical subroutine using MATHCAD 15.  

The profiles of velocities versus r  are plotted as shown in the Fig. 2 in order to discuss the 

influence of the Hartmann number on the flow of fluid and particles at different values of 

dimensionless times .t  Here we have considered {1,2,3,4,5}Ha  and 0.5, 2M C  .  As 

expected it is noticed that both fluid velocity ( , )bu r t  and particles velocity ( , )pu r t  decreases 

with the increasing values of Hartmann number. Because, Lorentz force (that appears when 

transverse magnetic field is applied to a moving electrically conducting fluid) resists the 

flow of fluid and magnetic particles. From the Fig. 2, it is reported that the effect of 

Hartmann number on ( , )bu r t  and ( , )pu r t  is quite significant about the axis of the cylinder 

and both the velocities decreases from maximum value to zero as 1r  . In comparison the 

fluid flows faster than the particles flow. Moreover, as the time progresses both the 

velocities increases. 

 

The diagrams of Fig. 3 are plotted in order to discuss the influence of the particle concentration 

parameter C on both the velocities ( , )bu r t  and ( , )pu r t . In this case we take {2,4,6,8,12}C and we 

have used the other parameters 1, 3.M Ha   A similar trend is observed like the case of Ha . 

Because, due to the increase of concentration, collision of the particles results in the displacement 

from their initial positions and leave the fluid stream lines. This deviation from their dynamic 

equilibrium state will induce relative velocity between the particles and the fluid, resulting in an 

additional energy dissipation and gives rise to an increase in effective viscosity.  Moreover, from the 

profiles it is also noticed that ( , ) ( , )p bu r t u r t  and the influence of C  on ( , )bu r t  is significant but 

less significant on ( , )pu r t  and diminishes with time. Here also influence of C  is significant near the 

axis of cylinder and both the velocities approaches to zero as 1r  . 

 

From the profiles of velocities versus r  for different values of particles mass parameter M  and at 

different values of dimensionless times, as noticed from Fig. 4 that velocity of particle ( , )pu r t  
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increases with the increasing values of parameter M , but the parameter M  has no significant 

influence on  the fluid velocity and this influence diminishes with time. Here, we take 

{0.6,0.7,0.8,0.9,1.2}M   and 4, 3.C Ha    

 

 

Figure 2. Profiles of velocities for different values of Hartmann number and times. 
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Figure 3. Profiles of velocities for different values of particles concentration 

parameter and times. 
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Figure 4. Profiles of velocities for different values of particles mass parameter and 

times. 

In all the diagrams we have chosen the values of the parameters 0 , 1  
and   to be 1  , 0.8  and 

6


  

respectively. 
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5. Conclusions 

The purpose of this investigation was to study the dynamics of proposed blood model with suspended 

magnetic particles flowing through a cylindrical tube under the influence of magnetic field and 

oscillatory pressure gradient. The exact solutions for the dimensionless form of the fluid velocity and 

magnetic particles velocity are obtained and expressed in terms of steady state and transient parts. 

Furthermore, influence of the external magnetic field, particles concentration and mass parameters on 

the dynamics of fluid and particles is investigated via numerical simulations and graphical 

illustrations 

The noteworthy conclusions of the investigation are as under: 

 Strength of Hartmann number Ha , retarded the flow of fluid as well as particles.  

 The velocities of fluid as well as of particles are decreasing functions of particles 

concentration parameter. 

 Influence of concentration parameter is significant on fluid velocity as compare to particles 

velocity.  

 The particles mass parameter influence inversely on particles velocity, while its effect on 

the fluid velocity is insignificant. 
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Mathematical model and a prototype of a linear motor controlled
by a periodic magnetic field

Klaus Zimmermann, Igor Zeidis, Victor Lysenko, Simon Gast,
Lars Günther, Florian Schale, Michel Rohn

Abstract: A mathematical model and a prototype of a linear motor in which
the slider moves progressively are presented. The motion of the slider occurs
due to the periodic motion of two slide-blocks (cylinders) with integrated coils
and the interaction between the slider and a magnetorheological fluid (MRF),
filled in the space between the slider and the cylinders. The periodic motion of
the cylinders is caused by an external oscillator. The net displacement of the
cylinders for a period is equal to zero. The viscosity of the MRF (and, hence,
the friction force acting on the slider) at constant temperature depends on the
magnitude of the magnetic field and the concentration of the particles. The
controllable magnetic field provides an asymmetry of the friction for forward
and backward motions, which enables the net displacement of the slider for a
period. A mathematical model of such a motion is presented. An expression for
the average velocity of the motion of the slider is obtained for the case where
the force of friction is assumed to be small in comparison with the driving force
of the slide-blocks. The value of the average velocity is studied as a function
of the excitation parameters and the properties of the MRF. On the basis of
the theoretical principles outlined above, a prototype of the linear motor was
created.

1. Introduction

State-of-the-art are drive systems which use vibrations to generate a linear or rotary mo-

tion. For example, these drives use magnetostrictive, piezoelectric, electrostatic or magnetic

transducers to excite an oscillator [4][5][6]. A rotor is driven by the periodic interaction with

this oscillator and realizes a strictly monotonous motion. For generating a translational or

rotational motion with constant direction based on a vibrating oscillator, anisotropic friction

properties can also be used. Active elements for the realization of such an anisotropy are, for

example, flakes, bristles and inclined hairs, which produce a positive fit with a rough surface

[7][9].

This article deals with a linear drive in which anisotropic friction is induced by a magnetic

field that influences a magnetorheological fluid (MRF) [10]. In contrast to other MRF-based

drive solutions [3][8], the smart material is not only used for transmission (e.g. as a coupling)

but also for motion generation itself. The working principle is shown in Figure 1. Two
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Figure 1. Basic elements and working principle of the MRF-based drive.

drive elements with coils and MRF filling (slide-blocks), positioned on a slider, are excited

to oscillate with the help of an external energy supply. The magnetic field acting on the

MRF is controlled by active (energized) and passive (de-energized) coils in a phase-shifted

manner. When the current is switched on in a slide-block, the built-up magnetic field leads

to an increased viscous friction force between the drive element and the slider, as a result of

which the drive’s active element moves.

2. Modelbased theoretical investigations

Consider a mechanical system consisting of two hollow cylinders (slider-blocks)(1) that per-

form periodic motion. A rod (slider) (2) capable of moving progressively is placed inside the

cylinders. Between the slider and the slide-blocks there is an MRF (3), see Figure 2.

2.1. Mechanical model and equation of motion

The two cylinders, moving along the axis OX (Fig. 2) are subjected to a kinematic constraint

that specifies the periodic time history 2l(t) between the bodies with a period T and zero

average.

Let x1(t) and x2(t) denote the coordinates of the cylinders. Both cylinders move with

the same velocity in opposite directions relative to the point O. Thus

x2(t)− x1(t) = 2l(t) , x2(t) + x1(t) = 0 , l(t+ T ) = l(t) ,

T∫
0

l(t)dt = 0 . (1)

Since the stock moves progressively, to describe the motion, it suffices to take an arbitrary

point with the coordinate x. The slider is acted upon by the viscous friction forces depending

on the relative slider velocity Fi(ẋ− ẋi) (i = 1, 2). The motion of the slider is described by

the differential equation

mẍ(t) = F1(ẋ− ẋ1) + F2(ẋ− ẋ2) , (2)

where m is the mass of the slider.
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Figure 2. Mechanical model of the linear drive.

Based on the equations (1) we obtain

x1 = −l(t) , x2 = l(t) , v = ẋ , v1 = ẋ1 = −l̇(t)) , v2 = ẋ2 = l̇(t) . (3)

We assume that the force of viscous friction Fi is proportional to the relative velocity

of the rod v − vi , and the coefficient of proportionality ki depends on the velocity of the

sliders (bodies) vi, i.e.,

Fi = −ki(vi)(v − vi) , i = 1, 2. (4)

Hence, the equation of motion (2) takes the form

mv̇(t) = −k1(v1) (v(t)− v1)− k2(v2) (v(t)− v2) . (5)

The distance l(t) is assumed to be harmonic, i.e.

l(t) = a sinωt , l̇(t) = aω cosωt , v1 = −aω cosωt , v2 = aω cosωt , (6)

where a is the amplitude of the oscillations of the cylinders, and ω is the circular frequency.

In the following, the so-called asymmetric viscous friction is considered, where the coef-

ficient of viscous friction ki depends on the direction of motion of the slide-blocks

k1(v1) =

k− , v1 ≤ 0 ,

k+ , v1 > 0 ,
k2(v2) =

k− , v2 ≤ 0 ,

k+ , v2 > 0 .
(7)
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Taking into account expressions (6), we rewrite expression (7) in the form:

k1(v1) =

k+ , cosωt < 0 ,

k− , cosωt ≥ 0 ,
k2(v2) =

k− , cosωt ≤ 0 ,

k+ , cosωt > 0 .
(8)

The dimensionless (asterisked) variables can be introduced as follows:

v∗ =
v

2aω
, v∗1 =

v1
2aω

, v∗2 =
v2

2aω
, t∗ = tω , k∗1 =

k1
k+

, k∗2 =
k2
k+

, (9)

with

k∗1(v∗1) =

1 , cos t∗ < 0 ,

κ , cos t∗ ≥ 0 ,
k∗2(v∗2) =

κ , cos t∗ ≤ 0 ,

1 , cos t∗ > 0 ,

κ =
k−
k+

, 0 ≤ κ ≤ 1 .

(10)

Using (9) and (10) the equation of motion (5) in dimensionless variables takes the form

v̇∗(t∗) = −ε
(
k∗1

(
v∗(t∗) +

1

2
cos t∗

)
+ k∗2

(
v∗(t∗)− 1

2
cos t∗

))
, ε =

k+
m ω

. (11)

2.2. Method of averaging

The equation of motion (11) can be written as (the asterisks are omitted)

v̇ = −ε
(
k1

(
v +

1

2
cos t

)
+ k2

(
v − 1

2
cos t

))
. (12)

The right-hand side of equation (12) is 2π-periodic in t. If the parameter ε is small

(ε� 1) the method of averaging [2] can be applied to this equation.

Consider the equation

V̇ = − ε

2π

2π∫
0

(
k1

(
V +

1

2
cos t

)
+ k2

(
V − 1

2
cos t

))
dt . (13)

Let v(t) and V (t) be the solutions of the equations (12) and (13), respectively, with the

initial conditions v(0) = V (0). Then

|v(t)− V (t)| = O(ε) , t ∈ [0, ξ] , ξ ∼ 1/ε . (14)

After averaging, the following result is obtained

V̇ = − ε
π

(π(1 + κ)V − (1− κ)) . (15)
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The average velocity of the periodic motion of the system governed by equation (12) is

approximated by the steady-state solutions of equation (15). The stady-state solution Vst is

defined as a root of the function on the right-hand side of (15)

Vst =
1

π
· 1− κ

1 + κ
, 0 ≤ κ ≤ 1 . (16)

Therefore,

0 ≤ Vst ≤
1

π
, (Vst)max =

1

π
. (17)

The dimensional steady-state velocity is

Vst =
2aω

π
· 1− κ

1 + κ
= 4a ν

1− κ
1 + κ

, ν =
ω

2π
. (18)

Accordingly, the dimensional maximum steady-state velocity yields

(Vst)max =
2aω

π
= 4a ν . (19)

Figure 3 presents the numerical solution to equation (12) for the initial conditions v(0) =

0 with ε = 0.02 and κ = 0.5. For comparison, the dimensionless steady-state velocity found

from the equation (16) is Vst = 0.106.

3. Experimental evaluation on a prototype

A prototype of the linear motor was developed for the experimental evaluation of the results

from the previous section, see Figure 4. For the developed prototype the hydrocarbon-based

magnetorheological fluid LORD MRF-140CG with the following parameters was used [1]:

viscosity η = 0.28 Pa · s, density ρ = 3.6 · 103 kg/m3, particle weight concentration is 0.85,

distance 2a = 1.25 cm, frequency ν = 5 Hz.

For the design of the mechanical and electrical components, a FEM simulation (ANSYSr

19.1 Workbench) of the cylinders with coils and fluid was performed. Figure 5 shows the

magnetic flux density for the volumes comprising the slide-blocks. It should be noted that

the system is considered to be a magnetostatic one. The flux density is given in a vector

representation and the color of the vector arrows corresponds to the magnitude of the flux

density. It is highest in the area between the slider and the slide-blocks, because of the

material’s small cross-section of the material in this area. The maximum value is below 1

T and is therefore still away from the saturation flux density. The experiment was carried

out with the technical parameters mentioned above in the text and the captions. For these

specific parameters the dimensional value of the steady-state velocity found by equation (18)

is 4.25 cm/s (in dimensionless form the values is 0.106), see Figure 3. The measured average
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Figure 3. Time history stationary velocity of the rod.

velocity in the experiment is 2.6 cm/s. The difference between the calculated and measured

velocities is mainly due to friction in the bearings and the change in the rheological properties

of the MRF under the influence of the applied magnetic field.

Figure 4. The prototype of the linear motor based on vibrations of the slide-blocks and

the controlled viscosity of a MRF
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cylinder

slider (stock)

steel rings

coil

MRF gap

Figure 5. The magnetic flux density of a cylinder with one coil (125 windings, 0.4 A current

strength).

4. Conclusions and outlook

A mathematical model and a prototype of a linear motor based on vibrations of two slide-

blocks and the controlled viscosity of a MRF was considered. A controllable magnetic field

provides an asymmetry of the friction for forward and backward motions, which enables the

net displacement of the slider for one period. Based on NEWTONs second law the motion

equations for the system are obtained. Using the method of averaging the expression for

the stationary velocity of the motion of the slider is formulated in an analytical form. This

formula is valid if the force of friction is small compared to the driving force of the slide-

blocks. On the basis of the theoretical principles outlined above, a prototype of the linear

motor was created. The results of the theoretical calculations agree qualitatively with the

experiments. In order to improve the quantitative agreement of the results, dry friction as

well as viscous friction will be considered in an extended model. This friction occurs among

other effects at the sealing elements and bearings and influences the velocity of the slider as

well.

The principle of motion, which was presented in the article, can also be transferred to a

rotary drive. The development of such a motor is planned as the next experimental step.
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Energy spectrum of inhomogeneous rods with elastic and viscous
boundary conditions

Ádám Zsiros, János Lelkes, Tamás Kalmár-Nagy

Abstract: In this work, we search for the energy spectrum of a continuous
longitudinal vibration of an inhomogeneous rod model. This rod model is a
continuous limit of a chain oscillator with a spring and a damper between
a fixed wall and one end of the chain oscillator. The model describing the
system is a wave equation with viscous and elastic boundary conditions. In
order to determine the eigenvalues and mode shapes of the rod, separation
of variables (space and time) was applied. This method results in a Sturm-
Liouville problem for the spatial part, which is solved by using series solution.
The distributions of the kinetic and the potential energy are calculated and
the energy spectrum of the rod is determined for constant and exponentially
varying stiffness.

1. Introduction

Energy transfer occurs in many natural and engineering process along an especially wide

range. Some of the most frequent engineering applications are the vibration reduction sys-

tems for machines and buildings [2, 3, 4, 5, 6, 7, 9, 12, 16].

A typical example of a process with multi-scale energy transfer is turbulent flow. The

energy cascade model of Richardson [13] describes turbulence. The largest whirls break up

into smaller eddies, and the energy dissipation of turbulence happens at the smallest scales

through viscosity. This process transfers the turbulent kinetic energy of the flow towards

the smallest scales. This phenomenon is phenomenologically described by the mechanistic

turbulence model via a binary tree (Fig. 1) of Kalmár-Nagy and Bak [10].

Figure 1. The n-level binary tree model
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The energy spectrum Ê describes how the energy is exactly distributed in the different

scales of the whirls. It can be defined as a distribution function along the κ wave number:

E =

∫
Ê(κ)dκ. (1)

This definition was applied by Kalmár-Nagy and Bak (2019) [10] and the wavenumber was

defined as an inversely proportional quantity to the length-scale of a whirl: κ ∼ 1/L. In case

of the binary tree model the wavenumber can be defined as an analogy of the length-scales

of the whirls: κl = 1/ml (the wavenumber of a certain level is inversely proportional to

the mass scale of the level). The different parameters of the mechanistic binary tree model

were chosen by Kalmár-Nagy and Bak [10] so as to obtain an energy spectrum similar to the

Kolmogorov spectrum [11]:

• A certain level contains only masses of the same size and the sum of the masses on a

certain level equals to 1.

• The stiffnesses of the springs are described by a power law as a function of the level.

The binary tree model can be ‘renormalized’ to the N -mass chain oscillator model shown in

Fig. 2 [10].

Figure 2. The N-level chain-oscillator model

The parameters of the damped chain oscillator model are the following: mi is the weight

of the ith mass, ki is the stiffness of the ith spring for i = 1, 2, ..., N and cN is the damping.

Let the position of the masses in Figure 2 be ui = ui(t) for i = 1, 2, ..., N ; additionally, the

i = 0 and i = N + 1 cases represent the positions of the fixed ends (u0 = 0, uN+1 = 0). The

parameter distribution that has the least error compared to the Kolmogorov-spectrum has

been investigated for a discrete chain oscillator model for 20 levels (N = 20) by Kalmár-Nagy

and Bak (2019) [10]. The aim of this study is to create a continuous model of the chain

oscillator (N →∞) and investigate the spectrum in case of different parameter distributions.

2. Derivation of the continuous model

In this section we derive the equations of motion of a continuous (rod) model (Figure 3),

which is the limit of the chain oscillator regarding the number of masses (N → ∞). These
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equations contain time and spatial derivatives. The notation for the time derivative is

�̇ = ∂
∂t� and for the spatial derivative is �′ = ∂

∂x�. The equations of motion for the

system are:

miüi = f (δi+1, ki+1)− f (δi, ki) , for i = 1, 2, ..., N, (2)

where f [N] is the force (f > 0 when the spring is under tension):

f(k, δ) = kδ, (3)

δ [m] is the contraction of the spring (compared to its tensionless length):

δi = ui − ui−1 (4)

and k [N/m] is the stiffness of the spring.

Figure 3. The continuous rod-model of the discrete chain-oscillator

In order to reduce the number of parameters, it is worth introducing dimensionless

quantities:

û =
u

U
, f̂ =

f

F
, k̂ =

k

K
, δ̂ =

δ

∆
, t̂ =

t

T
, (5)

where u (position), f (force), k (stiffness), δ (displacement), t (time) are dimensional quan-

tities, û, f̂ , k̂, δ̂, t̂ are their dimensionless representations. These dimensionless quantities are

defined by using the following scales: U (position), F (force), K (stiffness), ∆ (displacement),

T (time) are the scales that create connection between the dimensional and non-dimensional

quantities. The governing equations of the system are the following:

mi
d2ui
dt2

= mi
d2(Uûi)

d(T t̂)2
= K∆

(
f̂
(
δ̂i+1, k̂i+1

)
− f̂

(
δ̂i, k̂i

))
, for i = 1, 2, ..., N, (6)

which can be written in the following form:

d2ûi

dt̂2
=
T 2K∆

Umi

(
f̂
(
δ̂i+1, k̂i+1

)
− f̂

(
δ̂i, k̂i

))
. (7)
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For simplicity a new notation is introduced: the dimensionless parameters (with hat on

themselves) will be written without hat, since all of the quantities are dimensionless along

the remaining part of the paper. In order to minimize the number of parameters the following

combination of the dimensionless quantities are used:

∆

U
= N ,

T 2K

mi
= 1. (8)

Based on Rosales (2001) [14], the model can be made continuous on the x ∈ [0, 1] interval.

Discrete quantities with index i are changed to continuous quantities û(x), δ̂ (û(x)). The

equations of motion for a rod with k(x) stiffness distribution can be written as

ü(x, t) =
∂

∂x

[
k(x)u′(x, t)

]
, (9)

with boundary conditions

k(0)u′(0, t) = s0u(0, t), (10)

k(1)u′(1, t) = −s1u(1, t)− c1u̇(1, t), (11)

considering the force equilibrium at the ends of the rod. Because of the continuity of the

stiffness distribution we have

s0 = lim
x→0

k(x) , s1 = lim
x→1

k(x). (12)

The 2 initial conditions are specified

u(x, 0) = ϕ(x), (13)

u′(x, 0) ≡ 0. (14)

The shape ϕ(x) will be determined later in Section 3.

3. Solving the model equations

The boundary value problem (9)–(11) can also be formulated as the Sturm-Liouville problem:

ü(x, t) =
∂

∂x

[
k(x)u′(x, t)

]
, (15)

k(0)u′(0, t) = s0u(0, t), (16)

k(1)u′(1, t) = −s1u(1, t)− c1u̇(1, t). (17)
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To determine the eigenvalues and eigenfunctions of the system the separation of variables

method is applied (Hull, 1994) [8]:

u(x, t) = U(x)T (t). (18)

Equation (18) is substituted into Equation (15):

T̈ (t)

T (t)
=

(
U ′′(x)

U(x)
k(x)− U ′(x)

U(x)
k′(x)

)
= λ2, (19)

from which

T (t) = τeλt, (20)

∂

∂x

[
k(x)U ′(x)

]
+ λ2U(x) = 0. (21)

At this point, we consider two special cases, where k(x) is a constant function and where

k(x) is an exponentially varying function.

3.1. The k(x) = const. case

The simplest case of the system is k(x) = k = const. case. The eigenvalues and the eigen-

functions (mode-shapes) of the rod can be determined in this case in a simple manner.

Substituting the constant k(x) into Equation (21) yields

kU ′′(x) + λ2U(x) = 0, (22)

which has the solution

U(x) = C1e
λ√
k
x

+ C2e
− λ√

k
x
, (23)

where C1 and C2 are constants, which can be determined using the boundary conditions:

U ′(0) = U(0), (24)

U ′(1) = U(1)− c1
k
λU(1). (25)

The following matrix equation results from Equations (23)–(25): 1− λ√
k

1 + λ√
k

e
λ√
k

(
k + (c1 +

√
k)λ
)

e
− λ√

k

(
k + (c1 −

√
k)λ
)C1

C2

 =

0

0

 . (26)

Assuming C1, C2 6= 0, the determinant of the matrix should be equal to 0:

c1λ
2 + 2λ

1 + λc1 + λ2
+ tanh(λ) = 0. (27)
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Equation (27) is the characteristic equation of the system. For a certain k and c1 values

the eigenvalue pairs can be calculated. Notice, that the characteristic equation (27) has

infinitely many eigenvalues. Using these eigenvalues, eigenfunction pairs can be determined

from Equation (23). In order to calculate the solution function, it is worth applying the

series solution method used by Hull (1994) [8]. A suitable initial condition is the sum of the

mode-shapes:

ϕ(x) =

∞∑
n=−∞

Un(x), (28)

from which the solution function is

u(x, t) =

∞∑
n=−∞

Un(x)Tn(t). (29)

Figure 4a illustrates the first 2 dominant eigenvalue pairs of the system for constant k = 1

and varying c1 (root locus plot). Figure 4b illustrates the first 2 mode-shapes of the system.
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(a) Root locus plot for λ
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(b) The first two mode-shapes for c1 = 0.3

Figure 4. The characteristic roots and the mode-shape for k = 1

Following the steps of Hull (1994) [8], the function u(x, t) = U−1(x)T−1(t) +U1(x)T1(t)

provides a real solution.

3.2. The exponentially changing case

In order to create an analogue model to the binary tree of Kalmár-Nagy and Bak (2019)

[10], an exponential term can be used for the stiffness of the rod:

k(x) = e−2σx , σ 6= 0 and x ∈ [0, 1]. (30)
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Based on the work of Arfken and Weber (1985) [1, pp. 497-538], the solution of Equation

(21) for this case is

U(x) = eσx
[
C1iI1

(
λeσx

σ

)
+ 2C2K1

(
λeσx

σ

)]
, (31)

where I1(z) is the first modified Bessel function of the first kind and K1(x) is the first

modified Bessel function of the second kind. The C1 and C2 constants can be determined

from the boundary conditions (Equations (16)–(17)). The calculation results characteristic

equation as in Equation (26)–(27) and real solutions can be determined via series solution

method (Equation (29)) as in Section 3.1.

4. Energy spectrum of the rod

In case of the chain oscillator, the energy spectrum is a discrete distribution due to the

discrete number of masses, while it is a continuous distribution in the case of the rod model.

It is worth collecting the required properties of the ‘wavenumber function’:

• at x = 0, the wavenumber is 1

• at x = 1 (N →∞), the wavenumber is ∞.

One possible choice is

κ(x) = 2
x

1−x . (32)

4.1. Formulation of the energy spectrum

Based on the work of Wohlever and Bernhard (1992) [15], the energy at a point x of the rod

can be calculated as

E(x, t) =
1

2
k(x)

(
du(x, t)

dx

)2

︸ ︷︷ ︸
potential energy

+
1

2

(
du(x, t)

dt

)2

︸ ︷︷ ︸
kinetic energy

.
(33)

The total energy of the rod is

Etotal(t) =
1

2

1∫
0

k(x)

(
du(x, t)

dx

)2

+

(
du(x, t)

dt

)2

dx

︸ ︷︷ ︸
energy of the rod

+
1

2
s0u

2(0, t) +
1

2
s1u

2(1, t)︸ ︷︷ ︸
energy of the springs

.
(34)

Substituting back the function of the series solution for the separation of variables method

applied from Hull (1994) [8] in Equation (29), Equations (33)–(34) results the energy val-

ues. The introduced quantities in Equations (33)–(34) are time-varying quantities, on the
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contrary, for calculating the energy spectrum, discrete values are needed at x. In order to

define a discrete value at x, it is useful to define a mean energy in the asymptotic limit

(Kalmár-Nagy and Bak, 2019) [10]:

Ē(x) =
ω

π

∫ τ+π/ω

τ

E(x, t) dt, τ →∞, (35)

Ētotal =
ω

π

∫ τ+π/ω

τ

Etotal(t) dt, τ →∞, (36)

where ω is the eigenfrequency corresponding to the dominant eigenvalue of the system (ω =

Im{λ1}). The same mean energy can be calculated for the total energy, as well; and the

fraction of these two mean energies gives the energy spectrum:

Ê(x) =
Ē(x)

Ētotal

, (37)

where Ê(x) is the energy spectrum in the range of x (along the rod), Ē(x) is the energy of

the rod at x and Ētotal is the total energy of the rod. Figure 5. presents the energy spectrum

of the rod model in case of constant stiffness (k = 1), and plots can be compared for two

different damping values. It can be seen, by increasing the damping, the energy spectrum

shifts downwards. There is no significant change in the characteristics of the distribution.

The spectrum of the kinetic and potential energy are equal to each other.
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(a) k = 1 and cl = 0.1
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(b) k = 1 and cl = 0.5

Figure 5. The energy spectrum of the model with constant stiffness for different values

It is worth checking the case where the end-springs have different stiffness, than they

were decided on in Equation (12). Figure 6 represents these cases for k = 1, c1 = 0.5 and

s0s1 = 1.
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(d) s0 = 0.01 and s1 = 100

Figure 6. The energy spectrum of the model with constant stiffness for k = 1 and c1 = 0.5

and different stiffness values for the end-springs

Figure 6 shows, that increasing s1 results in a decreasing slope in the energy spectrum. In

this case the constant part of the energy spectrum occurs for larger κ values. This constant

value is decreasing by increasing s1. It can be seen, that decreasing the value of s0, the

energy value at κ = 1 is larger.

Figure 7 presents the energy spectra for exponentially varying k(x) in the case of c1 = 0.5

and 4 different σ values. It can be seen, that for σ < 0, the dominant part of the total energy

is the potential energy and for σ > 0, the dominant part of the total energy is the kinetic

energy.
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Figure 7. The energy spectrum of the model with exponentially varying stiffness for c1 = 0.5

and different σ values

5. Summary

The chain oscillator model of Kalmár-Nagy and Bak (2019) [10] was extended regarding the

number of masses (levels). The new model is continuous, since the number of masses (levels)

tends to infinity (N → ∞). The key parameters of the model is the stiffness distribution

and the damping of the system. The eigenvalues and eigenfunctions of the system were

determined and the expression for the energy of the rod was derived. The eigenvalues have

complex parts, so the system is oscillating. So as to get a discrete value for the energy at a

certain wavenumber, it is worth averaging the oscillating energy over its period. Considering

a properly long time: after the most of the oscillations are decayed, the energy oscillation can

be averaged over an oscillation period connected to the most significant characteristic root.

The energy spectrum can be determined for certain k(x) functions, different c1 = const.

values and different s0, s1 stiffness values.
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