
 
 

Theoretical Approaches 

in Non-Linear Dynamical 

Systems 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Editors 

JAN AWREJCEWICZ, MAREK KAŹMIERCZAK, JERZY MROZOWSKI 
 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Politechnika Łódzka 2019 

 

ISBN 978-83-66287-29-7 

 

Cover design: Marek Kaźmierczak 

Technical editor: Marek Kaźmierczak 

 

Wydawnictwo Politechniki Łódzkiej 

ul. Wólczańska 223, 90-924 Łódź 

tel. 42 631 20 87, fax. 42 631 25 38 

e-mail: wydawnictwo@lib.p.lodz.pl 

 

 

 

Printed by: 

ARSA Druk i Reklama 

90-270 Łódź, ul. Piotrkowska 4 

tel./fax (042) 633 02 52 

marta@arsa.net.pl 

www.arsa.net.pl  

 



PREFACE  

The 15th International Conference “Dynamical Systems - Theory and Applications” 
(DSTA 2019, 2-5 December, 2019, Lodz, Poland) gathered a numerous group of outstanding 
scientists and engineers who deal with widely understood problems of theoretical and 
applied dynamics.  

Organization of the conference would not have been possible without great effort of 
the staff of the Department of Automation, Biomechanics and Mechatronics of the Lodz 
University of Technology. The patronage over the conference has been taken by the 
Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and 
Higher Education of Poland. 

It is a great pleasure that our event was attended by over 180 researchers from 35 
countries all over the world, who decided to share the results of their research and 
experience in different fields related to dynamical systems. 

This year, the DSTA Conference Proceedings were split into two volumes entitled 
“Theoretical Approaches in Non-Linear Dynamical Systems” and “Applicable Solutions in 
Non-Linear Dynamical Systems”. In addition, DSTA 2019 resulted in three volumes of 
Springer Proceedings in Mathematics and Statistics entitled “Control and Stability of 
Dynamical Systems”, “Mathematical and Numerical Approaches in Dynamical Systems” and 
“Dynamical Systems in Mechatronics and Life Sciences”. Also, many outstanding papers will 
be recommended to special issues of renowned scientific journals.  

The DSTA Conference Proceedings include papers covering the following topics:  

 asymptotic methods in non-linear dynamics, 

 bifurcation and chaos in dynamical systems, 

 control in dynamical systems, 

 dynamics in life sciences and bioengineering, 

 engineering systems and differential equations, 

 non-smooth systems 

 mathematical approaches to dynamical systems 

 original numerical methods of vibration analysis, 

 stability of dynamical systems, 

 vibrations of lumped and continuous systems, 

 other problems. 
Proceedings of the 15th Conference „Dynamical Systems - Theory and Applications" 

summarize 106 papers of university teachers and students, researchers and engineers from 
all over the world. The papers were selected by the Scientific Committee of DSTA 2019 from 
360 papers submitted to the conference. Therefore, the reader is provided with an overview 
of recent developments in dynamical systems and can study the most progressive 
tendencies in this field of science.  
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Our experience shows that a broad thematic scope comprising dynamical systems 
encourages researchers to exchange their opinions on different branches of dynamics. We 
think that the vivid discussion will influence positively creativity and will result in effective 
solutions of many problems of dynamical systems in mechanics and physics, both in terms 
of theory and applications.  

We do hope that DSTA 2019 will contribute to establishing new and tightening the 
already existing relations and scientific and technological cooperation between Polish and 
foreign institutions.  

 
 
 
 

On behalf of both  
Scientific and Organizing Committees 

 
 
 

Chairman 
Professor Jan Awrejcewicz 
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The use of the dynamic vibration absorber for energy harvesting

Leo Acho Zuppa, Jan Awrejcewicz, Nataliya Losyeva, Volodymyr Puzyrov,
Nina Savchenko

Abstract: Vibration energy is abundantly present in many natural and artificial
systems and can be assembled by various mechanisms, mainly using piezoelec-
tric and electromagnetic means. In the present article, the electromechanical
system with two degrees of freedom is considered. To the main mass, whose
vibrations are to be reduced, an additional element (dynamical vibration ab-
sorber or DVA) is attached. The DVA consists of a spring, damping and piezo-
electric elements for energy harvesting. The goal is to reduce the vibration of
the main structure and at the same time collect energy from the vibration of
the connected vibration absorber. It is shown that the piezoelectric element
allows the effective energy harvesting and at the same has very limit influence
on reducing the amplitude of oscillations of main mass.

1. Introduction

In the past few years, interest in energy harvesting has been significantly increasing, and

the number of research reports over the past decade has been steadily growing up [1, 3, 4,

5, 6, 7, 9, 10, 11, 12, 13]. A harvesting system can collect electrical energy by converting

environmental energy sources such as thermal energy, wind, or mechanical motion. This

work is devoted to the possibility of converting the energy of mechanical vibrations into

electrical energy, and also explores the effect of energy collection on the overall dynamics.

There are three common conversion mechanisms for energy harvesting, such as piezo-

electric, electromagnetic and electrostatic. Among other things, piezoelectricity is one of

the most attractive transfer mechanisms during mechanical energy conversion. The advan-

tages of using piezoelectric materials in mechanical vibration systems include their higher

specific power and ease of implementation. Piezoelectric materials have the ability to gener-

ate electrical stress during deformation due to vibrations (direct impact), and, on the other

hand, they are deformed when exposed to external stress (reverse impact). For the energy

collection mechanism, this is a direct piezoelectric effect that allows the material to absorb

the mechanical energy of vibration from its main structure or environment and converts it

into electrical energy, and thus forms the basis of the vibration-based piezoelectric energy

collection area.

11



In the present report we consider the 2–DoF mechanical system with piezoelectric el-

ement attached under the external harmonic excitation in the vicinity of resonance. The

paper is organized as following. In Section 2 the problem formulation and some auxiliary

manipulations are given. In Section 3 the tuning methodology for reducing the maximal re-

sponses of the host structure is described. Section 4 deals with optimization of piezoelectric

characteristics in order to maximize the harvested power.

2. Formulation of the problem

The primary structure is assumed to be a single degree of freedom system as shown in

Fig. 1. The mass, stiffness, and the damping of the primary structure are represented by

m0, k0, and c0, respectively, whereas the energy harvesting DVA has an equivalent mass,

equivalent stiffness, and damping as ma, ka, and ca, respectively. The electrical capacitance

and resistance are denoted by Cp and Rl, respectively. The parameter θ characterizing the

coupling between the electrical and mechanical parts of the harvester. The dynamics of the

primary mass (m0), the absorber mass (ma), and voltage flow can be expressed by three

coupled ordinary differential equations [2, 9] as

m0ẍ0 + c0ẋ0 + k0x0 − kh(xa − x0)− ca(ẋa − ẋ0) = F0 exp
iωt, (1)

maẍa + ca(ẋa − ẋ0) + ka(xa − x0)− θv = 0, (2)

Cpv̇ +
v

Rl
+ ẋa = 0, (3)

where x0 and xa are the displacement of the primary mass and absorber mass, respectively.

The voltage across the load resistor is denoted by v. The electromechanical coupling and the

mechanical force are modeled as proportional to the voltage across the piezoceramic in Eq.

(2). Equation (3) is obtained from the electrical circuit, where the voltage across the load

resistance arises from the mechanical strain through the electromechanical coupling, and the

capacitance of the piezoceramic Cp. The primary structure is assumed to be driven by a

harmonic excitation with amplitude F0.

In terms of dimensionless parameters the amplitudes of steady state harmonic responses

are

X0 = F0
−(2ζa+ b)µg2 + bkµ+ [−aµg3 + ([2ζb+ ak]µ+ p2)g]i

∆Re + i∆Im
,

Xa = −F0
bµg2 + (aµg3 − p2g)i

∆Re + i∆Im
,

V = F0
(−2ζµpg2 + kµpgi)

∆Re + i∆Im
,

(4)

12



Figure 1. Energy harvesting DVA attached to a primary system.

where ∆Re = −[2ζaµ2 + (2ζa+ b)µ]g4 + (bkµ2 + [2ζ(p2 + a) + b(k + 1)]µ)g2 − bkµ,

∆Im = −aµg5 + [(2ζb+ ak)µ2 + [a(k + 1) + 2ζb]µ+ p2]g3 − [(k(p2 + a) + 2ζb)µ+ p2]

and µ = ma/m0 is the mass ratio; ωa =
√

ka/ma - undamped natural frequency of the

DVA considered separately; ω0 =
√

k0/m0 - undamped natural frequency of the primary

system considered separately; k = ω2
h/ω

2
0 - tuning factor; g = ω/ω0 - forcing frequency ratio;

ζ = ca/(2maω0) - damping ratio; p = θ/(ω2
0m0), a = Cp/(ω

2
0m0), b = 1/(ω2

0m0Rl).

|X0|
(X0)st

=

√
(−[2ζa+ b]µg2 + bkµ)2 + (−aµg3 + ([2ζb+ ak]µ+ p2)g)2

∆2
Re +∆2

Im

,

|V |
(X0)st

=

√
(−2ζµpg2)2 + (kµpg)2

∆2
Re +∆2

Im

,

(5)

where (X0)st = F0/k0 – static displacement of the primary mass.
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3. Minimizing the responses of the primary mass

3.1. Analytical study

At the beginning, note that the λ−matrix of the linear ODE system (1) can be written in

the following form
(1 + µ)g2λ2 µg2λ2 −p

µg2λ2 µg2λ2 + µghλ+ κ −p

pgλ pgλ agλ+ b

 . (6)

Taking into account that replacing the parameter p with p̃
√
b and the variable v with ṽ/

√
b,

we can formally put the value of parameter b equal to 1. For the sake of simplicity, the

symbol “˜” is omitted below.

Our first goal is to minimize the peaks of the amplitude-frequency curve, that is, the

choice of such parameters of the absorber and piezoelectric element, in which the responses

of the host system do not exceed a certain value (in conditions of proximity of frequencies ω

and ω0.

Let us consider a function

f(µ, k, h, γ, a, p) =
α3γ

3 + α2γ
2 + α1γ + α0

β5γ5 + β4γ4 + β3γ3 + β2γ2 + β1γ + β0
,

α3 = a2µ2, α2 = (a2h2 − 2a2k + 1)µ2 − 2ap2µ, α1 = (a2k2 + h2 − 2k)µ2+

+2(ak + h)µp2 + p4, α0 = k2µ2, β5 = a2µ2, β4 = a2h2µ4 + 2a2(h2 − k)µ3+

+[(h2 − 2k − 2)a2 + 1]µ2 − 2ap2µ, β3 = (a2k2 + h2)µ4 − 2[(ap2 + a2 − 1)h2−

−a2k(k + 1) + k]µ3 + [(1− 2ap2 − 2a2)h2 + (k2 + 4k + 1)a2 + 4akp2 − 2k − 2]µ2+

+2p2(ak + 2a+ h)µ+ p4, β2 = k2µ4 + 2[(−ap2 − a2 + 1)k2 + k − h2]µ3 + [(p4+

+2ap2 + a2 − 2)h2 + (1− 2ap2 − 2a2)k2 − 2k(a2 + ap2 − 2) + 1]µ2 − 2[kp4+

+(ak − a− 2h)p2]µ− 2p4, β1 = −2k2µ3 + [(p4 + 2ap2 + a2 − 2)k2+

+h2 − 2k]µ2 + 2(kp2 + ak + h)µp2 + p4, β0 = k2µ2,

(7)

where h = 4ζ2, γ = g2, f = (|X0|/(X0)st)
2.

We will use the approach proposed in the article [8]. Its idea is as follows. Suppose that

the parameters µ, κ, h, a, p are set, while we are interested in a configuration in which the

function f(γ) takes the same values at the points of maximum γ1, γ2. Geometrically, this

means that the curve y = f(γ) has a common tangent at the points γ1, γ2.

Let f0 = 1/κ be some fixed number. Then the equation f = f0 is equivalent to the
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following polynomial equation

P (γ) = a2µ2γ5 + (4ζ2a2µ4 − 2(k − 4ζ2)a2µ3 − [2(k − 2ζ2 + 1)a2 − 1]µ2−

−2ap2µ)γ4 + [(a2k2 + 4ζ2)µ4 − 2(4ζ2ap2 + (4ζ2 − k2 − k)a2−

−4ζ2 + k)µ3 − [4ζ2(ap2 + 2a2 − 1) + 4akp2 + (k2 + 4k − κ + 1)a2 − 2k − 2]µ2+

+2(ak + 2ζ + 2a)µp2 + p4]γ3 + (k2µ4 − 2[(ap2 + a2 − 1)k2 + 4ζ2 − k]µ3 − [4(−p4+

+a2κ − 2ap2 − a2 + 2)ζ2 + (2ap2 + 2a2 − 1)k2 − 2(a2κ − 2ap2 − a2 + 2)k+

+κ − 1]µ2 − 2[kp2 + (2k − κ + 1)a+ 4ζ]µp2 − 2p4)γ2 − (2k2µ3−

−[(p4 − a2κ + 2ap2 + a2 − 2)k2 − 4ζ(κ − 1)2 + 2(κ − 1)k]µ2+

+2[(aκ − p2 − a)k + 2ζ(κ − 1)]µp2 + p4(κ − 1))γ − (1 + κ)b2k2µ2.

(8)

A consequence of the requirement of the equal peaks is the presence of two pairs of

multiple (real) roots in the polynomial P (γ), that is, it can be represented in the form

P (γ) = µ2(γ2 +Mγ +N)2(a2γ + L) > 0, M2 − 4N > 0, (9)

where L,M,N are some unknown parameters. Then, we conclude from (8) that

[a2h2µ4 + 2(h2 − k)a2µ3 + [(h2 − 2M − 2k − 2)a2 − L+ 1]µ2 − 2aµp2]γ4+

[(a2k2 + h2)µ4 + 2[a2(−h2 + k2 + k)− (ap2 − 1)h2 − 2k]µ3 + [2a(k − h2)p2+

+(k2 −M2 − 2h2 − 2N + 4k − κ + 1)a2 − 2LM + h2 − 2(k + 1)]µ2+

+2(ak + 2a+ h)µp2 + p4]γ3 + [k2µ4 + 2[(−ap2 − a2 + 1)k2 − h2 + k]µ3 + [(p4−

−a2κ + 2ap2 + a2 − 2)h2 + (1− 2ap2 − 2a2)k2 − 2(MN − kκ + k)a2−

−L(M2 + 2N) + 4k(1− ap2)− κ + 1]µ2 − 2[kp2 + 2ak − aκ + a+ 2h]µp2−

−2p4]γ2 + [−2k2µ3 + [(p4 − a2κ + 2ap2 + a2 − 2)k2 −N2a2 − 2LMN+

+(h2 − 2k)(1− κ)]µ2 + 2[(p2 + a[1− κ])k + 2h(1− κ)]µp2 + (1− κ)p4]γ+

+(k2 − LN2 − k2κ)µ2 ≡ 0.

(10)

From the coefficient on γ4 we express

L = µ2h2a2 − 2(ap1 − h2 + k)a2µ+ (h2 − 2M − 2k − 2)a2 + 1, (11)

where p1 = p2/(a2µ2), and from the constant term we get the target function

κ = 1− 1

k2
N2[µ2h2a2 − 2(ap1 − h2 + k)a2µ+ (h2 − 2M − 2k − 2)a2 + 1]. (12)
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Now we have an ”ordinary” problem of conditional extremum of function κ(k, h,M,N) with

three conditions

ϕj(k, h,M,N) = 0 (j = 1, 3) (13)

(the corresponding expressions derive from (10)).1

Complementing the equations with the extremum condition,∣∣∣∣∣∣∣∣∣∣∣

∂κ
∂k

∂κ
∂h

∂κ
∂M

∂κ
∂N

∂ϕ1
∂k

∂ϕ1
∂h

∂ϕ1
∂M

∂ϕ1
∂N

∂ϕ2
∂k

∂ϕ2
∂h

∂ϕ2
∂M

∂ϕ2
∂N

∂ϕ3
∂k

∂ϕ3
∂h

∂ϕ3
∂M

∂ϕ3
∂N

∣∣∣∣∣∣∣∣∣∣∣
= 0. (14)

we obtain a system of four equations with four unknowns. This system is highly non-linear

and its solutions cannot be expressed in closed form.

However, for purposes of analytical treatment the asymptotic representation may be

employed. In engineering applications the mass ratio µ usually has small value. Then we

can find the asymptotic solution

M = M0 +M1µ1 +M2µ
2
1 + · · · , N = N0 +N1µ1 +N2µ

2
1 + · · · , h = µ1(h0+

+h1µ1 + · · · ), k = k0 + k1µ1 + k2µ
2
1 + · · · , p1 = µ2

1(p10 + µ1p11 + · · · ), µ1 =
√
µ.

(15)

The parameter µ1 is taken here, because h and γ have no Taylor expansions on µ. Step by

step we find

M0 = −2, N0 = 1, k0 = 1, h0 =

√
3

2
, p10 = −k1(a

4 + 2a2 + 2)

a3(a2 + 1)
,

M1 = −k1, N1 = k1, M2 = −k2, N2 = −
√
2h1[(a

2 + 1)2 − k1k2]

k1
,

p11 =
1

2(a2 + 1)2a4k2
1

[2a(a4 + 5a2 + 5)k4
1 +

√
2[4a3(a4 + 3a2 + 2)h1−

−2(a4 + 2a2 + 2)]k3
1 + a(a2 + 1)[(a2 + 1)2h2

1 − 2(a4 + 2a2 + 2)k2+

+4a(a2 + 2)2]k2
1 − 2

√
2a(a2 + 1)3h1(k2 + 2)k1 − 4a(a2 + 1)5h2

1].

(16)

3.2. Numerical analysis

We note that numerical experiments show a very insignificant effect of the characteristics

of the piezoelectric element on the decrease in the amplitude of oscillations of the main

mass. At the same time, if the parameter p has an order of magnitude greater than 10−2,

1Here we assume for simplicity that values of a and p1 are known.
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then the amplitude of the oscillations increases significantly (Fig. 2). Moreover, due to the

continuous dependence of the function κ on the parameter p, the optimal absorber values

for system (1) will differ very slightly from the degenerate case p = 0, that is, the values of

k⋆, ζ⋆ determined according to formulas (3.17) of article [8].

Figure 2. The amplitude of the oscillations.

Thus, we can give the following recommendations for choosing system parameters:

– the parameters of the absorber, when known the mass ratio µ, are taken as k⋆, ζ⋆;

– the parameter p should be taken sufficiently small (for example 0.01 with µ = 0.02);

– the parameter a practically does not affect the value of κ(one can take an arbitrary

value in the interval [0.01, 10]).

4. Optimization the harvesting power

Our second task is to determine the parameters of the piezoelectric element in order to

maximize energy collection. We assume that parameters of the DVA are taken according to

section 3. Depending on the specified quality criterion, the procedure for determining these

parameters may vary. We will consider the following options.

A) Provided that the frequency of the external action is unknown exactly, but close to

the resonant one (γ ∈ [γ(1), γ(2)]), select the parameters a and p so that the minimum value

of the objective function

Φ(a, p, γ) =
V 2

Rl
=

µ2p2(h2γ + k2)

β5γ5 + β4γ4 + β3γ3 + β2γ2 + β1γ + β0

(17)

with respect to argument γ turned out to be the greatest possible (with respect to a, p).
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Mathematically, this task is easy enough. We have a system

∂Φ

∂γ
= 0,

∂Φ

∂a
= 0,

∂Φ

∂p
= 0. (18)

The derivative ∂Φ/∂a is linear on a, and two others are quadratic on p2. Their resultant is

high order polynomial on γ, however it has no real roots in vicinity of γ0 = 1. Hence, the

lowest values on γ are taken on the sides of the interval. The relevant values of a, p are

calculated accordingly to numeric values of µ, γ(1), γ(2). The typical view of the surface (17)

is presented in Fig.3.

Figure 3. The typical view of the surface (17): µ = 0.02, k = 0.96, h = 0.17.

B) As another criterion, we can take the ”neutral” requirement of maximizing the av-

eraged (with respect to γ) value of the function Φ over the interval [γ(1), γ(2)]. Taking into
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account that the expression considered is representable as the sum of tabular integrals, from

a technical point of view, solving this problem does not seem complicated. The correspond-

ing calculations can be performed analytically (a computational procedure is similar to that

used in the previous case) or numerically. Results are presented in Fig.4.

Figure 4. The result of maximizing the averaged value of the function Φ.

5. Conclusions

In this paper, we consider an electro-mechanical system consisting of a primary element

and a dynamic absorber and a piezoelectric element connected to it. The goal is to reduce

the vibration of the primary structure and at the same time collect the energy through the

interaction of the host system and the vibration absorber. An analytical and numerical

study of the dynamics of the system is carried out. It is shown that the piezoelectric element

practically does not improve the effect of the absorber in terms of reducing the oscillations of

the main mass. At the same time, piezoelectric element with improper selected parameters

can significantly increase the amplitude of these oscillations. The problem of collecting

vibrational energy is also considered. Relations are found between the parameters of the

piezoelectric element at which the energy collected has a maximum value.
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Critical tolerance evolution: Classification of the chain-recurrent set

Carlos Argáez, Peter Giesl, Sigurdur Freyr Hafstein

Abstract: Complete Lyapunov functions for non-linear dynamical systems can be ob-
tained by approximately solving a partial differential equation that describes a condi-
tion for its orbital derivative. Efficient algorithms to compute them have been imple-
mented. The fact that the partial differential equation is not satisfied at points of the
chain-recurrent set is used to determine it; more precisely, all points where the value of
the orbital derivative is larger than a fixed, critical tolerance parameter, are an estimate
of the chain-recurrent set. The mathematical conditions of smoothness of the orbital
derivative are obtained by locally averaging the values of the orbital derivative. Further-
more, convergence to zero is avoided by normalizing the sum of the orbital derivative
condition. However, the tolerance parameter to describe the chain-recurrent set has not
been considered. This results in an overestimation of the chain-recurrent set. Several al-
gorithms have been proposed to reduce the overestimation of the chain-recurrent set, but
no systematic analysis on the dependence on the critical parameter has been made so far.
In this paper, we focus on studying this parameter. To proceed, the chain-recurrent set
is divided into different subsets of connected components; their evolution per iteration
and their different behaviour are studied. The outcome of this research will create an
efficient analysis method for locating the chain-recurrent set and aims to reduce its over-
estimation by obtaining the tightest possible tolerance parameter necessary to classify
it.

1. Introduction

Dynamical Systems describe time-depending phenomena in terms of differential equations.

Dynamical systems have vast and diverse applications in economy, biology, physics, mathematics,

etc. For an unfamiliar reader, we can point out classical dynamical systems examples such as the

pendulum, the population of hunter-prey animal species, the Lorenz attractor, etc.

In general, at any given time, a dynamical system has a state in its own phase-space represented

as an ordered n-tuple of numbers in the shape of vectors. In this case, n represents the problem’s

dimension.

The dynamics can be seen as the instructions’ manual to describe the time-evolution of the system

on this manifold [26, 24]. The evolution rule of the dynamical system describes all future states from a

given initial one. The rule can be either deterministic, i.e. the future states depends only on the current

one, or stochastic, where the rule is additionally influenced by random events.

They model real-world systems to describe their often complicated behaviour. Interesting examples

can be found in, e.g. the double [13] and triple pendulum with periodic forcing [11] and dry friction

[12], which leads to time-periodic and non-smooth systems, or the dynamics of the wobblestone [10].
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Let us assume that we have dynamics described as a time-autonomous system of differential equa-

tions (ODE), of the form:

ẋ = f(x), (1)

where x ∈ Rn, n ∈ N.

Equation (1) represents a general, continuous-time, deterministic, autonomous dynamical system.

In order to understand its dynamics, one can apply several different methods. For example, the direct

solutions’ calculation with many different initial conditions. However, this approach is computationally

costly and can only give limited information about the general behaviour of the system.

Aleksandr Mikhailovich Lyapunov published in 1892 two methods for demonstrating stability of

dynamical systems. The first one consisted in constructing a solution to the dynamical system with

convergent series. The second method constructs a function V (x) around a system’s attractor. The

Lyapunov function V (x) has the advantage of corresponding to the potential function in classical dy-

namics. Classically, a (strict) Lyapunov function [25] is decreasing along all solution trajectories in a

neighbourhood of an attractor such as an equilibrium or a periodic orbit. The function has the property

of:

(I) attaining its minimum at the attractor and

(II) of being strictly decreasing along solutions of the ODE and therefore solutions that start close

to the attractor are attracted to it.

We can illustrate this idea with a pedagogical example by considering a heavy solid ball on the top

of a smooth hill. If we place the ball on top of the hill, then the ball will always remain there. However,

if it is subject to an infinitesimal disturbance, then it will roll down the hill to the bottom due to the

gravitational force. At the deepest point of the valley the ball will remain for all times and it would

require an external force to push it up the hill. Additionally, if the ball is placed at a starting point near

the equilibrium in the valley, the ball will stay near the equilibrium and, moreover, will approach the

equilibrium as time tends to infinity.

In this example, the hill’s top is an unstable equilibrium and its bottom is (Lyapunov) stable and

an attracting equilibrium. The basin of attraction consists of all starting points, such that the ball ap-

proaches the stable equilibrium.

For this system, we could propose a Lyapunov function V (x) to be the height. According to the

classical definition, the first property is fulfilled since x0 is the deepest point of the corresponding valley

and the second by gravity, which forces the ball to move downhill.

Generally, when modelling (non idealized) dissipative physical systems, the free energy is an ob-

vious candidate for a Lyapunov function. It decreases along solutions due to the system’s dissipativity,

hence, solutions tend to a local minimum of the energy (I).
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The classical definition of a Lyapunov function can be extended to a complete Lyapunov function

[17, 18, 21, 22], which characterizes the complete behaviour of the dynamical system as a consequence

of its definition on the whole phase space, and not just in a neighbourhood of one particular attractor.

By means of its broader information, the state-space can be divided into two disjoint areas, on which

the system behaves in fundamentally different ways. The part where the flow is gradient-like, i.e. the

systems flows through, and where the flow is chain-recurrent, i.e. infinitesimal perturbations can make

the system recurrent.

Definition 1.1 (Complete Lyapunov function). A complete Lyapunov function (CLF) for the system (1)

is a continuous scalar function, V : Rn→ R that

• is constant in each chain-transitive connected component of the chain-recurrent set and

• decreases strictly along solution trajectories in other places.

The property of being decreasing along solutions of the ODE is expressed in the next definition.

Definition 1.2 (Orbital Derivative). The orbital derivative of a differential function V : Rn→ R along

the solution to the system (1) is defined through:

V ′(x) :=
d
dt

V (x) = 〈∇V (x), ẋ〉= 〈∇V (x), f(x)〉.

Several methods have been proposed to compute CLFs, but they are either computationally very

demanding [14, 20, 23], see also [15], or assume that the positions of the attractors are known before-

hand [16].

2. Construction of Complete Lyapunov functions

The method to compute CLFs discussed in this paper is inspired by the construction of classical Lya-

punov functions using radial basis functions (RBFs) [19]. As the authors have described the method in

detail in previous publications [2, 4, 6, 5, 3, 8, 7, 9], we let a short description of the essential ideas and

steps suffice.

The main idea is to use collocation using RBFs to obtain a solution to the PDE

V ′(x) =−r(x), r(x)≥ 0. (2)

The PDE (2) is ill-posed, unless r(x) is identically zero or if the chain-recurrent set of (1) is empty, both

of which are not interesting. However, computing a norm-minimal function fulfilling (2) at every point

xi ∈ X , where X is a set of collocation points, is a well-posed problem. By evaluating, where a solution

to the collocation problem fails to fulfill the PDE (2), we locate the chain-recurrent set.
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Several parameters have to be fixed when setting up our collocation problem, i.e. the smoothness

parameters k, l of the compactly supported Wendland functions used as RBFs, the radius of their support

c−1, the density of the hexagonal grid used as collocation points, inversely proportional to the parameter

αHexa-basis, the number 2m = |Yxi | of evaluation points

Yxi =

{
xi±

r · k ·αHexa-basis · f(xi)

m · ‖f(xi)‖
: k ∈ {1, . . . ,m}

}
per collocation point xi, aligned along the flow f(xi) through the collocation point xi, and the parameter

r ∈ (0,1).

Further, it has turned out to be advantageous to replace system (1) with (almost normalized)

ẋ = f̂(x), f̂(x) :=
f(x)√

δ2 +‖f(x)‖2
, δ

2 small (e.g. = 10−8),

which has the same solution trajectories and thus the same chain-recurrent set as (1), cf. [4].

Our algorithm to compute CLFs and classify the chain-recurrent set can be summarized as follows:

Algorithm I:

1. Create the set of collocation points X and compute the approximate solution v0 to V ′(x) = −1

using collocation with Wendland functions, as discussed above; set i = 0.

2. For each collocation point x j, compute v′i(y) for all y ∈Yx j : if v′i(y)> γ for a point y ∈Yx j , then

x j ∈ X0
i (chain-recurrent set), otherwise x j ∈ X−i (gradient-like flow), where γ ≤ 0 is a chosen

critical value. Subindex i indicates that the approximation of the chain-recurrent set and the

gradient-like flow has been obtained in the current step i.

3. Define r̃ j =
(

1
2m ∑y∈Yx j

v′i(y)
)
−

, where x− := max(x,0), and r j =
N

∑
N
l=1 |r̃l |

r̃ j.

4. Compute the approximate solution vi+1 of V ′(x j) = r j for j = 1,2, . . . ,N.

5. Set i→ i+1 and repeat steps 2 to 4.

Note that the sets X0
i and X−i change in each step of the algorithm.

In the next section we perform a detailed study of the influence of the critical value γ≤ 0 in Step 2

of the algorithm for one particular example.

3. Dependence of the critical value γ

To analyse the influence of the numerical values of γ we followed the evolution of the average orbital

derivative over all points in X0
i as a function of different critical values along 100 iterations.

Once we have obtained the orbital derivative for 100 iterations then, per iteration, we study the

chain-recurrent set for 9001 different critical values. That is, for γ ∈ [−0.9,0] with increments in steps
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of 10−4. We then count, as a function of γ and the iteration, how many elements there are per periodic

orbit in the approximation of the chain-recurrent as well as the average orbital derivative. For each

fixed iteration, we then linearly fit using the method of least squares, the average orbital derivative as a

function of γ. In a final analysis the slopes as a function of iteration are compared.

All our computations were done using the software LyapXool[1].

3.1. Results

3.2. Two circular periodic orbits

We consider system (1) with right-hand side

f(x,y) =

−x(x2 + y2−1/4)(x2 + y2−1)− y

−y(x2 + y2−1/4)(x2 + y2−1)+ x

 . (3)

This system has two periodic circular orbits: an asymptotically stable periodic orbit at Ω1 = {(x,y) ∈
R2 | x2 + y2 = 1} and a repelling periodic orbit at Ω2 = {(x,y) ∈ R2 | x2 + y2 = 1/4}. Moreover, it has

an asymptotically stable equilibrium at the origin.

To compute the CLF with our method we used the Wendland function ψ5,3 with c = 1. The

collocation points were set in a region [−1.5,1.5]× [−1.5,1.5] ⊂ R2 and we used a hexagonal grid

[19, 2, 4, 6, 5] with αHexa−basis = 0.0129. The evaluation grid was computed using the directional grid

with m = 10.

We computed this example with the almost-normalized method ẋ = f̂(x) with δ2 = 10−8. Finally,

the limiting radios for the directional grid was set to be r = 0.5.

The CLF and its chain-recurrent set are shown in Fig. 1.

Figure 1. Left figure: Complete Lyapunov function at the initial iteration for system (3). Right figure:

Chain-recurrent set for γ =−0.7924.

Let us start by showing that when approximating the chain-recurrent set, there is a strong depen-

dence on both the number of iterations and the value of γ, Fig. 2.
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Figure 2. Upper left: Chain-recurrent set obtained for γ = 0, iteration 0. Upper right: Chain-recurrent

set for γ = 0, iteration 99. Lower left: Chain-recurrent set obtained for γ =−0.9, iteration 0. Lower right:

Chain-recurrent set obtained for γ =−0.9, iteration 99

Fig. 2 exemplifies how the description and classification of the chain-recurrent set depends not only

on the value of γ but also in the amount of iterations. That could be seen in two different ways:

• For a fixed γ, different iterations give different approximations to the chain-recurrent set

• For a fixed iteration, different γ’s give different approximations to the chain-recurrent set

For γ = 0, iteration 0, we see that we do not find a critical point at the origin while we do manage

to find the two closed orbits. For iteration 99, the orbits are not connected anymore. For γ =−0.9, we

see that in both cases, iteration 0 and 99, provide overestimated chain-recurrent sets. We see, however,

that the overestimation is higher for iteration 99 and there is some noise added at the boundary of the

area.

In Fig. 3, we plot the average orbital derivative as well as the amount of elements in each connected

component of the chain-recurrent set (i.e. the two orbits and the equilibrium) versus the critical values

γ ∈ [−0.9,0] for iterations 0 and 99.
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Figure 3. Upper figures: average value of the orbital derivative for the connected components of the

chain-recurrent set for all γ ∈ [−0.9,0]. Left: iteration 0, right: iteration 99. Lower: amount of elements

in the connected components of the chain-recurrent set for all γ ∈ [−0.9,0]. Left: iteration 0, right:

iteration 99.

First, we see in Fig. 3 that for a fixed iteration and on the orbits, the dependence of the average

value of the orbital derivative is a linear function function of the critical value is linear. It does not

behave the same way for the critical point. The reason is that there are no elements found around the

critical point for critical values higher than ca. −0.8.

We notice that as iterations grow in number, the amount of elements in the connected components

increases.

Now we use the method of least squares to fit a straight line to each of the curves as in Fig. 3, for

each iteration 0 to 99. We compute the slope of each of these curves and show in Fig. 4 how it changes

as a functions of the iteration. Note that the slopes are constant for the two orbits after the first 10

iterations. For the equilibrium, however, the slope changes considerably more.

Figure 4. The slope of the fitted straight line, representing the function of average orbital derivative

versus γ, as a function of iteration and for the different connected components.

The approximated chain-recurrent set X0 determined by the algorithm has too many connected

components for some values. On the other hand, for other values, the periodic orbits in our example
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can also break up in several parts. We now analyse for which critical values the orbits break into several

parts.

The construction of the CLF in our approach, as explained in Sec. 2, is done using a collocation grid

and we evaluate the orbital derivative on an evaluation grid. Since both grids are scattered, all values

obtained for the CLF will be scattered too. That means that the orbits will have blank spaces between

their forming points. This is shown in the lefthand side of Fig. 5. Therefore, to find the breaking points

we review the approximated chain-recurrent sets looking for anomalous holes beyond the geometrical

constructions properties. That is shown in the righthand side of Fig. 5.

Figure 5. Left figure: Orbit for γ =−0.9. Right: Zoom in on an orbit for γ =−0.9.

Looking for the critical value γc for an anomalous hole to appear and break the orbit, requires con-

sidering all approximations made to the chain-recurrent set for all critical values and for all iterations.

Fig. 6 left shows γc as a function of iterations, where the value γc is such that for all γ < γc the

orbits are connected, and for all γ ≥ γc they are not connected. Fig. 6 right shows γc as a function of

iteration, where the value γc is such that for all γ < γc there are no points in X0
i near the equilibrium.

Figure 6. Left: Change the critical values for which the middle orbit is broken. Right: Critical value

for which no equilibrium point was found. The results are shown per iteration.

3.3. Discussion and Conclusions

There are some remarkable observations from our study of the different numerical values for the critical

parameter γ. First, for large negative values of γ the approximation X0
i of the chain-recurrent set grows
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Table 1. For iteration 0, amount of elements in the orbits and the critical point for γ = 0.

Ite Critical Point Middle Orbit Large Orbit

0 0 3634 5832

99 0 1612 2524

Table 2. For iteration 99, amount of elements in the orbits and the critical point for γ =−0.9.

Ite Critical Point Middle Orbit Large Orbit

0 26 14351 25822

99 16 25428 43409

as a function of iterations, for lower negative values it is the other way around. This is exemplified in

tables 1 and 2. Note, however, that for γ ≈ 0 our algorithm does not identify the equilibrium at the

origin as a part of the chain-recurrent set, and for γ = −0.9 a set covering it is identified as a part of

the chain-recurrent set and this set decreases in size with more iterations. It remains an open question,

whether our algorithm should be used to identify the equilibrium points, that can easily be found by

other and simpler means anyways, or if we should first identify them and treat their neighbourhood

differently. Our results seem to indicate that our algorithm is more suited for connected components

of the chain-recurrent set that are not just one point, which is not surprising because we are using a

scattered grid of collocation points. Fig. 7 shows the value of the orbital derivative around the point

(0,0). The open red stars represent the values of the 99th iteration while iteration 0 is represented by

the dark blue rhomboids.

Figure 7. Left: Distribution of the collocation and evaluation points around the origin, as seen in

the xy-plane projection. Left: Values of (x,y,v′(x,y)) (graph of the orbital derivative) around the point

(0,0,−1) for iterations 0 and 99, as seen in the xz-plane projection. The v′(x,y) axis the value of the

orbital derivative.

Second, the evolution of the value γc of the critical value γ as a function of iteration is very interest-
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ing. Recall that for values γ < γc there are gaps in the approximation X0
i of the connected components

of the chain-recurrent set. Our study shows that it is necessary to treat the approximations X0
i as a func-

tion of i when the critical parameter γ is fixed. In future work we will study if it is possible to define

the critical parameter γ = γi sensibly as a function of the iteration i such that X0
i converges to the true

chain-recurrent set. In this regard, note the effect of the normalization in Step 3 of Algorithm I. Since

some collocation points are close to the chain-recurrent set, the value of the orbital-derivative at them

must be close to zero. Because the sum of the absolute values of the orbital derivative at all collocation

points remains fixed, it has to become more negative at other collocation points. This behaviour is not

accounted for properly by having a fixed γ.
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[15] BJÖRNSSON, J., GIESL, P., AND HAFSTEIN, S. Algorithmic verification of approximations to
complete Lyapunov functions. Proceedings of the 21st International Symposium on Mathematical
Theory of Networks and Systems 180 (2014), 1181–1188. (MTNS), Groningen, The Netherlands.
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the 1892 Russian original.

[26] STROGATZ, S. H. Nonlinear Dynamics and Chaos: with Applications to Physics, Biology and
Chemistry. Perseus, 2001.
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Oscillations of flexible orthotropic meshed micropolar 
Timоshenko's plate 

 

 

J Awrejcewicz, E.Yu. Krylova, I.V. Papkova, V.A. Krysko 

Abstract:The oscillation’s theory of a geometrically nonlinear micropolar orthotropic 

meshed plate under the action of a normal distributed load is constructed in this paper. 

The plate’s material as a Cosserat continuum with constrained particle rotation 

(pseudocontinuum). As a result, an additional independent parameter of length l 

associated with the symmetric bending-torsion tensor will appear in the model. The 

panel consists of n sets of identical edges, what allows to apply the continuous G. I. 

Pshenichnov's model. The equilibrium equations for the plate element and the 

boundary conditions are obtained from the Ostrogradskyi-Gamilton variation 

principle on the basis of S.P.Timоshenko's kinematic hypotheses. Geometric 

nonlinearity is taken into account according to the Theodore von Karman model. The 

system of differential equations in partial derivatives is reduced to theODE system 

using the Bubnov-Galerkin method. Using the establishment method,theinfluence of 

the normal load, an additional length's parameter l, and mesh's geometry on the 

orthotropic plate's behavior consisting of two families of mutually orthogonal edges 

has been studied. 

1. Formulation of the problem  

In this paper the mathematical model of the geometrically nonlinear microdimensional anisotropic 

cylindrical mesh panel oscillations based on the Tymoshenko’s hypotheses is constructed. The panel 

consists n families of densely spaced edges of the same material, which makes it possible to use the 

G. I. Pshenichnov continuum model [1]. Thus, the original mesh panel is replaced by a continuous 

layer. In the general formulation, it is necessary to consider the anisotropic material of the panel. 

Consider a panel assigned to the orthogonal coordinate system, consisting of two families of rods 

located at angles
1 2    to the Ox axis.This mesh geometry allows us to consider the panel material 

as orthotropic, in which the directions of orthotropy coincide with the directions ofcoordinate 

lines.For a structurally orthotropic panel, we can write the relationship between Young's modulus ( 1E

, 2E  )and Poisson's ratio ( 21 , 12 )through the reduced Young's modulus and Poisson's ratio for the 

isotropic case ( E , )[2]: 

1

1

E
E

m
 , 2 2E m E , 21  , 12

1 2

,
m m


 

13 1 12G n G , 23 2 12,G n G  
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where 1 2 1 2, , ,m m n n  are constants depending on the panel material.Due to mathematical and 

computational difficulties, many authors [3,4] apply an additional restriction on the shell material 

when they study orthotropic shells. The shear modulus is not an independent parameter, but is 

expressed through Young's module and Poisson's ratio, as in the case of isotropy:
 

12 .
2 1

E
G





 

Micro size plates and shells are actively used as elements of NEMS and MEMS. Thus, the 

development of reliable mathematical models is necessary to study the modes of their operation in 

statics and dynamics. The application of classical mechanics methods in this case will lead to a high 

error of the result since they do not take into account scale effects.To take into account scale effects at 

the micro and nano level, many papers use micropolar (moment, asymmetric theory) [5-12]. For 

continuous shells, a theory was constructed in [13] that takes into account the orthotropy of the 

material. In this paper, we also use a modified moment theory. That is, along with the usual stress 

field, moment stresses are also considered.It is assumed that the fields of displacements and rotations 

are not independent.Given [14] and assuming 1 1n m  and 2 2n m  we write the defining relations:  
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The non-zero components of the strain tensor can be written in the form:  
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The components of the symmetric bending-torsion tensor will take the form: 
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Here , ,u v w  - are the axial displacements of the plate middle surface in the directions , ,x y z , 

respectively. x  and y  
are the panel cross-section angles, 

yk  - is geometric parameter of panel’s 

curvature,
ij - are components of the stress tensor, 

ijm -are components of the tensor of higher order, 

l  is additional independent material length parameter associated with the symmetric bending-torsion 

tensor. The equations of motion, boundary and initial conditions for an equivalent smooth panel were 

obtained from the variational principle of Ostrogradskiy-Hamilton. Then the forces and moments 

acting in the smooth panel were expressed in terms of the forces and moments acting in the original 

mesh panel [15]. 

As a result, the equations of motion of the micropolar mesh cylindrical panel elementtook the form: 
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  ja  - is the distance between edges 

of j-th set, 
j – is the edge thickness of the j-th set, 

j – is the angle between the x-axis and the edge 

axis of the j-th set, stresses with index j refer to rods,   - is the density of plate material, h  - is the 

thickness of the panel, sk - is the function that characterizes the lawdistributionof shear stresses across 

the panel thickness. 

 In this model, the bending stiffness of the rods in the plane tangent to the median surface of the 

panel is not taken into account, therefore, the orders of the differential equations systemsdescribing 

the behavior of mesh and solid panels coincide. The formulations of the boundary conditions of the 

corresponding boundary value problemsare coincide[1]. 

2. Numerical results 

 The purpose of this work is to study the effect of the materialmicro polarity and mesh geometry 

on the behavior of arectangular in plan cylindrical panel. The boundary conditions are therigidly 

clamped along the ends. The cylindrical panel is under the action of a normal distributed load 

( , )q x y const . 
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The equations of motion, boundary and initial conditions are reduced to dimensionless form 

using the following parameters: 2 ,x cx 2 ,y by ,w hw ,
2
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where ,c b  - are plate’s linear dimensions in x   and y   direction,    - is the panels material 

density,   - dissipation coefficient. 

Boundary conditions: 

0, 0, 0, 1, 1, 1, 1,

0, 0, 0, 1, 1, 1, 1,

0, 0, 0 1, 1, 1, 1,

0, 0, 0 1, 1, 1, 1,

0, 0, 0 1, 1, 1, 1.
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Initial conditions are equal zero. 

We will consider a panel formed by two systems of identical mutually perpendicular edges 
1 45 

and 
2 135  , 1 2a a a  , 1 2 .    (Figure1) 

The behavior of the system will be investigated using the establishment method. The dissipation 

coefficient is 1cr  . The system of differential equations in partial derivatives is reduced to the ODE 

system using the Bubnov-Galerkin method. To satisfy the boundary conditions, we choose the 

functions , , , ,x yu v w    in the following form: 
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Figure 1.   Plate grid geometry. 

The Cauchy problem is solved by the Runge – Kutta method of the 4th order of accuracy.Experiment 

Parameters: 0.3  , 0.002h   . 
Table 1 shows the "deflection - load" dependences obtained by the Galerkin method and the 

finite difference method for a Timoshenko cylindrical micropolar mesh panel in the case of an 

isotropic material( 1E  TPa). The results obtained by various methods are in good agreement.From 

the data of the table it is seen that the consideration of moment stresses leads to an increase in the 

bending stiffness of the panel. 

Table 1 

"Deflection - load" dependences obtained by the Galerkin method and the finite difference method 

 0l   0.5l   

q  FDM Galerkin FDM Galerkin 

50 1.00688 0.93281 0.85688 0.90181 

100 1.23579 1.20664 1.09991 1.18192 

150 1.34555 1.39576 1.27119 1.37414 

200 1.46420 1.54522 1.41382 1.52557 

250 1.56740 1.67087 1.51180 1.65262 

300 1.63434 1.78036 1.63388 1.76319 

350 1.78429 1.87805 1.77992 1.86174 

400 1.99430 1.96668 1.93685 1.95107 

450 2.02916 2.04808 2.01818 2.03307 

500 2.19714 2.12357 2.14709 2.10907 

550 2.26987 2.19411 2.26537 2.18007 

In the Figure 2 shows the dependences of the "deflection-load" for otrotropic and isotropic 

cases ( 1 839.4E  GPa 2 964E  GPa. 1000E  GPa. 0.3  ) 
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Figure 2.   The dependences of the "deflection load" for otrotropic and isotropic cases. Blue line –

otrotropic, yellow line -isotropic, green line- a  , redline- 0.8a   

 

Figure 3.   Figure 2. Comparison of a solid panel with a grid, depending on the distance between the 

edges of the lattice. Blue line –solid panel, yellow line - 2a  , green line- a  , red line 

- 0.8a   

Taking into account the orthotropic properties of the material leads to an increase in deflections, that 

is, to a decrease in the bending stiffness of the panel. The greater the difference between the values of 

the simplicitymodulus, than more noticeable will be the described effect.When obtaining numerical 

results, an important issue is their reliability. Mathematical models of vibrations of smooth shells 

were repeatedly compared with the results of other authors and numerical experimenters. It is shown 

that, as the distance between the edges of the family of the rod core decreases, the deflections of the 

grid approach the deflections of the continuous (Figure 2). Under these experimental conditions, their 
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full agreement was achieved with the following values of the geometric parameters of the grid

0.6h a  . 

In Figure 3 shows the load-deflection graphs for various values of the curvature parameter (

{0;16;24}yk 
) of the mesh ( 0.002a  ) micropolar ( 0.3l  ) panel. In the case of plate (

0yk 
), 

the graphs are in qualitative agreement with those for smooth plates.In the case of continuous 

shellswhen 
12yk 

, an increase in load leads to the phenomenon of "cotton". In the case of a mesh 

micropolar panel, the phenomenon of "cotton" was not detected. 

 

Figure 4.   Dependence of the "deflection-load"graphs on the panel curvature parameter.Blue line -

0yk  , yellow line - 16yk  , green line- 24yk 
.
 

.  

Figure 5.   Dependence of the "deflection load"  graphs on the distance between ribs. Blue line -

0.002a   , yellow line - 0.004a  , green line- 0.008a 
. 
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In Figure 4 shows dependence of the graphs  w q  for the micropolar panel with the curvature 

parameter 16yk   and the additional length parameter value 0.3l   on the distance between ribs 

{0.002;0.004;0.008}.a  The figure shows that an increase in the distance between the ribs leads to a 

decrease in the bending stiffness of the panel. 

3. Conclusions 

On the basis of Pshenichny’s continuum model and Timoshenko’s hypotheses, the mathematical 

model of vibrations of flexible orthotropic micropolar cylindrical mesh panels is constructed.The 

influence of the additional length's parameter l, and mesh's geometry on the plate's behavior has been 

studied. The panel  consists oftwo families of mutually orthogonal edges. It was revealed that, in 

contrast to smooth cylindrical panels of large curvature, the phenomenon of “cotton” is absent in 

mesh micropolar panels. Taking into account the theory of the microfield leads to an increase in the 

rigidity of the panel. Increasing the distance between the edges of the lattice leads to a decrease in the 

bending stiffness of the panel. 
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Bending vibration systems as tactile sensors for contact point
detection using natural frequencies

Carsten Behn, Daniel Baldeweg, Christoph Will

Abstract: In recent years, bending beam vibrations are analyzed in context to
develop biologically inspired sensor systems. Here, this paper contributes to
this field and we extend results from conservative systems to dissipative ones
herein. We use mechanical models -inspired by the vibrissae of rats and mice-
to determine the distance to an object (contact detection) and to get hints for
a technical implementation. In contrast to literature, we extend our models to
more realistic ones in incorporating fundamental features of a vibrissae: the
viscoelasticity of the Follicle-Sinus complex (FSC, support of the vibrissa) and
of the skin. Moreover, the conical shape is taken into account, as well, to
study the impact of these features on the dynamics. Due to the complexity
of previous models, we model the FSC as a viscoelastic-foundation, the skin
as a discrete spring-damper-combination, and the conical shape using a three
segmented rod with different diameters. The contact point is firstly modeled
as a (fixed) bearing. To determine the distance out of the eigenvalues / natural
frequencies (later measured in experiments), we develop an algorithm that is
tested to be valid for our models.

1. Introduction

In recent decades, the analysis and investigation of biological tactile sensors were done by

researchers of the life sciences [7, 9, 3, 20], and the modeling and development of technical

tactile sensors inspired by the so-called “vibrissae” of mammals by engineers was started.

These tactile sensors gain great interest, e.g., in application to mobile robotics, see [16, 14,

10, 18], because the animals use these vibrissae for several tasks (depending on their the

location on the body): object recognition [4], object contour discrimination [5], perception

of (air and/or water) flow [6, 23], and just for some social behavior [11].

Although there are several facts from anatomy and functionality of these vibrissae (they

are thicker, longer and stiffer than normal body hairs [20] / each vibrissa is supported by its

own follicle-sinus complex (FSC) combined with a outstanding arrangement of blood vessels,

mechanoreceptors, neural connections and several muscle groups [7] / the vibrissa hair shaft

is made of dead material and, therefore, has no receptors along the shaft and is used as a

transmission element [8] / the hair shaft exhibits an inherent curvature and a conical shape

[17]), there exist a lot of different (mechanical) models, which can be generally divided into
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multi-body systems (MBS) and continuous systems (CS). For a first overview on mechanical

models the reader’s attention is invited to [2, 12].

Of course there are several approaches, the used models differ in dependence on the goal

of examination. Both types of models are used in [15] for flow detection. For CS, the vibrissa

is usually modeled as a beam. For the vibrissa (major length to minor diameter) the classical

Euler-Bernoulli bending beam theory is almost exclusively used in literature. In the case of

a static analysis, [16, 21] focus object contour recognition, and of a dynamic analysis, [2]

focusses on basic investigations in modeling vibrissae as continuous models, [13] tries to set

up mechanical models to verify measured vibration frequencies of natural vibrissae, and [22]

investigates the spectrum of natural frequencies during several whisking modes of a vibrissa

to state, that the resonance of vibrissae could play a role in the texture recognition.

The most related works to the present one are [19] and [1]. The work [19] forms the basis

of this present work. The authors therein try to identify the contact point of a technical

vibrissa (or called antenna from insects) with an object in observing the shift of the natural

frequencies due to the changing boundary conditions of the tactile sensor (bending beam).

A simple mechanical model in form of an one-sided clamped Euler-Bernoulli bending beam,

Figure 1. Basic model, adapted from [19].

see Fig. 1, is considered, where the contact with an object is modeled as a “sudden” bearing.

Because of the structure of the system is known (there also exist a look-up table of the natural

frequencies), it is possible to determine the distance of the contact point to the clamping

position in “measuring” the natural frequencies. But, it is not possible to determine the

object distance purely in observing the one single natural frequency (see Fig. 2(left) because

no curve is bijective). Further on, it is quite impossible to determine the contact point in

observing the first two natural frequencies, see Fig. 2(right), because of a nearly intersection

of the curve, which can be possible due to measurement noise.

This drawback was the starting point of [1]. The authors improved the model in adding

a spring foundation (due to the FSC of the vibrissa) and a single spring coupling (due to

the skin support of the vibrissa). Then, it was possible to widen the curve ω2(ω1) to get a
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Figure 2. Behavior of the first three natural frequencies in dependence on object distance

a (left); curve of the first two natural frequencies ω2 = ω2(ω1) in dependence on a (right);

adapted from [19].

unique dependence on the contact point position. The problem was hear also, that there is

nearly an intersection of the curve, moreover, a spring foundation is only shifting the curve

in the plane, the single spring coupling can widen the curve a bit.

The biological paradigm exhibit some viscosity, hence the investigation of the viscosity on

the ω2(ω1)−curve is addressed to the present work.

2. Mechanical and mathematical modeling

As mentioned above, we extend the results found in [1]. Therein, only conservative systems

were analyzed. Depending on measured natural frequencies of a transversal vibration beam,

three algorithms are developed –based on the measured natural frequencies– determining

the distance to an object. Several models were investigated, see Section 1, and we comple-

ment these models in adding some damping elements: a single spring-damper-combination

to model the viscoelasticity of the skin and a continuously distributed spring-damper ar-

rangement to model the FSC, see Fig. 3. Due to this stage of modeling, we set up two

different models exhibiting the mentioned improvements step by step, see Figs. 4 and 5. The

first model offers a clamping and an elastic foundation as a support (FSC) with a single

spring-damper combination to model the viscoelasticity of the skin, see Fig. 4. The second

model focusses a clamping and a viscoelastic foundation as a support (FSC) of the technical

vibrissa. Here, we firstly neglect the possible viscosity of the skin, see Fig. 5.

Remark 1. In the following, we present the examination of Model 1, whereas the analysis

of the other model has to be done in an analogous way.
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Figure 3. Modeling of a vibrissa: above - vibrissa with contact [9]; below - model of a

vibrissa with contact.

Figure 4. Model 1 with a single spring-damper coupling.

Let us consider the beam with parameters length l, area of cross section A (constant,

described by diameter D – cylindrical beam), second moment of area w.r.t. the z-axis Iz

(constant), Young’s modulus E (constant) and density %. The stiffness of the springs are

given by the ratios c1 and c2 of the continuously distributed and discrete ones, respectively.

The damping ratio is given by d2. The contact between the beam and an object is modeled
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Figure 5. Model 2 with a continuously distributed spring-damper foundation.

as a bearing (simplification) in a distance of a to the clamping.

Then, it is well-known, that the bending beam vibrations of small amplitude are described

by the partial differential equations (PDEs)

%Av,tt (x, t) + E Iz v,xxxx (x, t) + c1 v(x, t) = 0 , ∀ (x, t) ∈ (0, l1)× R+ (1)

and

%Av,tt (x, t) + E Iz v,xxxx (x, t) = 0 , ∀ (x, t) ∈ (l1, l2) ∪ (l2, a) ∪ (a, l)× R+ , (2)

Solutions of the arising boundary-value problem (BVP) are investigated using separation of

variables, that yields the following solution on several sections:

vi (x, t) = Ti (t) ·Xi (x)

=
(
C1i cos (ωit) + C2i sin (ωit)

)
·
(
C3i cos (λix) + C4i sin (λix)

+C5i cosh (λix) + C6i sinh (λix)
)
,

(3)

whereby, for all t ∈ R>0, we have v1(x, t) with x ∈ (0, l1), v2(x, t) with x ∈ (l1, l2), v3(x, t)

with x ∈ (l2, a), and v4(x, t) with x ∈ (a, l).

At this stage, the connection between the eigenvalues has to be clarified. At first, we

have for the PDE coefficient

k41 = k42 = k43 = k44 := k4.

because all parameters of the beam are the same in each section. Then, because of ω1 =

ω2 = ω3 = ω4 =: ω we conclude

ω2
1 = ω2

2 ⇒ λ4
1 k

4 + c1
ρA

= λ4
2 k

4 ⇒ λ2 = 4

√
λ4
1 + c1

E Iz
,

ω2
1 = ω2

3 ⇒ λ3 = 4

√
λ4
1 + c1

E Iz
,

ω2
1 = ω2

4 ⇒ λ4 = 4

√
λ4
1 + c1

E Iz
.

 (4)
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As to be seen in the Figs. 4 to 5, all mechanical beam models offer 4 sections, therefore,

with respect to the general solution (3) of the PDE (1), we have to formulate 16 BCs for the

systems:

01. v1(0, t) = 0 , 02. v′1(0, t) = 0

03. v1(l1, t) = v2(l1, t) , 04. v′1(l1, t) = v′2(l1, t)

05. v′′1 (l1, t) = v′′2 (l1, t) , 06. v′′′1 (l1, t) = v′′′2 (l1, t)

07. v2(l2, t) = v3(l2, t) , 08. v′2(l2, t) = v′3(l2, t)

09. v′′2 (l2, t) = v′′3 (l2, t) ,

10. v′′′2 (l2, t) = v′′′3 (l2, t) + c2
E Iz

v2(l2, t) +i λ2 d2
E Iz

√
E Iz
%A

v2(l2, t)

11. v3(a, t) = v4(a, t) , 12. v′3(a, t) = v′4(a, t)

13. v3(a, t) = 0 , 14. v′′3 (a, t) = v′′4 (a, t)

15. v′′4 (l, t) = 0 , 16. v′′′4 (l, t) = 0



(5)

Writing λ := λ1 in (4) and substituting in (3) we can evaluate the BCs (5) by means of

the four solutions (3) to determine the eigenvalue equation, to govern the eigenvalues and

natural frequencies in the following.

3. Simulations

For the models, different values of the system parameters are needed to calculate the natural

frequencies and eigenvalues for the dynamic analysis. Therefore, a parameter set is created.

Since the goal is not the replica of the biological paragon ‘vibrissa’, but the understanding

of influences of system parameters, a technical set is used, see Table 3. Of course, this data

are unrealistic for a natural vibrissae of rats, but they represent the relationships better and

can be considered as parameters for a tactile sensor.

Table 1. Technical set of the steel beam.

ρ 7850 kg
m3

E 210 GPa

D 10 mm

l1 250 mm

l2 500 mm

l 1000 mm

Remark 2. We prefer dimensionless notation throughout by using the following units of

measurement matching data of the real background system (L, ρ, A, E, Iz beam parameters;
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dimensionless variables only here with a tilde which is dropped afterwards):

x = x̃ · L , t = t̃ · L2

√
ρA

E Iz
, ω = ω̃ · 1

L2

√
E Iz
ρA

,

c1 = c̃1 ·
E Iz
L4

, c2 = c̃2 ·
E Iz
L3

, d2 = d̃2 ·
1

L

√
ρAE Iz .

The following spring rates are chosen, according to Remark 2, c̃1 = 10 und c̃2 = 10.

The first simulation is devoted to model 1 with a single damping element. Figure 6(left)

shows that the natural frequencies decrease with an increasing d2. As expected from the

classical vibration theory, the effect of changing parameters has the largest effect on the first

natural frequency. Focusing Fig. 6(right), the ω2(ω1)−curve will become an intersection if

the damping ratio is too large. Then, no determination of the contact point is possible.
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Figure 6. First three natural frequencies vs. length (left); curve ω2 vs. ω1 (right); both in

dependence on various values of d2 (Nr. 1 – d2 = 0, Nr. 2 – d2 = 1, Nr. 3 – d2 = 5, Nr. 4 –

d2 = 10.

Having a glance to the simulation of model 2, one can clearly the an increase of all natural

frequencies due to an increasing ratio d1, see Fig. 7(left). It is obvious, that a visco-elastic

foundation has nearly no influence on the behavior of the natural frequencies, see Fig. 7.

But, there is no intersection of the ω2(ω1)−curve, and hence, there is a unique identification

of the contact point a in observing the first two natural frequencies.

Summarizing, the single damping element has more impact on the behavior of the natural

frequencies, but with a damping ratio that is too big, then no identification of the contact
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Figure 7. First three natural frequencies vs. length (left); curve ω2 vs. ω1 (right); both in

dependence on various values of d̃1 (Nr. 1 – d̃1 = 0, Nr. 2 – d̃1 = 10, Nr. 3 – d̃1 = 30, Nr. 4 –

d̃1 = 50.

point is possible.

4. Conclusions

This paper was devoted to the dynamic analysis of vibrating technical sensors –inspired

by natural vibrissae– to determine the contact point due to an object. This is done in

purely observing the shift of the spectrum of natural frequencies. Because previous works

showed, that this general procedure is possible, but only considered conservative systems,

this work was addressed to investigate the influence of damping elements to the behavior of

the natural frequencies to determine the contact point. It was shown, that a single damper

coupling has more impact on the natural frequencies than a damping foundation (maybe

due to the follicle-sinus complex of the biological paragon). Generally, the single damping

elements contributes to the identification of the contact point if the ratio is not too large.

Future work shall not be addressed to set up more realistic models, i.e., not neglecting

the elasticity of the support (as done here in using a clamping), or to incorporate the conicity

or the inherent curvature to the model. It would be questionable, if there are more insights.

Rather, experiments should be carried out to verify the investigations.
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Bending vibrations with boundary damping
— unlike behavior of tactile sensors

Carsten Behn, Christoph Will, Joachim Steigenberger

Abstract: The paper is devoted to an unlike behavior of natural frequencies
in beam vibrations. Guided by the biological paragon vibrissa we investigate
small vibrations of an Euler-Bernoulli beam and focus in particular on the
question how the natural frequencies depend on the main features of this tactile
system. Precisely, a clamped and boundary visco-elastically supported beam
serves as a first model to determine the spectrum of natural frequencies (later
using these frequencies to detect an obstacle contact). The damping element
significantly increases the complexity of the two-point boundary-value problem
and leads to a surprising phenomenon: there exist some natural frequencies
which break down to zero for a certain range of parameters. This fact is well-
known in 1-DoF systems (i.e., strong damping, creeping behavior). The study
demonstrates that the oscillation behavior of an elastic beam differs remarkably
from the behavior of such a classical system: a) The natural frequencies may
increase with growing boundary damping; b) for specific damping parameter
values, the natural frequencies grow for decreasing boundary stiffness.

1. Introduction

In recent years, bio-inspired sensor systems come into more focus because they can com-

plement “classical” senses like vision for mobile robotics. The paradigm from biology is

the animal vibrissa with its transmission element “hair” (hair shaft). Its is used for the

transmission of signals to the vibrissa base (follicle sinus complex) where the information is

processed to the CNS, see [7]. Hence, we have to analyze bending beam vibrations caused

by contacts with objects, further on, these vibrations can also be induced by the animal on

its own in using the surrounding muscles, [1]. The literature offers some works, see [10] for

a detailed overview.

Here, we firstly consider bending beam vibrations of a system with a discrete visco-elasticity

(a discrete spring-damper-pair at the boundary), see Fig. 1, which is inspired by the skin of

the animal. Since we do not want to deal with several sections, we restrict the model to only

one section.

Remark 1. The model given in Fig. 1 looks simple, but it will offer some unlike dynamical

behavior in the following. Similar models are not analyzed in literature, but given as exer-

cises (?) without any solution, see [9]. Often, only conservative systems are analyzed and
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Figure 1. Considered mechanical model.

well studied with discrete or continuously distributed springs. Systems focussing on discrete

damped elements in context of bending beam vibrations (non-conservative ones) are rarely

analyzed, see [3, 4, 5, 8]. We will analyze our “simple” system and extend some results

given in [2] in an analytical way.

2. Vibrations of a bending beam with boundary support clamped / viscoelastic

Bending beam vibrations of small amplitude are described by the partial differential equation

(PDE)

v,xxxx +v,tt = 0 , ∀ (x, t) ∈ (0, 1)× R+ (1)

under particular boundary conditions (BCs). Solutions of this boundary-value problem

(BVP) are investigated using separation of variables.

Remark 2. It is well-known, that we claim a constant cross section A of the beam, as well

as a constant second moment of area Iz, to arrive at the PDE (1).

Remark 3. We prefer dimensionless notation throughout by using the following units of

measurement matching data of the real background system (L, ρ, A, E, Iz beam parameters;

dimensionless variables only here with a tilde which is dropped afterwards):

x = x̃ · L , t = t̃ · L2

√
ρA

E Iz
, ω = ω̃ · 1

L2

√
E Iz
ρA

,

c = c̃ · E Iz
L3

, d = d̃ · 1

L

√
ρAE Iz .

The boundary conditions (BCs) of the considered system in Fig. 1 are:

v(0, t) = 0 ,

v,x (0, t) = 0 ,

v,xx (1, t) = 0 ,

v,xxx (1, t) = c v(1, t) + d v,t (1, t) .

(2)
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Separation of variables,

v(x, t) = X(x)T (t) ⇒ X(4)

X
(x) = − T̈

T
(t) =: λ4 , λ ∈ C , (3)

yields the solutions

X(x) = A cosh(λx) +B cos(λx) + C sinh(λx) +D sin(λx) ,

T (t) = C1 exp(i λ2 t) + C2 exp(−i λ2 t) .
(4)

The constants A, . . . ,D,C1, C2 are (complex) integration constants.

Supposing λ 6= 0 (else only the zero solution results) the first two BCs yield B = −A,

D = −C, and the third one then entails

0 = A {cosh(λ) + cos(λ)}+ C {sinh(λ) + sin(λ)} (5)

The fourth BC writes

X ′′′(1)T (t) = cX(1)T (t) + dX(1) Ṫ (t) , (6)

and after differentiation and using (3) there follows[
X ′′′(1)− cX(1)

]
Ṫ (t) = −dX(1)λ4 T (t) .

In order to eliminate Ṫ (t) we multiply by dX(1) and, using (6), we obtain[
X ′′′(1)− cX(1)

]2
T (t) = −(dX(1))2 λ4 T (t) . (7)

Remark 4. The term dX(1) = 0 would do no trouble: d = 0 is trivial and of no interest

here, X(1) = 0 implies X ′′′(1) = 0, which together with X ′′(1) = 0 yields λ = 0 and the

trivial solution.

Dropping T (t), there results

X ′′′(1) = (c ± i d λ2)X(1) . (8)

With (5) this generates the homogeneous linear equations for A and C

0 = A {cosh(λ) + cos(λ)}+ C {sinh(λ) + sin(λ)} ,
0 = A {λ3 [sinh(λ)− sin(λ)] + (c ± i d λ2) [cosh(λ)− cos(λ)]}

+C {λ3 [cosh(λ) + cos(λ)] + (c ± i d λ2) [sinh(λ)− sin(λ)]} ,

(9)

the zero determinant of which gives the characteristic equation for λ:

λ3 [1 + cosh(λ) cos(λ)] + (c ± i d λ2) [cosh(λ) sin(λ)− sinh(λ) cos(λ)] = 0 . (10)

These are, because of the ±-sign, in fact two equations. Let their left-hand sides (lhs, and

rhs, respectively) be symbolized as eq(λ; c, d; +) and eq(λ; c, d;−), respectively. It is easy

matter to verify the following Proposition 1.
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Proposition 1. If eq(λ; c, d; +) = 0 then eq(λ; c, d;−) = 0, where λ is the complex conjugate

of λ. This means that the eigenvalues of the BVP appear as a sequence of conjugate pairs.

Moreover, eq(iλ; c, d; +) = −i ·eq(λ; c, d;−) and eq(−λ; c, d;±) = −eq(λ; c, d;±) implies that

each eigenvalue λ entails the 8− tuple (±λ,±λ,±iλ,±iλ) of eigenvalues.

Proposition 2. Let λ be any eigenvalue. Then we have

cosh(λ) + cos(λ) 6= 0,

i.e., the first equation of (9) can be solved for A, so that C is left as sole coefficient in the

respective eigenfunction.

Let λ be an eigenvalue. Then we obtain from (4) and (5) the corresponding complex-

valued eigenfunction

X(x) = [cosh(λ) + cos(λ)]{sinh(λx)− sin(λx)}

− [sinh(λ) + sin(λ)]{cosh(λx) − cos(λx)} , (11)

which could be normed by a factor 1/X(1) or 1/
√∫ 1

0
| X2(x) | dx. The eigenfunction cor-

responding to λ then is X(x), the ones corresponding to iλ and −λ are, respectively, iX(x)

and −X(x).

In general, we may see the eigenvalues as a sequence of complex numbers (in particular

if d > 0), which are ordered in complex conjugate pairs (λν , λν | ν ∈ N) — the remaining

ones of the above mentioned 8-tuple are irrelevant with regard to the eigenfunctions.

The (x, t)-dependent solutions of the BVP which belong to this conjugate pair are

λ : X(x){C1 exp(iλ2t) + C2 exp(−iλ2t)} ,
λ : X(x){C3 exp(iλ

2
t) + C4 exp(−iλ2

t)} ,
(12)

where C1, . . . , C4 are complex integration constants. If we let λ = α + i β and λ2 = ω + i δ

(λ
2

= ω − i δ), then we have ω = α2 − β2, and δ = 2αβ. In Section 4 we shall see that

α > 0, β ≥ 0, hence δ ≥ 0. Each of the above functions contains a term with factor exp(δ t)

that implies an increase in time if δ 6= 0. In case of damping (d > 0) this cannot occur,

therefore, the respective terms must be killed by putting C2 = C3 = 0. Let X = U + i V

and C1 = a1 + i a2, C4 = b1 + i b2. Then there remains

for λ:

{[U(x)(a1 cos(ωt)− a2 sin(ωt))− V (x)(a1 sin(ωt) + a2 cos(ωt))]+

+i[V (x)(a1 cos(ωt)− a2 sin(ωt))] + U(x)(a1 sin(ωt) + a2 cos(ωt))]}e−δt,
(13)
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for λ:

{[U(x)(b1 cos(ωt) + b2 sin(ωt)) + V (x)(b2 cos(ωt)− b1 sin(ωt))]+

+i[−V (x)(b1 cos(ωt) + b2 sin(ωt))] + U(x)(b2 cos(ωt)− b1 sin(ωt))]}e−δt ,
(14)

where a1, a2, b1, b2 are real integration constants.

Now, to each ν ∈ N, there belong the eigenvalues λν , λν and the complex eigenspace

spanned by the corresponding eigenfunctions Xν =: Uν + i Vν and Xν =: Uν − i Vν . The

linear combinations 1
2
(Xν + Xν) and 1

2i
(Xν −Xν) exhibit the pair (Uν , Vν) as a real basis

of that complex eigenspace (which shrinks to a one-dimensional space in the real case for

d = 0).

Open question: Can the space span{Xν , Xν | ν ∈ N} be made a Hilbert space by means

of a suitable scalar product? And is then an orthonormal basis a complete one? Same

question in the real case that happens for zero damping d = 0. What is the meaning of the

drop of dimension in going from d > 0 to d = 0?

3. Eigenvalues and natural frequencies

Since the eigenvalues of the problem are in general complex numbers, we formally replace λ

by z, and we let

F0(z) := cosh(z) cos(z) + 1 ,

F1(z) := cosh(z) sin(z)− sinh(z) cos(z) , and finally

F (z; c, k) := z3 F0(z) + (c+ i d z2)F1(z) .

(15)

Obviously, F (z, 0, 0) = F0(z), and F0(z) = 0 is the characteristic equation of the bend-

ing problem “clamped-free”, see Fig. 2 (left). Its first three (real1) solutions z(0) and the

respective natural frequencies ω(0) = (z(0))2 are

z
(0)
ν = 1.875104, 4.694091, 7.854757, . . .

ω
(0)
ν = 3.516015, 22.034492, 61.697214, . . .

Equally, F (z,∞, d) = F (z, c,∞) = F1(z), and F1(z) = 0 is the characteristic equation of

the bending problem “clamped-pivoted”, see Fig. 2 (right). Its first three non-zero (real)

solutions z(1) and the respective natural frequencies ω(1) = (z(1))2 are

z
(1)
ν = 3.926602, 7.068583, 10.210176, . . .

ω
(1)
ν = 15.418206, 49.964862, 104.247696, . . .

1From (12) and (14) we see that the solutions are periodic in time iff δ = 0, i.e., iff λ is a
real number. Else, a non-real λ demands the existence of a viscous part of the system, i.e.,
d 6= 0. So if d = 0, then there are only real eigenvalues.
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Figure 2. Mechanical models: “clamped-free” (left), and “clamped-pivoted” (right).

If z(c, d) denotes a solution of F (z, c, d) = 0, then, supposing continuity w.r.t. (c, d),

the limit values z(+∞, d) and z(c,+∞) are zeros of F1 (maybe non-zero, i.e., eigenvalue, or

not!). This is visually plausible as big c or d harden the support towards a pivot.

The following figures are to give a first impression of how the parameters c and d influence

important state variables. Figure 3 sketches the dependence on c of the eigenvalues and, for

moderate values of c, of the natural frequencies ω.
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Figure 3. First three eigenvalues z(c, 0) (left) and natural frequencies ω(c, 0) (right) vs. c.

The following Fig. 4 shows the connection of the real eigenvalues by curves in the complex

plane for d = 0 and c running from 0 to +∞, and for c = 0 and d running from 0 to +∞,

this is a bit similar to [6] (neglecting the stiffness c).

Of immediate practical interest is the dependence of the natural frequencies ω(c, d) =

Re(z(c, d)2) on c and d, and of the decrease rates δ(c, d) = Im(z(c, d)2) as well. The next

figure (Fig.5) shows a preliminary sketch of the behavior of ω.

Although the figure is still rather roughly created (what about the empty region on the

right?), one peculiarity is obvious: for not too big c the natural frequency tends to zero and

vanishes at some finite value of d. This is a (c-dependent) critical value of the damping

coefficient, that causes the system to turn from a damped oscillation to creeping. This
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Figure 4. Connection of eigenvalues in complex plane: circles – zeros of F0 (starting points);

diamonds – zeros of F1; blue – c = 0, d = 0, . . . ,+∞; green – d = 0, c = 0, . . . ,+∞.
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Figure 5. Natural frequencies ω(c, d) vs. d, c is family parameter.

reminds one to the behavior of the one-dimensional oscillator

ẍ+ d ẋ+ c x = 0 ,

whose critical damping coefficient is d = 2
√
c. But in our context, such critical damping

does seemingly not exist for every value of c. Physically, this means that with big values

of c the system is nearer to the clamped-pivoted system with no damping than to the

clamped-viscoelastic one. Details can possibly be discovered by a closer inspection of the

(c, d)-dependent complex eigenvalues. This shall be attacked in the next section.
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4. The complex eigenvalues

Let z = x + i y be an eigenvalue. Following (12), the corresponding natural frequency

is ω = Re(z2) = x2 − y2. Hence, zero frequency originates in an eigenvalue of the form

z = a(1± i), a ∈ R. It is simple matter to find by means of addition theorems

F (a(1± i), c, d) = (1± i){a[cosh2(a) + cos2(a)]

+
( c

2a2
∓ d
)

[sinh(a) cosh(a) − sin(a) cos(a)]} . (16)

Proposition 3. Any zero natural frequency ω = 0 originates in an eigenvalue z = a (1± i),

a ∈ R, that is located on a diagonal in the complex plane. Further, z = a (1 ± i), a ∈ R, is

an eigenvalue iff

G(a, c) = ±d , (17)

where

G(a, c) := a
cosh(2 a) + cos(2 a) + 2

sinh(2a)− sin(2a)
+

c

2a2
. (18)

Since, with non-negative c, G(·, c) is an even, positive valued function, the minus-sign

in (17) drops.

The analysis of (17) is simple in an a, d-plane by means of the graphs of G(·, c) with

c ∈ R≥0.

Proposition 4. For every c ≥ 0 there is a critical dc such that for d = dc there exists

exactly one and for every d > dc there exist two real a, one tending to zero and the other

tending to infinity for d→ +∞.

Remark 5. Have a look to Fig. 5. Let, e.g., c = 0; with increasing d, the respective ω(0, d)

is zero first at the critical d = d0, and then it stays zero for all d > d0.

There are still some unclear things:

(i) If, at fixed c, the increasing parameter d passes the value dc, which branch then runs

a, towards zero or towards infinity? In particular this is of relevance for the decrease

rate δ = Im(z2) = 2a2.

(ii) Evaluating z(c, d) with fixed c and increasing d one eventually observes uncertainties

in choosing the left or right branch for a by the computer.

(iii) Again in Fig. 5: What about those ω(c, ·) which do not tend to zero for big d? Although

there is a critical dc for every c!
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The non-constant distances of the points give a hint for choosing the step-size of d in

computing z(c, d) with d starting at zero. This has been utilized in creating the following

plots of ω(c, d) and δ(c, d) (via the originating eigenvalues z(c, d) ). Again, each curve is

labeled by c and parameterized by d running from 0 to some arbitrarily chosen (big) value

(no dc known in advance!).

The following Fig. 6 shows ω1(c, d) (via the originating eigenvalues z(c, d)). Again, each

curve is labeled by c and parameterized by d running from 0 to some arbitrarily chosen (big)

value (no dc known in advance!).
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Figure 6. Natural frequency ω1(c, d) vs. d; c is family parameter.

Again, we find ω-curves leading to zero and others tending to ω
(1)
1 ≈ 15.4. These two

types of ω(c, .) are separated at c∗1 ≈ 23.6495. The c∗-value was approximated by computing.

The feet of the first type curves continue with ω = 0 for increasing d.

Same issues can be found for higher natural frequencies: For Fig. 7 (left) we can compute

c∗2 ≈ 153.9398 with ω
(1)
2 ≈ 50, for Fig. 7 (right) we have c∗3 ≈ 473.65 and ω

(1)
3 ≈ 104.25.
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Figure 7. Natural frequencies ω2(c, d) (left) and ω3(c, d) (right) vs. d; c is family parameter.

The next Figs. 8 and 9 present a more extended family of curves z(c, .). It allows one to

clearly distinguish between those eigenvalues which entail natural frequencies leading to zero

and those without this property – compare Fig. 6 with 8 and 7 with 9. The corresponding

separatrices are emphasized. The real eigenvalues z
(1)
ν , ν = 1, 2, .., exhibit themselves to be

sinks. The empty domain between z
(1)
1 and z

(0)
2 does not contain any curves for c ≥ 0.

Expectation: the depicted structure continues to the right repeating all its features.

61



0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

3

Re (λ1)
I
m
(λ

1
)

Figure 8. First eigenvalue z1(c, d) in the first octant.
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Figure 9. Second (left) and third (right) eigenvalue in the first octant.

Finally, the Fig. 10 is summing up all results and concerns all other eigenvalues z(c, d)

and natural frequencies ω(c, d). One can clearly see the separatrices in the complex plane

arising for c∗i . For example, the separatrix 1 runs into the diagonal at (1 + i)ac∗ , c
∗ ≈ 23.65.

Since c 7→ ac is bijective , it follows that the separatrix 2 starts at z(c∗, 0) ∈ (z
(0)
2 , z

(1)
2 ).

Therefore, a continuous re-encounter of c∗ in correspondence with the ’higher’ separatrices

is expected.

0 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

Re (λ)

I
m
(λ
)

10−2 10−1 100 101 102 103
0

20

40

60

80

100

d

ω

Figure 10. First three natural frequencies vs. d (c is family parameter) (left) and first

three eigenvalues (right) in the first octant.

Remark 6. Let us note, that each c∗i forms a saddle point in the complex plane.

At the end, let us point out, that we plotted only the first octant to present the eigen-

values due to Proposition 1. The following Fig. 11 presents the eigenvalues determining the
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first natural eigenfrequency in the complex plane without any octant-restriction..
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Figure 11. First eigenvalue z1(c, d) in the complex plane.

5. Conclusions

We introduced a certain model which arises in investigating some vibration problems of

bio-inspired, vibrissa-like sensor systems. Due to the functionality and complexity of the

considered paragon, we had to deal with bending problems of continuous beam systems. We

presented a mechanical model with a discrete viscoelastic coupling to model biological tissue.

The system under investigation looks very simple, but offered a very complex behavior in

observing its eigenvalues and the resulting natural frequencies: due to some computed criti-

cal parameters, a) the natural frequencies increased with growing boundary damping, or b)

for a specific damping parameter, the natural frequencies grow with decreasing boundary

stiffness, or c) break down to zero. These behavior is divided by separatrices for the eigen-

values in the complex plane (existing saddle points).

The zero-break-down for specific system parameeters (c, d) may be useful to fade out eigen-

modes of the system in applications.

Further work shall be addressed to analyze more realistic vibrissa-like sensor systems (incor-

porating continuously distributed couplings, conicity of the hair shaft, pre-curvature of the

beam).

References

[1] Behn, C. Mathematical modeling and control of biologically inspired uncertain motion

systems with adaptive features. Habilitation, Technische Universität Ilmenau, Ger-

many, 2013, Supervisors: K. Zimmermann (TU Ilmenau), H. Witte (TU Ilmenau), J.

Awrejcewicz (Lodz University of Technology).

[2] Behn, C., Will, C., and Steigenberger, J. Unlike behavior of natural frequencies

63



in bending beam vibrations with boundary damping in context of bio-inspired sensors.

In ICIS 2014 (2014).
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The mechanical background of devices for
balancing skill development

László Bencsik, Dalma J. Nagy, Ambrus Zelei, Tamás Insperger

Abstract: In the studies dealing with the analyses of balancing, the falling
in elderly age is mentioned as the main motivation. It can be considered as a
generation problem in our aging society. Besides, the motion therapy is another
important field, where the understanding of the mechanism of balancing can
help. In our society the number of premature babies is increasing, many of them
requires intensive motion therapy. The natural learning of different motions
and upright standing is a really long process during infancy and childhood. In
case of children with dyspraxia or other disabilities the learning process has to
be assisted and accelerated.

Most of the balancing improvement trainings are based on simple devices like
the balance board, the Bosu ball or the Huple which is a Hungarian devel-
opment especially for children. By means of the destabilization effect, these
devices make the upright standing harder, which is not simple anyway. One can
feel that standing on one of these devices is much more unstable and requires
high concentration.

The aim of this is work is to analyse the mechanical background of this problem
and verify the usability of these devices with motion capturing. By using engi-
neering approaches, quantitative performance measures are introduced, which
assist the mainly visual observation based existing scoring systems. The pro-
posed process utilizes the mechanical model of the human and the balancing
device.

1. Introduction

Due to the expected increase in median age of the human population, significance of human

balancing has been increeased considerably. Accidental injuries and esepcially fall overs are

a major cause of fatal injury leading to the death. Death caused by fall over has a similar

number as heart cerebrovascular disease, cancer and respiratory system disease among all

the causes and it is the first among the non-disease causes [3].

The occurrence of fall overs is related to physiological condition, disease, environment,

psychological status, and so on. Among the physiological factors, the increasing reaction

delay and the reducing muscle capacity of the elderly are important causes of falls. More

falls occur during standing and weight transferring than during walking.
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The balancing skill development of premature birth children is also a key motivation in

the human balancing research, besides the fall overs in elderly age [7].

In the prevention of fall overs, and in the balancing skill development of children, a key

step is the understanding of the human balancing process and to discover the effect of the

above mentioned physiological factors. Although, there has been considerable amount of

research related to feedback process which is implemented by central nervous system, there

are still open questions related to the working principle of the process. Our main research

focus is on the modelling of the neural process during postural balancing with a special focus

on the developement of the balancing skills.

The Huple [1] is a well-tried skill development tool for children in early age. The structure

is basically a hemisphere in which the children can stand or sit, meanwhile they solve some

interesting task.

In the present proof of concept study, the goal is to demonstrate the applicability of

quantitative parameters for the analysis of the balancing abilities.

2. Undearctuation as the stimulation of the human balancing system

From the mechanical point of view, postural balancing (e.g. standing still on the ground or

balancing in the Huple) is the stabilisation of an unstable equilibrium point. The sensory

organs collect the relevant information from the environment, subsequently all these infor-

mation is processed in the brain and finally the muscles receive the activation signals. In

this whole process the strategy of decision on the muscle activation is unknown, and there

are several cancidate models for it [4].

The rolling balance tools such as the Huple increase the degrees of freedom of the system,

while the variety of control inputs does not change. Fig 1 demonstrates, how the Hupple

involves the issue of underactuation [6]. When standing on the ground, both the hip and

the ankle joint are acuated, consequently the system is fully-actuated. In constrans, when

standing on a rolling object, the joint that is formed by the rolling contact with the ground

is passive. Therefore the system is underactuated.

The underactuation makes the balancing task harder, so the subject of the training are

forced to the border of their balancing abilities. Such that, we hypothesize that the balancing

skills develop.

3. Methods

3.1. Experimental protocol

In this study, the measurements were accomplished for the proof of concept. We tested

different benchmark balancing tasks: 1) standing in the Huple with aiming for minimum
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Figure 1. Left panel: Hupple skill development tool together with the anatomical planes.

Right Panel: illustrative figure for the demonstraion of the underactuation during balancing

on the balance board or in the Hupple.

sway motion (see Fig. 1 left); 2) sitting in the Huple with aiming for minimum sway motion;

3) sitting in the Huple and recover the vertical still position from a intentionally tilted Huple

position. Each measurement was 30 seconds long.

The motion of the children was recorded by OptiTrackR© [2] motion tracking system.

The reflective markers were placed on the head, the shoulders, on the hip and on the Huple

device. The spatial position of the markers were recorded with 120 Hz sampling frequency.

The maximum position error was 0.2 mm (reported by the Motive software [2] after our

on-site calibration).

Ten children were involved in the measurements; however only six was technically suc-

cessful. Four children couldn’t really follow the instructions, therefore a couple of markers

couldn’t be tracked during the whole task. The data processing and the results of the six

successful measurements are explained in the followings.

3.2. Experimental data processing

In this proof of concept study, the motion is decomposed into frontal and sagittal plane

as it is depicted in Fig. 2. Based on the symmetrically placed markers (e.g. shoulders,

hip), the frontal plane and then the sagittal plane were identified. The angle of the subject
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Figure 2. Experimetal setup: the Huple and the motion tracking system.

was considered according to the single inverted pendulum model [5]. The head and marker

positions were averaged, and the contant point of the Huple with the ground was also located.

The body angle was determined from these two point.

Besides of the body angle, the angle of the Huple device was also processed. Here the

frontal plane and the sagittal plane was distinguished too, respectively to the planes of the

human body.

4. Results

Among the above presented tasks, the results of the first task (standing in the Huple with

aiming for minimum sway motion) are the best for characterization of the balancing ability.

Figures 3-7 summarize the results of the measurements. The subjects are listed in the

horizontal axis, with the age and the gender shown.

In Fig. 3, the angular oscillation in the frontal plane of the body is depicted. The upper

panel shows the maximal oscillation while the lower panel show the Root-mean-square (RMS)

value of the oscillation angle. Except the third subject, the maximum angle and the RMS

are in correlation: higher RMS goes with higher maximum amplitude. Fig. 4 shows the

angular oscillation in the sagittal plane of the body is depicted in the same structure. It is
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not possible to show statistically significant correlation between the sagittal and the frontal

plane oscillation amplitudes and RMS values.

Figure 3. Angular oscillations in the frontal plane (maximal value on the upper panel,

RMS value on the lower panel).

Figure 4. Angular oscillations in the sagital plane (maximal value on the upper panel,

RMS value on the lower panel).
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Figures 5, 6 show the angular values of the Huple. The results are in good correspondence

with body the angles.

Figure 5. Tilt angle of the Hupple in the frontal plane (maximal value on the upper panel,

RMS value on the lower panel).

Figure 6. Tilt angle of the Hupple in the sagital plane (maximal value on the upper panel,

RMS value on the lower panel).
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Figure 7 shows the correlation of frequency spectrum of the Huple and the body angles

in the sagittal plane. By the comparison of the angular sway and correlation, it can be

concluded that in case of higher correlation the angular sway is smaller for both the body

and the Huple. Physically it means that the subjects, who ”feel” the dynamics of the Huple

are better in balancing during standing.

Figure 7. Correlation of the frequency spectrum of the Huple and the body angles.

5. Conclusions

Regarding the issue of quantitative analysis of the balancing capabilities, we showed that

using an optical motion tracking system, it is possible to create quantitative paraeters for

the balancing skills: the maximum tilt angle amplitude, the RMS value of the tilt angle and

the correltaion of the frequency spectrum of the body angle and the angle of the Huple. It

is presented that the correlation in the frequency spectrum of the Huple and the body angle

in the sagittal plane is a good measure of the balancing ability.

We emphasized that introducing underactuation in the balancing scenario makes harder

to perform the balancing task and therefore underactutaion stimulate the development of

balancing skills.

As a future plan, the newly introduced quantitative parameters will be applied for the

analysis of the development of the balancing abilities.
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Dynamic identification method for determining the plastic 

properties of the material used as a front layer of impact shields 

 

 

Miroslaw Bocian, Krzysztof Jamroziak, Maciej Kulisiewicz 

Abstract: Impact shields are now being built from several layers of materials with 

various mechanical properties. Substantially the first protective layer (front one) is 

made of lightweight materials with plastic or plastic-elastic properties, while the next 

layer is remarkably elastic (e.g., armored steel). The above makes it necessary to 

analyze the phenomenon of piercing using a model in the form of a dynamic Maxwell-

type system, and to determine its parameters. This paper presents the original method 

of determining the parameters characterizing the plastic properties of the front layer. In 

the Maxwell model it was assumed that these properties describe two rheological 

elements. These are a linear damper in a parallel connection with a Coulomb friction 

element. The components occur next to a linear spring element. However, the next layer 

appearing in the model has elastic properties. In the development of the identification 

method, the method of energy balance for harmonic excitation was used. 

1. Introduction 

The use of modern materials for anti-impact systems (the butts) becomes a challenge for designers. The 

task of such a construction is primarily to ensure safe operation of the shooting range object. A projectile 

fired from a weapon poses two basic threats. The first of them is the possibility of penetrating the shield 

behind the target or the tested sample, which, in consequence, enables the further flight of the projectile 

and poses a real threat to life. Ricocheting is another threat that occurs when inadequate shielding is 

used. It consists in the fact that a projectile falling at an appropriate angle to the shield bounces off it.  

To sum up, the goal of the main butts is to block the further flight of the projectile without changing 

direction (preventing the penetration of the shield) and to protect against movement of bullets bounced 

off the butts. 

The current traditional construction solutions of butts, for which natural raw materials such as sand 

[1], concrete [2], wood and steel [3, 4] were used, are being replaced by modern materials. These 

include rubber and plastic granules of appropriate granulation or segments in the form of blocks 

produced from natural raw and recycled materials cross-linked with polymer matrix [5-7] as well as 

various types of materials including liquid-based ones [8-10]. 

The front protective layer of the anti-impact shields (the so-called front layer) is designed to reduce 

to the maximum extent the speed of the projectile impact on the proper shielding. The latter is formed 
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traditionally, e.g., from the armor plate. Therefore, the issue of the penetration of the projectile in the 

target material needs to be understood. In this respect, the researchers divide the projectile penetration 

into a pierced medium into several stages. There were three phases adopted in work [11], while four 

ones in the paper [12]. The authors of the study divided this phenomenon into two steps [13, 14]. A 

characteristic feature of each one is that the initial impact on the medium and penetration are observed 

in the first stage. The interaction of the projectile with a target when a crater is formed is the dynamics 

of this phase. The second phase is often considered a quasi-stationary state, where the force acting on 

the penetrator changes relatively slowly over time until the projectile stops [15-18]. However, modeling 

of this process is done exclusively on the basis of determination of substitute rigidity values originating 

from the general elasticity theory for isotropic bodies. [19-21]. Also neoclassical methods for modeling 

synthesis, analyzing and testing sensitivity of models can be found in papers [22-27].  

The paper assumes that the task of the anti-impact system (butts) protecting the environment from 

the effects of striking the essential protection of the structure, is to stop the projectile after the hit and 

limit possible damage to the shield. It is necessary to develop and analyze an appropriate theoretical 

model (mechanical one) to design such a system most optimally. In order for the conclusions of this 

analysis to be practically useful, the model must be simple and include the most relevant aspects of the 

impact process.  

Therefore, the paper aims to present the experimental identification method for the determination 

of certain constants describing the mechanical properties of the frontal layer at high velocities that are 

dealt with when a projectile fired from small arms penetrates an object.  

2. Assumptions for the penetration model 

The front protective layer of the anti-impact shields (the so-called front layer) is designed to reduce to 

the maximum extent the speed of the projectile impact on the proper shielding. The latter is formed 

traditionally, e.g., from the armor plate. Its main task is to disperse the kinetic energy of the projectile 

maximally before it hits the central shield. Such an approach has long been used in defense (e.g., bags 

with sand on ramparts). In the case when the front layer is made of chambers filled with loose material, 

such material is not destroyed. A similar situation occurs when the projectile passes through a muddy 

layer. The resistance of the medium and dissipation of energy may be different depending on the 

moisture level in such a layer. The mechanical properties of modern energy-dissipating materials used 

today (e.g., aramid fibers, polyethylene fibers, sand, ballistic gels or various types of steel alloys with 

nano additives) have mainly the characteristics of viscous plastic materials. Their dynamic behavior is 

the same to some extent: dry friction occurs in combination with force depending on the speed at which 

the projectile moves in the material. Given the above, the general model of the analyzed penetration 

process in the form presented in Figure 1 was taken as a starting point in this paper.   
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Figure 1.   General model of the analyzed piercing process. 

This model assumed that the ballistic shield 1 is preceded by a front layer 2 created from a material 

capable of absorbing the kinetic energy of the projectile as much as possible. In order to be 

indestructible, this layer was made of a material with visco-plastic properties (e.g., dense liquids, gels, 

sands, muddy soils, etc.). From the point of view of mechanical properties, materials of this type give 

resistance to a projectile moving in it in the form of force depending on the projectile velocity. In this 

paper, it was assumed that the model of such force is the function R(v) in the form: 

𝑅(𝑣) = ℎ𝑠𝑔𝑛(𝑣) + 𝛽𝑣 (1) 

where h – a constant determining the so-called dry friction and β – a constant specifying the viscous 

friction proportional to the velocity. These values can be relatively easily set in quasi-static conditions, 

i.e., at low deformation speeds (e.g., when using testing machines up to 0.03 m/s and up to 20 m/s when 

using drop hammers).   

3. Dynamic model and its analysis 

Under conditions of any selected range of velocity variations, the identification of the constant values 

h and β is possible when the test material is part of a dynamic system with the scheme shown in Figure 

2.  

That is a discrete dynamic system with two degrees of freedom and two concentrated masses m, 

m0, which can move only in the vertical direction. If the generalized coordinate x defines the mass m 

displacement and the generalized coordinate η the mass m0 displacement, then the differential equations 

of the system motion are: 

𝑚�̈� = 𝑝 − 𝑐0(𝑥 − 𝜂) − 𝛽(�̇� − �̇�) − ℎ 𝑠𝑔𝑛(�̇� − �̇�) − 𝑘�̇� (2) 

𝑚0�̈� = 𝑐0(𝑥 − 𝜂) + 𝛽(�̇� − �̇�) + ℎ 𝑠𝑔𝑛(�̇� − �̇�) − 𝑐𝜂 (3) 
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Figure 2.   Diagram of the adopted dynamical system: (a) physical layout diagram, (b) model diagram. 

where c0 and c are constants of elasticity of appropriate elastic elements, while p means any excitation 

force applied to mass m. The model also includes the possible occurrence of resistance force of mass m 

movement of the size 𝑊 = 𝑘�̇� resulting from, e.g., air resistance. 

When using the equation (2), the equation (3) can be written as follows:  

𝑚0�̈� + 𝑐𝜂 = 𝑝 − 𝑚�̈� − 𝑘�̇� (4) 

which further gives: 

𝑚0

𝑚
 �̈� +

𝑐

𝑚
 𝜂 =  

𝑝

𝑚
− �̈� −

𝑘

𝑚
�̇� (5) 

The dynamic system can be constructed in such a way that the mass m is very high compared to 

the mass m0. Then, for 

𝑚 ≫ 𝑚0 (6) 

from the equation (5) we have:  

𝜂 =
𝑝

𝑐
−

𝑚

𝑐
�̈� −

𝑘

𝑐
�̇� (7) 

Considering the relationship (7), the equation (2) takes the form: 

𝑚�̈� = 𝑝 − 𝑐0 (𝑥 −
𝑝

𝑐
+

𝑚

𝑐
�̈� +

𝑘

𝑐
�̇�) − 𝛽 (�̇� −

�̇�

𝑐
+

𝑚

𝑐
 𝑥 +

𝑘

𝑐
�̈�) +  

−ℎ 𝑠𝑔𝑛 (�̇� −
�̇�

𝑐
+

𝑚

𝑐
 𝑥 +

𝑘

𝑐
�̈�) − 𝑘�̇�  (8) 

Formula (8) is a non-linear third-order non-linear differential equation. The analytical form of the 

solution to this equation for any driving force p(t) is not possible to derive. 
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Further, a fixed response x(t) to the periodic force was assumed in the analyzed system there was: 

𝑥(𝑡) = 𝑥(𝑡 + 𝑇)    jeśli     𝑝(𝑡) = 𝑝(𝑡 + 𝑇) (9) 

which should be fulfilled for the positive parameters m, c0, c, h,  and k.  

By entering the variable z(t) of the form: 

𝑧(𝑡) = 𝑥 −
𝑝

𝑐
+

𝑚

𝑐
�̈� +

𝑘

𝑐
�̇� (10) 

the equation (8) takes the form: 

(𝑐 + 𝑐0) 𝑧 + 𝛽�̇� + ℎ 𝑠𝑔𝑛(�̇�) = 𝑐 𝑥 (11) 

and, if the conditions (9) are met, the following applies as well:  

𝑧(𝑡) = 𝑧(𝑡 + 𝑇) (12) 

The equation (11) allows deriving easy-to-use identification compounds to determine the searched 

material constant values h and . 

4. Identification method 

Favorable compounds for identification can be derived using the energy balance equation method [28-

30]. In this case, for the differential equation of the form (11). Multiplying this equation by the 

differential dz and then integrating it within the period T, one obtains successively: 

∫ (𝑐 + 𝑐0) 𝑧 𝑑𝑧  =
1

2
(𝑐 + 𝑐0) [𝑧2(𝑡 + 𝑇) − 𝑧2(𝑡)] = 0

𝑧(𝑡+𝑇)

𝑧(𝑡)
 (13) 

∫ 𝛽 𝑧 ̇ 𝑑𝑧
𝑧(𝑡+𝑇)

𝑧(𝑡)
= 𝛽 ∫ �̇�2 𝑑𝑡 =  𝛽 𝛼𝑧

�̇�𝑡+𝑇

𝑡
 (14) 

 ∫ ℎ 𝑠𝑔𝑛(�̇�)𝑑𝑧 = ℎ 𝛼𝑧
𝑠𝑔𝑛(�̇�)𝑧(𝑡+𝑇)

𝑧(𝑡)
 (15) 

∫ 𝑐 𝑥
𝑧(𝑡+𝑇)

𝑧(𝑡)
𝑑𝑧 = 𝑐 𝛼𝑧

𝑥 (16) 

where the variables α occurring in the equations (14), (15), (16) are equal to the fields contained within 

the dependency loop: �̇�(𝑧) for the equation (14), 𝑠𝑔𝑛(�̇�)(𝑧) for the equation (15), and x(z) for the 

equation (16). These loops are closed if the conditions of periodicity (see Eq. 9), (see Eq. 12) are 

fulfilled. Considering the results (13), ... (16), the differential equation (11) boils down to the algebraic 

equation of the form: 

𝛽 𝛼𝑧
�̇� + ℎ 𝛼𝑧

𝑠𝑔𝑛(�̇�)
= 𝑐 𝛼𝑧

𝑥 (17) 

It is easy to notice that the differential dz has the dimension of displacement, while the results of 

integration (14), (15), (16) as a product of specific forces by displacement have the dimension of work. 

Therefore, (17) presents the equation of energy balance. The only condition is that the stiffness c of the 

suspension of mass m0 is initially known to make it possible to estimate the value of the parameters β, 

and h from that equation. Introductory knowledge of the value of viscous friction acting independently 
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on mass m, i.e. knowing the coefficient k, is indispensable. Therefore, the experiment requires the 

measurement of the value 𝛼𝑧
�̇�, 𝛼𝑧

𝑠𝑔𝑛(�̇�)
, 𝛼𝑧

𝑥   for several (at least two) different periodic dynamic forces 

for which the responses are cyclical. A further procedure may involve the use of, for instance, statistical 

regression analysis. 

5. Experimental verification 

Simulation tests were carried out in the Simulink program according to the diagram (see Figure 3). 

 

Figure 3.   Diagram of the simulation system. 

Force p(t) were set in purely harmonic from with varying amplitude and frequency. The amplitude 

was varied in the range from 1000 N to 1900 N, while the frequency in the range from 3 Hz to 3.9 Hz.  

In the simulated model, the following values of parameters were assumed: 

𝑚 = 𝑚1 = 100 [kg];   𝑐0 = 2.0 ∙ 103  [
N

m
] ;    𝑐 = 4.0 ∙ 103  [

N

m
] ;    𝑘 = 60 [

kg

ms
] ;   

𝑚0 = 0.01 [kg];     ℎ = 10 [N];    𝑝 = 1000 [N];   𝑓1 = 1 [Hz];    𝛽 = 120 [
kg

ms
]     (18) 

Figures 4 and 5 show the answers in the form of x and z displacement, and velocity �̇� and �̇� of the 

system for purely harmonic excitations. The developed identification method is based on closed loops 

(see Figures 6-8), therefore the measurement of the loop can only be made after the system has been 

established. Analyzing the system, we force it successively with many different excitations and 

determine for these subsequent excitations the values of the fields of the respective loops in steady state 

vibrations. For this reason, the total analysis time depends on the time it took to a single determine test. 
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It turns out that the time to be determined depends mainly on the damping value k, which is dependent 

on the air resistance. It should be noted that at low values of this coefficient, it will take a very long 

time for the response to reach the periodic vibration system, which in turn may prevent analysis. 

 

Figure 4.   Displacement as a result of excitation of system by force p of the mass m after periodic 

vibrations was determined.   

 

Figure 5.   Velocity as a result of excitation of system by force p of the mass m after periodic vibrations 

was determined. 
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The following Figures (see Figures 6-8) shows the appropriate loops, the fields of which were used 

to determine the parameters of the model. Taken measurements of fields (after established responses) 

for appropriate loops  result in obtaining values shown in Table 1. 

Table 1. Field loops values  obtained from computer simulation. 

No. 
Amp. 

[N] 

Freq. 

[Hz] 
z

z

  
)sgn(z

z

  
x

z  

1. 1000 3.0 0.0824 0.3207 12.9920 

2. 1100 3.1 0.1004 0.3542 15.5141 

      

      
89. 1800 3.9 0.1199 0.3445 17.8059 

90. 1900 3.9 0.1343 0.3648 19.7498 

 

                                         (a)                                                                              (b)              

Figure 6.   Example loops for tested system based according Eq. (14): (a) simulation for 90 loops, (b) 

loop for the last period of the simulation range. 

 

                                         (a)                                                                              (b)              

Figure 7.   Example loops for tested system based according Eq. (15): (a) simulation for 90 loops, (b) 

loop for the last period of the simulation range. 
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                                         (a)                                                                              (b)              

Figure 8.   Example loops for tested system based according Eq. (16): (a) simulation for 90 loops, (b) 

loop for the last period of the simulation range. 

The obtained loop fields in many simulations with a changed excitations frequency of repetitions 

allowed to estimate the model parameters using linear regression method (see Table 2). 

Table 2. Assumed parameters obtained from linear regression method. 

Assumed parameters  Obtained parameters 

ℎ [N] 10.0 [9.08809.1814] 

𝛽 [
kg

ms
] 120.0 [122.0525122.3054] 

Based on the tests, a regression analysis was performed (see Eq. 18), determining the coefficients 

of our system h and . The obtained values slightly differ from assumed values (error about 10%) which 

is an acceptable result considering the strong non-linearity associated with dry friction h. During the 

analysis, it could be clearly seen that the higher the dry friction value, it was the greater the error in 

estimating h and  values. 

6. Conclusions 

The issue of impulse loading of small arms projectiles was considered in the paper. This phenomenon 

was presented in the form of the adopted Maxwell dynamic system, in which its relevant parameters 

were adopted. Identification was carried out using the energy balance method for harmonic excitation 

by deriving it into the form of an algebraic equation (see Eq.17). The result of this analysis was: 

1) Derivation of balance equations (see Eq. 14, 15 and 16). 

2) Determining the value of loop fields 𝛼𝑧
�̇�, 𝛼𝑧

𝑠𝑖𝑔𝑛(�̇�)
, 𝛼𝑧

𝑥 (see Table 1) for given model parameters 

(see Eq. 18). 

3) Estimate the assumed parameters h and , which are largely responsible for the dissipation of 

impact energy (see Table 2). 
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4) Using statistical regression analysis method , the behavior of model parameters was verified at 

different amplitudes and frequencies of excitations for his responses (see Table 1). 

Based on a simple modification of the regression equation, the sensitivity of the model to its 

parameters can be investigation. It is clearly seen (see Figure 9) that too much dry friction causes loss 

of collinearity of points what can be observed for h = 30 N. This collinearity correlates well at h = 10 

N. 

       

Figure 9.   Graph showing linear regression based on force balance equation for declared dry friction 

values. 

The presented method to assess the efficiency of  butt can be used to identify the process of 

stopping a striking projectile and forecast its durability for damage. This method is currently being 

verified on the ballistic track, and the results of the research will be published in subsequent papers. 
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Thrust programming for the range maximization and modified 
brachistochrone problem 

 

Cherkasov Oleg , Nina Smirnova, Sheng Huang  

 

Abstract. The brachistochrone problem with penalty for fuel expenditures of mass-

point moving in the vertical plane driven by gravity, nonlinear viscous drag, and thrust 

is considered. The lifting force or normal component of the reaction force of the curve 

and the thrust are considered as a control variables. Principle maximum procedure al-

lows to reduce the optimal control problem to the boundary value problem for a set of 

systems of two nonlinear differential equations. The qualitative analysis of the resulting 

system allows to study the key features of the extremal trajectories, including asymp-

totic behavior. Thrust control depending on the velocity and slope angle is designed. 

The structure of the extremal thrust control program is determined and consequence of 

the subarcs is established analytically. 

 

1 Introduction  

The motion of a material point by a mass  in the vertical plane in a homogeneous field of gravity and 

in a homogeneous, resisting medium is considered. Drag force is assumed to be proportional to the 

velocity in to the power . The normal component of the reaction force of the curve and the thrust are 

considered as a control variables. The goal function consists of two terms: the horizontal range (terminal 

term) and energy costs (integral term) at a given time of the process. Along with the problem of max-

imizing the range, we consider the modified brachistochrone problem, formulated as follows: to find a 

curve joining two points in a vertical plane along which a particle under the influence of uniform gravity 

and a non-conservative force travels from the initial to the final point in the shortest time and the total 

control efforts must be penalized. It is assumed that the dependence of the maximum range on time is 

monotonic. Then the problem of brachistochrone and the problem of maximizing the range in a given 

time are interrelated in the following sense. Let us take the maximum distance value obtained as a result 

of solving the problem with fixed time as a given final condition for the brachistochrone problem. Then 

the minimum time, obtained as a result of the solution of the latter, coincides with the time that was 

fixed when solving the problem of maximizing the range. Trajectories also coincide.  

The classical theory of the calculus of variations and, later, optimal control theory were applied to 

the problem of maximizing the altitude of a rocket in vertical flight, for a given amount of propellant. 
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It was pioneering works studying optimal thrust programming along given one-dimensional trajectory. 

Two particular cases, namely, one with linear drag dependence on velocity and the other with quadratic 

drag dependence on velocity were examined in the paper [1]. In [2] the optimal flight in the vertical 

plane with an intermediate vehicle model was studied. Flight-path angle was taken on the role of a 

control variable, free final value of the fuel was assumed. This model is suitable for investigating the 

optimal motion of special types of aircraft classes for which it is possible to change the lift force without 

changing the resistance or as an intermediate model as a first approximation. The intermediate model 

can also be used to describe the motion of rotating bodies, in which the Magnus force plays the role of 

a lifting force. For various modifications of the Brachistochrone problem with viscous friction the nor-

mal component of the reaction force of the curve also allows to change the slope angle without changing 

the drag force [3]. Note, that for the case of Coulomb friction, acting on the point moving along the 

wire, the elevation of slope angle to control status is not possible [4, 5, 6]. Generalizations of the clas-

sical problem of brachistochrone with the accelerating force were considered, for example, in the paper 

[3], where the results of numerical simulation for the case of an accelerating force proportional to the 

velocity were presented. In [7] the solution of the same problem was obtained using a genetic algorithm 

to demonstrate the performance of it. In [8] the problem of a brachistochrone with a constant acceler-

ating force was studied. The brachistochrone problem in the presence of a constant accelerating force 

and the force of linear viscous friction was studied in [9]. In the paper [10] the case of a quasi-constant 

acceleration force is considered for the special class of optimal trajectories. The properties of trajecto-

ries with a quasi-constant acceleration force without friction was studied analytically in [11]. The range 

maximization and brachistochrone problems with a constant accelerating force were considered in [12], 

where the qualitative methods for dynamic systems were applied to determine characteristic features of 

the extremal trajectories.  

In this paper two control variables are considered: the thrust and the normal component of the reac-

tion force of the curve. The paper continues the studies [13, 14] for the model of non-linear viscous 

friction and expands the results for the case of fixed final altitude. 

. 

2 Problem formulation 

Equations of motion of the particle with constant mass in dimensionless variables are as follows: 

 

cos ,

sin ,

sin ,

cos / ,

n

x v

y v

v p v

u v









 

 

   

   

 (1) 
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Here ,x y  are the horizontal distance and vertical altitude respectively; v  is the module of the velocity; 

/ ( )u N mv  is a control, linked with a normal component of the reaction force of the curve N , m  is 

the mass of the particle. The control u  is supposed to has no constraints. Further, p  is the thrust, an-

other control variable subjected to the inequality ( )p p t p   , where p is positive constant; both 

controls are piecewise continuous function, n  positive constant. Particular cases {1; 2}n correspond 

to linear and quadratic resistance law, respectively. The dot over symbols indicates the differentiation 

with respect to a dimensionless time.  

Boundary  conditions for the system (1) are as follows:  

 
0 0 0 .(0) , (0) , (0) , ( ) Tx x y y v v y T y     (2) 

The goal of the control is the minimization of  the functional 

 2

,
0

( ) min
T

u p
p dtJ x T    (3) 

In other words, the problem is to maximize the horizontal distance with penalty for thrust expendi-

ture, when the duration T  of the process is fixed. 

The problem (1)–(3) is a singular optimal control problem [15], for which necessary optimal condi-

tions in the form of the Maximum Principle satisfied trivially. One of the common approaches of re-

search of such problems is replacement of the degenerate irregular problems to a regular problem that 

includes all the elements for the subsequent construction of the desired solution [15]. Note that only the 

last equation of system (1) has an explicit form of u, and the control u  is supposed to has no constraints, 

boundary conditions for variable   are free. This permits the deletion of this equation and the elevation 

of slope angle   to control status. Let introduce new variable   by formula 2

0

,( ) ( )
t

t p d     and 

reduce the problem (1-3) to the following Mayer’s optimal control problem for the system: 

 

2

cos ,

sin ,

sin ,

,

n

x v

y v

v p v

p

 


 


   

 

 (4) 

with initial conditions 

 0 0 0(0) , (0) , (0) , (0) 0, ( ) .Tx x y y v v y T y      (5) 

 The goal function (3) could be rewritten as follows 

 ( ) ( ) min ,
,

J x T T
p

   


 (6) 
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where   is new control variable. 

 

3 Problem analysis 

The Hamiltonian of the problem (4)-(6) has a form [16]: 

 2cos sin ( sin ) ,n

x y vH v v p v p C               (7) 

where C  is unknown constant. Equations for co-state variables are written as follows:  

 
10, , 0, cos ,n

x y v va nv 

             (8) 

where a  is unknown constant. From the transversality conditions it follows that  

 ( ) 1, ( ) , ( ) 1, [0, ], ( ) 0.x y vt t a t t T T            

 The necessary condition for the maximum of the function H  with respect to control   is written 

in the form  

 / sin cos cos 0.vH v av            (9) 

 From the transversality conditions and the relations (9) it follows:  

 ( tan ), tan ( ) .v v a T a        

 The necessary condition for the maximum of the function H  with respect to control p  is written 

in the form 

 / 2 .vH p p       

 The inequality
2( ) 2 / cos 0pp pH H H v 

        means that the extremum exists. From the re-

lations 
2 2/ 2 0H p     ; 2 2/ / cos 0H v       it follows that function H  reaches its maximum 

if cos 0.   The extremal thrust control is as follows 

 0 / 2 ( ) / 2.vp v a tg       

 So we get the following control logic:  

 

0

0 0

0

, ,

( ) , ,

, .

p if p p

p t p if p p p

p if p p




   
  

 (10) 

 By differentiating the relation (9) with respect to time according the systems (4), (8) the equation 

for the value of   could be found. Thus, the optimal control problem (4)-(6) is reduced to the following 

boundary-value problem:  
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0( ) sin , (0) ,

cos
1 ( 1) ( ) (sin cos ) , tan ( ) ,

n

n

v p t v v v

n v p t a T a
v

     

 
         


 (11) 

 The singular control related with the support reaction of the curve taking into account the fourth 

equation of the system (1) has a form 

   
cos

2 ( 1) ( ) (sin cos ) .nu n v p t a
v


         

Therefore, singular control is obtained as a function of the initial variables of the system (1). Note 

that if the value of the reaction force is bounded, the optimal synthesis problem is more complicated 

(see, for example, [17, 18]. 

     

         

                                        a)                                       b) 

 

Fig. 1. The domains of the intermediate and boundary thrust for a) 2a  , b) 2a   . 

Following to the presented logic, one can divide the plane ( , )v   into domains where the thrust 

takes boundary values, and where the value of the thrust belongs to internal range of the set of admis-

sible values depending on ( )ya t   (see Fig.1).  

We restrict the further study to the special case of a linear viscous drag. Boundary value problem 

(11) has a form  

   

0( ) sin , (0) ,

cos
1 2 ( ) (sin cos ) , tan ( ) ,

v p t v v v

v p t a T a
v

    

 
        


 (12) 
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where the choice of ( )p t is subjected to the rule (10).  

With the purpose to get qualitative features of the solution of the system (11) let us consider phase 

portrait of the system (12).  

Consider the case of boundary values of the thrust ( )p t p . From the equations 

sin 0,p v    cos / 0v   it is easy to find two states of equilibrium of the system (12). The 

stationary solution 1 11, / 2v p      corresponds to the motion vertically downwards in the 

plane ( ; )x y . The second stationary solution 2 21, / 2v p      appears if 1p  . In the plane 

( ; )x y this point corresponds to the motion vertically upwards. The analysis of the eigenvalues of the 

system (12) linearized in the vicinity of the stationary solutions 1 2( , )v   and 2 2( , )v   shows, that 

these points are stable proper nodes. The case  

 
  

( ) sin 0,

1 2 ( ) (sin cos ) 0

p t v

v p t a

   


     
 (13) 

is more difficult for analysis. The system (12) reduces to the equation  

 ( ) 1 ( 2sin )(sin cos ) 0.f p a          (14) 

Note that ( / 2) 1, ( / 2) 1f p f p       , therefore, for the values 1p  , the equation (14) has 

a solution, corresponding to the inclined motion in the plane ( ; )x y  Phase portraits of the system (12) 

is presented in Fig 2 a),b). It allows to conclude, that this stationary solution is saddle point. An analyt-

ical study of this solution in the case of free final altitude was held in paper [13]. 

      

                                        a)                                       b) 

Fig. 2. Phase portrait of the system (11) a) for 2, 2p a  , b) for 2, 2.p a    
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Consider the case of the intermediate thrust 0 ( ) / 2.p v a tg    Phase portraits of the system (12) 

for various values of a , corresponding to the motion under intermediate thrust are presented in Fig 3 

a),b), Fig 4 a),b). There is the single stationary solution in the domain 0, ( / 2; / 2)v     , that 

corresponds to the saddle point evidently. The proof of the type of the stationary solution could be done 

analytically for the values of 0a  and 2.a   Phase portraits in Figs 3-4 were designed as a function 

(7) level lines, in other words, as a level lines of the first integral of the system (12). Qualitative analysis 

of the system (12) allows to choose the starting value of (0) for solving BVL problem (12). It should 

be selected between the separatrix entering the saddle point and the finite set tan ( )T a  . 

In order to determine the possible number of thrust switching along the trajectory, we consider a 

system of equations consisting of the first integral of system (12) and the equation of the switching line:  

 
2cos sin ( )( sin ) ,

( ) / 2.

v av av vtg p v p C

p vtg av

           


   
  

Expressing the velocity from the second equation of the system and substituting in the first equation, 

we obtain 

 2 2( )( cos sin ) 4 cos 2 0,C p a p p         (15) 

       

                                        a)                                       b) 

Fig. 3. Phase portrait of the system (11) a) for 2a   , b) for 0.a   
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                                        a)                                       b) 

Fig. 4. Phase portrait of the system (11) a) for 2a  , b) for 4.a   

 

By expressing the trigonometric functions of equation (15) through the half-angle tangent, we get 

the following problem: determine the number of the solutions of the equation  

 2 2 2 2( ) ((4 ) 2 ) 2( ) 2 ( 4) 0, tan( / 2).f t a p p aC t C p t p aC a p t               

This equation has no more than two solutions belonging to the interval ( 1;1)t   depending on the 

parameters a , C  and p . Therefore, the extremal trajectory of the problem (4)-(6) consists either of 

single arc (intermediate thrust), or two arcs, p p  and intermediate thrust, or three arcs: 

”intermediate-maximum-intermediate”. The same consequency of the thrust arcs was determined in the 

paper [13] for the case of free altitude final value.  

 

4 Numerical simulation 

This section presents the results of the numerical solution of the BVL problem (11). For solv-

ing the problem (12) the value of a  was assumed to be fixed; shooting method was applied. 

In Fig.5a) the extremal thrust corresponding to the set of parameters 

1, 1, (0) 1, ( ) 0.17p T v y T     is shown. For this set of parameters extremal thrust program con-

sists of single arc (intermediate value of the thrust). In Fig.5b) the extremal thrust correspond-

ing to the set of parameters 0.3, 1, (0) 1, ( ) 0.8p T v y T      is demonstrated. For this set of 

parameters extremal thrust program consists of two arcs, starting from the arc with maximum 

thrust and ending with intermediate thrust. In Fig.5с) the extremal control and trajectory are 

presented for the set of parameters 0.33, 3, (0) 0.3, ( ) 1.3p T v y T     , for which the thrust pro-

gram consist of three arcs, ”intermediate-maximum-intermediate”. The trajectories in the 
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plane ( , )x y  for various values of parameter ( )ya T   and 1, 1, (0) 1p T v    are shown in 

Fig.6a) for the set 1, 1, (0) 1p T v    and in Fig 6b) for the set 1, 3, (0) 3.p T v    It is easy to 

observe monotone dependence of the final altitude depending on parameter с a . 

 

a) 

 

b) 

 

c) 

Fig. 5. The extremal thrust as a function of time. 
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Fig. 6. Extremal trajectories in the plane ( , )x y . 

 

5 Conclusions 

For the brachistochrone problem with penalty for fuel expenditures of mass-point moving in the vertical 

plane driven by gravity, nonlinear viscous drag, and thrust the extremal synthesis for the controls is 

determined. It is established that the extreme thrust control program consists either of single arc with 

intermediate thrust control, or two arcs, starting with maximum thrust and ending with the intermediate 

thrust or three arcs: ”intermediate-maximum-intermediate. The resulting optimal thrust structure coin-

cides with that determined for the case of a free value of final altitude [13]. 
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An experimental investigation on noisy intermittency

Ezequiel Del Rio, Sergio Elaskar

Abstract: Intermittency is a route to chaos when transitions between lami-
nar and chaotic dynamics occur. The main attribute of intermittency is the
reinjection mechanism, described by the reinjection probability density (RPD),
that maps trajectories of the system from the chaotic region into the laminar
one. Results on chaotic intermittency depend on the RPD, that was taken as
a constant. Recently, a generalized no uniform RPD has been observed in a
wide class of 1D maps, hence the intermittency theory has been generalized,
including the classical one as a particular case. Noise has an impact on the
intermittency phenomena and the generalized RPD introduces a novel scenario
because it is affected by the noise. An analytical approach was introduced to
estimate the noisy RPD. In this work, by using the Poincaré map, we apply
our noisy theory of 1D maps to an experimental continuous system. We found
that noisy data provides a description of both, noisy and an ideal noiseless
system. We found that the response to the noise of the experimental Poincaré
map is different than the obtained by numerical simulations.

1. Introduction

Intermittency is one of the main route to deterministic chaos. It is characterized by irregular

changes between regular phase (called laminar) and chaotic burst. According to Pomeau and

Manneville, intermittency can be classified into three types depending on the local geometry

of their Poincaré map: type-I for quadratic maps and type-II and type-III for cubic ones [1].

However, other non linear types have been reported [2, 3, 4] In every the types, the fixed

point of the system becomes unstable for positive values of small values of a parameter ε.

Another condition for a one-dimensional map to possess intermittency is to have a

reinjection mechanism mapping back the trajectories from the chaotic zone into the laminar

one. This mechanism is described by the so-called reinjection probability density (RPD),

which is determined by the chaotic dynamics of the system itself. Both, the function RPD

and the local map determine all the dynamical properties of the system. In general it is

difficult to get an analytical expression for the RPD, hence different approximations have

been used. The most common approximation in classical intermittency theory has been to

consider the RPD uniform [1, 5, 6, 7, 8, 9, 10, 11]. However, it has been introduced a more

general RPD that includes the uniform reinjection as a particular case, hence the classical

results on chaotic intermittency have been generalized. The new RPD has been found in
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many 1D maps and the analytical predictions of the new theory have been numerically

confirmed. For a review of the generalized theory see [12]. Note that, continuous systems

that contract volume in phase spaces can be described by the 1D maps [13]. In this way, the

mentioned generalization of the intermittency theory has been confirmed in an experimental

analog circuit [14].

An important quantity related to the intermittency phenomenon is the probability den-

sity of the laminar lengths ψ(l), being ψ(l) dl the probability of finding a laminar phase of

a given length lying between l and l + dl, where l indicates the number of iterations in the

laminar region. Note that the function ψ(l) is determined by the RPD and the non linearity

of the laminar region [1, 12].

2. Theoretical framework

First of all, let us briefly describe the theoretical framework that accounts for a wide class

of dynamical systems exhibiting intermittency. We consider a general 1D map

xn+1 = F (xn), F : R→ R (1)

Having a point with infinity tangent or an extreme point, that is mapped into the laminar

region, then under a wide general conditions, the generalized RPD for the map (1) is given

by the following power law [3, 4, 15].

φ(x) = b(x− x̂)α (2)

which drives the reinjection mechanism for intermittencies of type I, II and III. Later was

fond the RPD describes by Eq. (2) in type V intermittency [16, 17]. The RPD (2) has two

free parameters, x̂ and α, determined by the dynamics in the chaotic region. The parameter

x̂ corresponds with the so-called lower bound of reinjection (LBR), that is x̂ ≤ x. The

symmetry case where, x ≤ x̂, can be taken into account by substituting in the RPD (2)

(x− x̂) by (x̂− x) and for sake of clarity we consider only the RPD given by Eq. (2).

The exponent α is determined by the geometry of the map in a vicinity of a point with

infinite or zero tangent, and b is determined by the usual normalization condition. Note that

the RPD of (2) includes the constant reinjection approach as the particular case α = 0.

The main task to determine the properties of a specific intermittency is to find the two

free parameters of the RPD Eq. (2). In this way, an analytical procedure to obtain the

value of α has been proposed in [18], where it was demonstrated that in the case of direct

reinjection from an extreme point xm into laminar zone, for x → xm we have F (i)(x) → 0

for i ≤ q, where F (i)(x) denotes the i-derivative of the function F (x), and if the derivative
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F (q+1) 6= 0 exits, we have

α = − q

q + 1
. (3)

For indirect reinjection, that is the case considered in the following sections, the previous

result also works [18]. We will apply this method in the following sections.

On the other hand, a simple methodology to evaluate the free parameters x̂ and α

from numerical or experimental data (when the map (1) is analytically unknown) has been

proposed by using the function M(x) defined as

M(x) =


∫ x
xs
τ φ(τ) dτ∫ x

xs
φ(τ) dτ

if
∫ x
xs
φ(τ)dτ 6= 0

0 if
∫ x
xs
φ(τ)dτ = 0,

(4)

where xs is a suitable starting point having xs < x for all reinjected points x. The domain

of definition of M(x) is the laminar region. As M(x) is defined by means of integrals, it is

easier to compute than φ(x), and also the effects coming from the statistical fluctuations are

reduced, even for a relatively low number of data [19]. Moreover, note that for a given value

of x, M(x) is the average of reinjection points in the interval (xs, x), hence, if we sort the

reinjections according to the relation xj < xj+1, a simple estimation of the function M(x)

is obtained by means of

M(xl) ≈
∑l
j=1 xj

l
, (5)

which is useful to evaluate the function M(x) instead of using the definition Eq. (4).

An important property of the function M(x) is that for the RPD given by Eq. (2), it

becomes linear as follow

M(x) =

0 x ≤ x̂

m(x− x̂) + x̂ x > x̂
(6)

where the exponent α is determined by the slope m as,

α = −1− 2m

1−m , (7)

Assuming α > −1, that is 0 < m < 1, Eq. (2) and Eq. (6) provide equivalent descriptions of

the RPD [12]. According to Eq.(7), the particular value m = 1/2 correspond to the classical

approach φ(x) = cte considered in the literature.
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2.1. The noise effect

Because the noise is always present in experiments, it is of a fundamental importance to

know the effect of noise on the intermittency phenomenon, in particular on the RPD.

For noisy 1D maps it is common to introduce an additive external noise to the map (1)

as following

xn+1 = F (xn) + σξn (8)

where ξn is a uniform distributed noise with < ξm, ξn >= δ(m−n) and < ξn >= 0, σ is the

noise strength.

There are many papers devoted to study noise effect on chaotic intermittency, by means

of the normalization group analysis [2], or by using the Fokker-Plank equation [20, 21, 11, 22]

among the others. Note that, in spite of the fact that the noise affects the whole region where

the system dynamics takes place, in all of the cases, the researches are devoted to the noise

effect on local Poincaré map and there was no study in classical theory of intermittency

focused on the effect of noise on the RPD, as far as the authors know.

Actually, Eq. (2) introduces a novel scenario because, whereas the classical uniform

reinjection should remain almost constant under a wide class of noise distributions, the

RPD of Eq. (2) can be affected by the noise. For 1D map, an analytical approach to

the noise reinjection probability density (NRPD) has been present in a publication with

Prof. Sanjuán [23]. Other application of this noisy theory for 1D maps has been developed

[24, 25, 26] and even for the case on continuous experimental system [14]. In last case, there

have been observed some differences with respect to the numerical experiments. This will

be investigated in the subsection 3.2. Before this, let us briefly summarize the noisy theory

applied to the RPD. In summary, the NRPD (denoted here by capital case Φ(x), whereas

the lower case φ(x) denotes the noiseless RPD) is given by

Φ(x) =

∫
φ(y)G(x− y, σ)dy (9)

where G(x − y, σ) is the probability density of the internal noise depending on the noise

strength parameter σ. It is important to note that Eq. (9) describes how the noise in the

1D map or in the experimental Poincaré map transforms the noiseless RPD, φ(x), into the

NRPD Φ(x). Note that to evaluate the convolution (9), it is necessary to know φ(x). It is

possible to get φ(x) even in the case of noisy system by applying the noiseless mathematical

framework described in section 2 [23].

In fact, for uniform distributed noise, the integral (9) increments the deterministic value

α in one unit, αn = α+ 1, in the region x ∈ (x̂− σ, x̂+ σ). According with Eq. (7) this also
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changes the value of the deterministic m into a new one, mn, driven by substituting αn in

Eq. (7). The value of x̂ is also shifted by the noise to a new one: x̂n = x̂ − σ. Concerning

with points far from x̂, the value of α in the deterministic case does not change. Note that in

this region the value of m also remains constant [23, 24, 25, 26]. Finally, the noisy function

M(x), just after the first iteration of the map can be expressed by a piecewise linear function

as following

M(x) =


0 x ≤ x̂n

mn(x− x̂n) + x̂n x̂− σ < x < p

m(x− x̂′) + x̂′ x > p

(10)

where the parameter x̂′ must be determined by fitting the data and the point p is determined

by the intersection between the two straight lines in equation of M(x) (10). Note that p is

not a free parameter because is determined by x̂′.

3. Noisy RPD

In this section we compare the previous framework on the reinjection probability density to

two cases; an experimental system and a numerical Poincaré map fitting such experiment.

3.1. Experimental NRPD

To illustrate how Eq (9) is used, let us consider an experimental circuit that can work

with large noise-signal ratio [14]. The corresponding experimental Poincaré map is shown in

Fig. 1.a for a noisy case. It is also shown in this figure (black line) a polynomial approximation

of the experimental map that will be used in following sections.

The NRPD of the Poincaré map of Fig. 1.a is given by Eq. (9), where G(x− y, σ) is the

probability density of the internal noise perturbing the experimental Poincaré map. This

function is in general unknown, however, we can approach it by a uniform distributed noise

as follows

G(x, σ) =
Θ(x+ σ)−Θ(x− σ)

2σ
, (11)

where Θ(x) is the Heaviside step function which is zero for negative argument and one for

positive argument. Now, after evaluating the integral (9), the NRPD reaches

Φ(x) =


0 x < x̂− σ

b
2σ(α+1)

(x− x̂+ σ)α+1 x̂− σ ≤ x ≤ x̂+ σ

b[(x−x̂+σ)α+1−(x−x̂−σ)α+1]
2σ(α+1)

x̂+ σ < x

(12)
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Figure 1. a) Experimental Poincaré map in Blue dots and its analytical approximation in

black line (see main text). Dashes red line shows the three iterations from the maximum to

the laminar region around x = 0. b) Noisy RPD. Dots show the experimental data whereas

continuous line shows the analytical estimation according with Eq.(12). See [14].

.

It was determined in the experiment that σ = 0.013 [14]. With this value, Eq. (12)

reproduces well the experimental data as Fig. 1.b shows. Note that whereas the points near

the maximum xm need three iterations to reach the laminar region around x̂ = 0, we have

made the convolution (9) just once. This is the main difference with respect to the noisy

framework applied to numerical experiments, as we explain in the following section.

3.2. Numerical simulations of the experimental Poincaré map

In this section we compare the previous experimental results on the noisy Poincaré map

with an analytical polynomial function fitting the experimental map as it is shown in black

continuous line in Fig. 1.a. We have choose such map as the lower degree polynomial, having

the same properties than the experimental map as following,

xn+1 = P (xn) = a5 xn
5 + a4 xn

4 + a3 xn
3 + a2 xn

2 + a1 xn + a0 (13)

In this way, we identified some relevant points in the experimental Poincaré map, Bi =

(bi, bi+1) with i = 1, 2, 3, 4, 5 as it is shown in Fig. 2, where it is plotted the map (13) in

yellow continuous line.

Note that we have b1 = xm, and B4 = (0, 0) is the reinjection point of xm. The five

equations

P (bi) = bi+1 i = 1, 2, 3, 4, 5 (14)

together with

5a5 b1
4 + 4a4 b1

3 + 3a3 b1
2 + 2a2 b1 + a1 = 0 (15)
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determine the six parameters ai in P (xn). Note that the last equation is necessary to get

the maximum at B1, because we have chosen b1 = xm. The map (13) is shown in black

color in Fig. 1.a together with the experimental Poincaré map. According with the section
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Figure 2. The yellow line shows the map given by Eq.(13). Black dots are coming from

numerical interactions of the map (17) with σ = 0.013 (see main text). To observe better the

noise effect, the lateral figures show enlargements of the indicated box in main figure.

2, we can determine analytically the RPD for the map (13). Note that P ′(xm) = 0 whereas

P ′′(xm) 6= 0, hence we have q = 1 in Eq.(3) so we get α = −1/2 and m = 1/3. By

construction of the map (13) we have x̂ = 0, so the function M(x) (see Eq. 6) and the RPD

of Eq.(2) is given by

M(x) =
x

3
and φ(x) = b x−

1
2 (16)

Note that the value ofm and α in Eq.(16) provides the analytical description of the reinjection

process referred to the first iteration after the maximum xm (from B1 to B2 in Fig. 2).

However, this result are robust after iteration of the map if the trajectory does not include

point with zero or infinity slope. Figure 3 displays the analytic functions M(x) and φ(x)

(see Eq. (16)) together with numerical simulations of the map (13) showing that the results

of Eq. (16) are robust after three iterations of the map.

Regarding with the noisy case, we introduce an additive external noise to the map (13)

as following

xn+1 = P (xn) + σξn (17)

where ξn is a uniform distributed noise with < ξm, ξn >= δ(m − n) and < ξn >= 0 and σ

is the noise strength. We have used σ = 0.013 in order to compare it with the experimental

case, but this specific value is no relevant for our propose. Figure 2 shows the map (17)
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Figure 3. Numerical iteration of 108 points of the map (13) superimposed to the analytical

predictions (red lines) of Eq. (16) without any data fitting. a) Function M(x), b) RPD φ(x).

.

(black dots) superimposed with the map (13) in continuous yellow line. The enlargement on

the right (left) of the main figure shows the noise effect on the first (second) iteration from

points mapped from a neighborhood of xm. On the right (left) enlargement, the middle blue

dashes line indicate the limit of the deterministic map (13) at the point B2 (B3), whereas

the lateral blue lines delimit the main region affected by the noise with a 2σ (2σ) width.

As in the experimental map, the reinjection is not directly from the maximum xm,

however, contrary to the experimental case, to get the NRPD, we must apply the convolution

(9) step by step, not just once as it was applied in the experimental case.

Hence, for a neighborhood of the pointB2 in Fig. 2, the NRPD is given by the convolution

(9). After integration, we get the following expression

Φ(x) =


0 x > x̂2 + σ

b
2σ(α+1)

(x̂2 − x+ σ)α+1 x̂2 − σ ≤ x ≤ x̂2 + σ

b[(x̂2−x+σ)α+1−(x̂2−x−σ)α+1]
2σ(α+1)

x < x̂2 − σ

(18)

where x̂2 = b2 because the Eq.(18) is referred to the point B2. Note that some signs have

changed with respect to Eq.(12). This is because the reinjection around B2 is produced

in reverse order with respect to the reinjection on x̂ = 0 (see [12] for details). Figure 4

shows numerical estimation of noisy M(x) and NRPD for the map (17) together with its

corresponding analytical estimations given by Eq. (10) and Eq. (18) respectively. Note that

the NRPD shows the typical vertex point at x = x̂−σ [24, 25]. It is important to emphasize

that the vertex point appears at the first iteration given by Eq. (18) because it was obtained

by the integral (9), that involves a no continuous function, hence the result is just continuous

but not differentiable. The vertical middle blue line in Fig. 4.b indicates the asymptotic limit

for the deterministic RPD, whereas the lateral blues lines show the region of 2σ width where

the influence of the noise to the deterministic RPD is stronger. The blue lines are the sames
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Figure 4. Numerical estimations of M(x) and Φ(x) determined by the map (17) with σ = 0.013

near to the point B2 (black color). In red line it is shown the analytical predictions for a)

Function M(x) according with Eq. (10). The blue dashes line indicates the value of p such

equation. b) Noisy RPD according with Eq. (18). The vertical lateral blue dashes show the

limit of the interval x ∈ (x̂2 − σ, x̂2 + σ) in Eq. (18).

that displayed in left enlargement of Fig. 2. Note that NRPD given by Eq. (18) tends to the

b(x̂2 − x)α as σ/(x̂2 − x)→ 0. That is for x << x̂ the function M(x) has the same slope m

than in the noiseless case. Following the previous argument, the new NRPD referred to the

point B3 of Fig 2 is given by the integral Eq. (9) applied to Eq. (18), hence it will produce a

differentiable function. To evaluate the integral we approach the map (13) around point B2

as a linear function with slope κ. After evaluating the integral, the NRPD around the point

B3 reaches,

Φ(x) =

=



0 x < x̂3 − 2κσ

b′
[
(x− x̂3 + 2κσ)α+2

]
x̂3 − 2κσ ≤ x < x̂3

b′
[
(x− x̂3 + 2κσ)α+2 − 2(x− x̂3)α+2

]
x̂3 ≤ x < x̂3 + 2κσ

b′
[
(x− x̂3 + 2κσ)α+2 + (x− x̂3 − 2κσ)α+2 − 2(x− x̂3)α+2

]
x̂3 + 2κσ ≤ x

(19)

where we define b′ = b/[(2κσ)2(α + 1)(α + 2)]. Note that the function (19) is differentiable

just once and tends to the b(x− x̂3)α as σ/(x− x̂3)→ 0. That is for x >> x̂ we recover for

the function M(x) the same slope m than in the noiseless case. This means that the value

of m and α can be found even after noisy indirect reinjection.

In figure 5.a is represented the NRPD given by Eq. (19) together with the corresponding

numerical evaluation. We can observe some differences between numerical and analytical

evaluations that are coming from the linear approximation of the map (17) near the point

B2.
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Finally, by applying the convolution (9) to the NRPD referred to point B3 given by

Eq. (19), we have the NRPD at the unstable point x̂ = 0, which is a twice differentiated

reinjection function (see Fig. 5.b). The analytical expression of this function is very long

so in order to salve space we prefer to omit. Remember that for the experimental case we

found a non differentiable NRPD in the unstable point with a vertex point, similar for the

numerical NRPD referred at B2.
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Figure 5. Numerical estimation of the NRPD referred to the map (17) with σ = 0.013. a)

NRPD near the point B3 of Fig. 2. The red line shows the function (19) with κ = 1.7. The

vertical lateral blue dashes show the limit of the interval x ∈ (x̂3 − 2κσ, x̂3 + 2κσ). b) NRPD

near x̂ = 0.

.

4. Conclusions

Based in the framework presented in section 2 we have evaluated the noisy reinjection proba-

bility density (NRPD) in two cases: an experimental system and its Poincaré approximation

by a 1D polynomial map. We found quite different results between both cases as it is shown

in Fig. 1.b and Fig. 5.b. These differences can be explained because for the experimental

Poincaré map we applied the convolution (9) just once, whereas in the numerical case we

have needed three consecutive evaluations of (9) to get the NRPD. We can conclude that, in

the noiseless case, the analytical map, Eq. (13), fitting the experimental one shows a similar

RPD function, whereas in the noisy case, both maps show different noisy RPD. It remains

as an open question to investigate in which case the experimental system and its numerical

map show a similar RPD even in the noisy case.
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Numerical and analytical investigation of chatter suppression by

parametric excitation

Fadi Dohnal, Wolfgang Hörtnagel, Mariusz Zamojski

Abstract: A concept for increasing process stability during milling is presented
utilizing the time-periodic modulation of the tool support. A simple time-
delayed system describing the effect of regenerative chatter is enhanced by
a time-periodic variation of the support. Such a system leads to entirely new
dynamics. Numerical results of stability charts are discussed in terms of spindle
speed and cut depth and show classic chatter lobes that are modified by the
parametric excitation. This kind of parametric excitation is more general than
the one occurring for varying spindle speed because its frequency is independent
of the cutting frequency of the tool and therefore independent of the spindle
speed and number of teeth. First analytical approximations on the stability of
the modified lobes are benchmarked against numerical predictions. This study
is a preparation for experimental tests.

1. Introduction

Machine tool vibrations affect the wear, tool life and surface quality [9] leading to an increase

of production cost and time. A simple model for chatter is the regenerative effect that is

summarised in [7, 6]. Chatter occurs typically within instability lobes in the spindle speed

diagram. Tools and methods for influencing (shift and distortion) these lobes are discussed

in detail in the pioneering work [2]. Several countermeasures can be derived like tuning the

support and tool stiffness, the cutting feed, the spindle speed, the geometry of the cutter

profile and the number of teeth. The so-called process damping helps also and is always

present in real machines. Another possibility is attaching a passive linear or nonlinear

vibration absorber to the cutting tool as introduced recently in [5]. A semi-active mean was

proposed in [1] in which the bearing stiffness of the spindle was modulated time-periodically

showing an increase in damping. Active means in this context employ piezoelectric actuators

mounted on the workpiece directly, see for example [3].

All these measures have benefits and drawbacks and a successful implementation depends

strongly on parameters like machine throughput and complexity of the cut which directly

translates into cost and time. The present contribution addresses the regenerative effect in

metal cutting as defined in [7] but extends the system with a time-harmonic modulation of

the support stiffness of the cutting tool. The reason for this is motivated by the observation

of parametric anti-resonances in [4].
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2. Regenerative effect

The simplest mechanical model for regenerative chatter is shown in Fig. 1. The equations

of motion of this single degree-of-freedom model of a cutting tool in turning machinery is

given by

mẍ+ cẋ+ kx = Fx (1)

where m is the mass, c the damping coefficient and k the stiffness coefficient of the cutting

tool. The workpiece is assumed to be rigid. Fx is the component of the cutting force in the

cutting direction. It can be expressed by the empirical power law [2]

Fx(t) = Kx w h
r(t) (2)

where w is the chip depth, Kx is the cutting force coefficient, r the cutting force exponent

and h(t) the time-dependent chip thickness

h(t) = vfτ + x(t− τ )− x(t) (3)

Choosing r = 3/4 and expanding the cutting force Fx and the tool displacement x into its

Taylor series around h0 = vfτ yields the linearized, delayed equations of motion in x̃ with

constant coefficients (see [7, 5] for more details)

mẍ+ cẋ+ kx = k1 (x(t− τ )− x(t)) (4)

Figure 1. Mechanical system according to [6].
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Figure 2. Stability chart for chatter tool with constant support characteristic: direct

numerical simulation in comparison with analytical prediction in eq. (7).

or

ẍ+ 2ζωnẋ+ ω
2
nx =

k1

m
(x(t− τ )− x(t)) (5)

where ζ = c/(2
√
km) and k1 = 3/4Kx w h

−1/4
0 and tilde is omitted. Analytical stability

conditions can be derived for predicting the onset of unstable vibrations (instability lobes)

as described in more detail in [7]. Inserting the ansatz x = A exp(λt) yields a complex-valued

characteristic equation. Evaluated at λ = iω gives the stability limit curves

−ω
2 + ω

2
n +

k1

m

(

1− cos(ωτ )
)

= 0, 2ζωnω +
k1

m
sin(ωτ ) = 0 (6)

These equations can be transformed to ([7, 5])

k1,cr =
m

2

(ω − ωn)
2 + (2ζωnω)

2

ω2 − ω2
n

, ncr =
30ω

jπ − arctan

(

ω2
− ω2

n

2ζωnω

) j = 1, 2, . . .
(7)

System parameters for an example system are chosen from [7] and are listed in Table 1.

The direct numerical integration of the equations of motion in eq. (4) in the parameter

space n-k1 is shown in Fig. 2. Green dots indicate a stable and red dots an unstable system

response. The analytically predicted stability limits in eq. (7) fit perfectly.
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Table 1. System parameters for example system taken from [7].

symbol value

m 347 kg

k 97·106 N/m

c 9173 Ns/m

3. Regenerative effect at time-harmonic modulation of the tool stiffness

We add in the system in eq. (4) a time-periodic modulation of the tool support stiffness

mẍ(t) + cẋ(t) + k
(

1 + ε sin(ΩPEt)
)

x(t) = k1
(

x(t− τ )− x(t)
)

(8)

This is a generalisation of the commonly studied delayed differential equation with para-

metric excitation because we assume that ΩPE 6= 60/τ , i.e. the frequency of the parametric

excitation is not a multiple of the spindle speed. A parametric excitation introduces in gen-

eral a modulation of the system response that leads to side-bands in the frequency spectra,

see e.g. [4]. The focus of our investigation lies on the stability boundary in the parameter

space, more specifically the distortion of the stability boundary in Fig. 2 by the newly intro-

duced parameters ε and ΩPE in eq. (8). The stability boundaries at ε = 5% and ε = 10% at

an arbitrarily chosen parametric excitation frequency ΩPE = 40 rad/s are shown in Fig. 4.

The stability boundaries show a shift towards higher values of k1 (larger cutting depth) in

the vicinity of 570 rpm. The chosen value of ΩPE is indicated by the vertical solid line nPE

while the beneficial region lies at nopt.
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Figure 3. Time histories of chatter tool at 600 rpm at stability boundary: (left) constant

tool stiffness (ε = 0%) at k1 = 5.24 · 106 N/m, (right) time-periodic tool support (ε = 5%) at

k1 = 5.75 · 106 N/m and ΩPE = 40 rad/s.
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Figure 4. Stability chart for chatter tool with support stiffness modulated at 40 rad/s:

(top) ε = 5%, (bottom) ε = 10%.
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Two exemplary time histories are shown together with their frequency content in the

steady-state region in Fig. 3. This comparison confirms the frequency modulation induced

by parametric excitation at ω ∓ ΩPE . Increasing the strength of the time-periodicity by

increasing ε also leads to sidebands at ω ∓ jΩPE for j = 1, 2, . . .. The analytical stability

boundary is approximated by applying the method of harmonic balance [8]. The observation

above allows for the following ansatz

x(t) = c0e
iωt + c1pe

i(ω+ΩPE)t + c1me
i(ω−ΩPE)t + complex conjugate +O(ε2) (9)

For achieving convergence we assume that c0 is of order 1 and c1p,1m of order ε. Inserting

eq. (9) into eq. (4) and collecting coefficients of the exponential functions ∓iωt, ∓i(ω∓ΩPE)t

yields









g(ω) εk/2 εk/2

εk/2 g(ω +ΩPE) 0

εk/2 0 g(ω −ΩPE)

















c0

c1p

c1m









= 0 (10)

with the abbreviation

g(ω) = k −mω
2 + iωc+ k1

(

1− e
iωτ

)

(11)

An equivalent set of equations is obtained for the complex conjugate coefficients ci which is

omitted here. The corresponding characteristic equation for a non-trivial solution in eq. (10)

reads

4g(ω) g(ω +ΩPE) g(ω − ΩPE)− ε
2
k
2
(

g(ω +ΩPE) + g(ω −ΩPE)
)

= 0 (12)

The numerical evaluation of this stability boundary matches well with the point-wise nu-

merical time integration of the system in Fig. 4. However, the expressions are cumbersome

and further simplifications are needed.

For the numerical values in Table 1 and Fig. 4, the parametric excitation frequency is

close to the natural frequency of the system which justifies a Taylor expansion of the form

ḡ

(

1±
ΩPE

ω

)

= ḡ(1)±
(

− 2mω + i
(

c− k1e
iωτ

)

)

ΩPE +O

(

ΩPE

ω

)

(13)

which approximates eq. (12) to

g(ω)2 −
(

− 2mω + i
(

c− k1e
iωτ

)

)2

Ω2
PE − ε

2
k
2
/2 ≈ 0 (14)

This equation can be rearranged to a quadratic polynomial in k1

a2(ωτ,Ω
2
PE) k

2
1 + a1(m, c, k, ω, τ,Ω2

PE) k1 + a0(m, c, k, ω,Ω2
PE)− ε

2
k
2
/2 ≈ 0 (15)
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with coefficient functions ai(·). Evaluation of eq. 15 for the system parameters chosen in

Table 1 and ΩPE = 40 rad/s and 570 rpm gives a lower limit of k1,cr ≈ 9 · 106 N/m for both

values of ε. This fits well to the stability boundary curves shown in Fig. 4 close to the speed

nopt. Finally, the approximate relation in eq. (14) can be evaluated for finding the necessary

parametric excitation frequency ΩPE at given system and operation parameters.

4. Conclusions

The mitigation of regenerative chatter using a time-periodic support of the tool was investi-

gated. The model equations and analytical stability limit curves of the classical regenerative

chatter model are revisited and extended to a delayed and parametrically excited equation

of motion. The frequency of parametric excitation in chatter vibrations is usually assumed

to occur at a multiple of the spindle speed, depending on the number of tool teeth. In the

present work we deliberately introduce a parametric excitation frequency ωPE which is in-

dependent of the tool speed. This first study shows that such a time-modulation is capable

of distorting the stability limit curves and creating large regions of larger cutting depths for

certain speed intervals. Further investigations are needed for improving the quality of the

analytical prediction and for experimental validation of the benefit of the proposed concept.
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On features of the contact model of an elastic brake shoe with a 

wheel  

 

 

Marat Z. Dosaev  

Abstract: A mechanical system consisting of a wheel rotating around a fixed point and 

a brake shoe fixed by a cylindrical joint is considered. The flexibility of the shoe is 

modeled using a “small” body-platform, attached to the shoe by means of an elastic 

spring. The shoe is pressed against the wheel using a pusher device located at a point 

opposite to the cylindrical hinge. A constant torque is applied to the wheel. The 

contact between the shoe and the wheel occurs with Coulomb friction. Nonlinear 

equations of motion of the mechanical system are obtained. The linearized dynamic 

system is a system of variable structure of the 3rd order. The variability of the 

structure gives the system properties that are characteristic for nonlinear systems. A 

second-order system describing the rotation of the shoe is separated. In this system, 

depending on the mode of the motion, there are several special points. A numerical 

simulation of the dynamic system in the in the neighborhood of singular points has 

been carried out in order to identify the features of the behavior of a mechanical 

system. Two characteristic types of motion were found: damping of the oscillations of 

the shoe after the wheel stopped, and oscillations of the shoe with increasing 

amplitude and simultaneous “rattling” of the wheel with constant amplitude and 

frequency. In particular, it is shown that due to dry friction in the presence of torque, 

the shoe begins oscillating even from the position of static equilibrium. 

1. Introduction 

The problems of the motion of mechanical systems with dry friction attract the attention of scientists 

in both fundamental and applied aspects. One of these problems is the contact of a brake pad (shoe) 

with a wheel. A.I. Neymark and N.V. Fufaev [1] suggested adding an additional viscoelastic element 

that would model compliance in the vicinity of the contact. In the work [2] V.A. Samsonov 

considered the model problem of the interaction of a wheel with a brake shoe, in which he discussed 

possible problems associated with the phenomenon of “shock of friction”, and drew attention to such 

parameter values at which the problem of searching for constrain reactions has an infinite number of 

solutions. The main conclusions for the paradoxical range of parameters value were confirmed 

experimentally in [3]. In [4], a nonlinear statement of the problem of the contact of a brake shoe with 

a wheel at two different points was proposed. For the case of different stiffnesses of modeling springs, 

conditions are found under which self-oscillations with increasing amplitude are possible. 
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In this work, in addition to a visco-elastic element simulating material compliance in an area of a 

contact of a wheel with a brake shoe, an elastic force acts on the shoe from the side of a pusher 

pressing the shoe against the wheel. It is shown that in the case of a small coefficient of friction, and 

in the case of a large one, the braking process of the wheel can be nonmonotonic for wide range of 

other parameters. 

2. Problem statement 

Let us consider a mechanical system (Fig. 1) of the wheel B of radius R rotating around the fixed 

point O1 and the rectangular brake shoe A of mass m fixed with the cylindrical hinge at point O2. The 

brake shoe length is equal 2b and width is equal a. 

 

Figure 1.   Mechanical system: brake shoe A, wheel B, body-pad C. 

We model the flexibility of the brake shoe in the direction normal to its surface. For this purpose, 

following [1], we place a viscoelastic spring (spring 1), with a sufficiently large stiffness coefficient 

k1 and viscosity coefficient h1, between the brake shoe and the wheel. We attach one end of the spring 

to the shoe, and to the other end we attach the "small" body-pad C, which can move relative to the 

shoe along the normal to the contact surface. Body C simulates the inertial properties of the deformed 

part of the brake shoe. We assume that the brake shoe is pressed against the wheel using a device 

located at a point opposite to point O2. To simulate the compliance of the brake shoe in this area, to 
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the brake shoe in point M2 we attach another small spring (spring 2) with sufficiently large stiffness 

coefficient k2 and viscosity coefficient h2. The other end of the spring 2 is mounted to the pusher D. 

The mass and dimensions of the body C, as well as the lengths of the unstrained springs, are 

negligible. In the process of interaction, brake shoe B turns slightly, but for simplicity we assume that 

the platform C keeps its orientation. Let us assume that at the moment of contact with the wheel, the 

spring 1 is in an undeformed state, and the spring 2 is compressed by the distance l. This means that 

from the side of the spring 2 a certain force constantly acts on the brake shoe. On the contrary, from 

the side of spring 1, the compression force of the spring acts on the brake shoe only during the contact 

of body C with the wheel. Thus, a unilateral constraint is superimposed on body C at point M1. We 

introduce a fixed coordinate system O2хyz. The O2x and O2y axes are directed along the sides of shoe 

at the moment of contact, the O2z axis complements the coordinate system to the right-handed one. 

The position of the brake shoe is set using the angle   of rotation of the brake shoe around the hinge 

O2. The angle is counted counterclockwise. At the moment when the body C touches the wheel 0 

, and this contact is possible only with negative values of the angle  . The orientation of the wheel is 

set by the angle   of wheel rotation around the hinge O1. The angle   is the cyclic coordinate.  

We assume that the torque M acting upon the wheel B is constant. Let us describe the forces acting 

on the brake shoe. From the side of the spring 2, the force N2 acts on the brake shoe. From the side of 

body C, a force of compressed spring and the lateral reaction L act on the brake shoe. The interaction 

between body C and the wheel B is described by the forces of normal pressure N1 and tangential dry 

friction T1, determined according to the Coulomb law with a friction coefficient f. Due to the small 

mass of the body C (it is in equilibrium), we assume that L = T1.  

So, three following forces act to the shoe contacting with the wheel: 

1 1 1 1 1 1

2 2 2 2 2 1

1 2
1

( ) ,

( ) ,

0
,

/ 0

k l h l N

k l h l N

fN
T

M R





      

    


  



1 x

2 x

1 y

N e e

N e e

e
T e

 (1) 

where 1 2,l l   are the springs deformations, 1 2,l l   are the deformation rates of these springs, M is 

the z-component of the torque M acting to the wheel,   is the angular velocity of the wheel, 

( 1,2,3)i ie are unit vectors of coordinate system O2хyz.  
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3. Dynamic system 

We write down the equations of motion using the angular momentum theorem in case of rotation 

about a fixed axis. 

2 2 2

1

1 1 2 1

2 1

( ) ( ) ( ),

( ),

O O O

O

J M N M N M T

J M M T





  

  
 (2) 

where 1J , 2J   moments of inertia of the shoe and the wheel around axes of their rotation 

correspondingly, 
2 2 2

1 2 1( ), ( ), ( )O O OM N M N M T  are z-components of the moments 

( ) , 
2

O 1 2 1 1M N O M N ( ) , 
2

O 2 2 2 2M N O M N ( )  
2

O 1 2 1 1M T O M T  of the forces (1) 

correspondingly, and 
1

1( )OM T  is the z-component of the torque 
1
( )  O 1 1 1 1M T O M T . 

We calculate the corresponding values of the moments of forces: 
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where 1 1,x y  are coordinates of vector 2 1O M and 2 2,x y are coordinates of vector 2 2O M in the 

coordinate system O2хyz correspondingly.  

After linearization of the system (2), assuming that the angle   and angular velocity   are small, for 

case of rotating wheel we obtain the following dynamic system of variable structure: 

 

 

2
1 1 2 2 1 1

1

2 2

1 1
2

( ) 2 ( 2 ) 2 ( ), 0

2 ( 2 ) 2 , 0

( ) , 0

, 0

b k h b k l b bh abf k h if
J

b k l b bh if

M fb k h R if
J

M if

      


  

  




       
 

   

  
 



 (3) 

Note that system (3) does not have an equilibrium position. However, the separable first equation of 

(3), which describes the motion of the brake shoe, has fixed point. We represent this equation in the 

120



standard form: 2 1 0 0a a a      , where summand 2a   constitutes the dissipative force, 1a   is 

the potential force, 0a  is the constant force. If   does not change its sign, then the solution to this 

equation can be written as follows: 

1 2

1 2 0 1 1 1,2( ) / ; 0, 0,t tt C e C e a a a        (4) 

Where 1 2,C C are unknown constants, 1,2  are eigenvalues of the homogeneous equation.  

4. Contact with rotating wheel 

Consider the range of values 0  , body C touches the rotating wheel. In this case: 

*
0 1( ) / ,t a a     (5) 

is a fixed point of the first equation of (3). If the friction is low af b  then 1 0a  , 2 0a  . The 

elastic potential force limits the motion of the brake shoe, the presence of dissipation leads to the 

damping of the resulting oscillations. For the great enough friction: 1 2 1( 4 ) ( )f b k k ak  , the 

coefficient 1a  becomes negative, and the elastic force becomes repulsive. For 1 2 1( 4 ) ( )f b h h ah 

the coefficient 2a is negative, that leading to antidissipation. For the sake of simplicity we consider 

the case of elastic springs without viscosity 1 2 0h h  . Then 2 0a  . 

System (3) takes the form: 

2
1 1 2 1

2 1

2 ( 2 )J b k bk l b abfk

J M fbk R

   

 

    

 
 (6) 

The eigenvalues of the first of equations (6) are  

1,2 1 1 2( ( ) 4 ) / .a b k b af bk J          (7) 

For small friction, when af b , the radical expression in (7) is negative, and the eigenvalues are 

conjugate purely imaginary values. Solution (4) is oscillations around a fixed point (5) with the period 

1 2 12 / ( ( ) 4 ) /T b k b af bk J   . Consider the simplest case of equal spring stiffnesses: 

1 2k k k  . Then equations (6) take the following form: 

1

2

( 2 ( 5 ) )J bk l af b

J M fbkR

 

 

   

 
 (8) 
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As mentioned above, the first equation (8) has the fixed point; expression (5) for this point can be 

simplified: 

*( ) 2 / ( 5 ).t l af b     (9) 

The purely imaginary eigenvalues (7) are also simplified: 1,2 1 1(5 ) / .bk b af J i        The 

solution of the first equation (8) looks like following: 

1 1 2 1( ) sin( ) cos( ) 2 / (5 ),t C t C t l b af       (10) 

*
1 0 1 2 0 0/ , 2 / (5 ) .C C l b af         

 

We substitute the solution (10) into the second equation of (8) and obtain a linear inhomogeneous 

equation. Let the shoe be stationary at the initial moment of time and 0(0)  . The solution of the 

second equation of (8) is following:  

2 1 0
2 1 2

2
( ) sin( ) ( )

5

fbkR t lfbkR
t C t M

J J b af
  


   


 (11) 

If the brake shoe is close to its equilibrium position, then the first term of the right-hand side of (11) is 

small, and the sign of the right-hand side of (11) depends on its second term.  

5. Nonmonotonic process of braking of the wheel  

For simplicity, we assume that the brake shoe is in equilibrium 
*  . The angular speed of the 

wheel will decrease only if the condition is met:
2

.
5

lfbkR
M

b af



 Let this condition be met and see how 

the shoe will move henceforth. Some time later, the wheel will stop. At this moment, the friction will 

instantly change, and became to be equal M/aR. The equilibrium position of the shoe will also 

change:
** 2( ) ( / 2 ) (5 ).t Ma R bkl b k     It can be shown that 

** * 0   . The shoe will move 

to its new equilibrium position, that is, it will begin to move away from body C. The shoe speed will 

grow and shoe will slip the new equilibrium position 
**  . The contact of body C with the wheel 

is unlikely to be lost. When angle  reach value 1  / ( )M fbkR    , the friction will no longer 

hold the wheel, and under the influence of the torque M, the angular velocity of the wheel will begin 

to increase. A sliding motion will start. So, the balance position of the shoe will again change. The 

brake shoe will begin to press against the body C and the wheel. After some time, the wheel braking 

process will begin again. Since the gained angular velocity of the wheel may not be large enough, the 

shoe may not reach its equilibrium position, when the wheel stops again and the balance position of 
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the shoe changes again. Thus, even with low friction, the braking of the wheel can be nonmonotonic. 

The example of numerical calculation of dynamic system presenting such nonmonotonic behavior is 

shown in Fig.2. The left hand side of Fig. 2 presents the phase plane for angle  . The right hand side 

of Fig. 2 shows time-dependence of the angular speed of the wheel. Initial conditions for calculations 

are following: (0) 0, (0) 0, (0) 1     . 

 

Figure 2.   Calculation of trajectory of dynamic system. 

In the first stage of motion, the shoe start oscillations around the balance position 
*  , the wheel 

angular speed decreased (the red curves). When the wheel stops (green curves), the shoe starts to 

move around the balance position 
**  . After some time, when the angle  reach the value 

1  , the wheel starts rotation (blue curves), but due to increasing friction stops again. The 

amplitude of such “wrenching” motion of the wheel increases. 

6. Conclusions 

We have shown that even with low friction, the braking of the wheel can be nonmonotonic. In 

describing this process, we assumed that at its beginning the brake shoe was in its equilibrium 

position for the case of the moving wheel. If we took into account the natural vibrations of the brake 

shoe, the braking process would be even more nonmonotonic. With a certain selection of parameters, 

the existence of cyclic trajectories of the system is possible. 

Note that similar cyclic processes are possible with high friction. As pointed out by 

S.S. Grigoryan in [5], when the pressure between the brake shoe and the wheel reaches a certain 

sufficiently large critical value, the friction coefficient can decrease sharply. In this case, the shoe 

"bounces" from the wheel. During the time until the shoe comes into contact with the wheel, on the 
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one hand, the wheel will acquire some speed and will accelerate until the next contact, on the other 

hand, the contact of the wheel and the brake shoe will begin with low pressure, and the friction 

coefficient will be restored.  
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Friction coefficient estimating in problem of planar motion of a 

friction-powered robot  

 

 

Marat Z. Dosaev, Vitaly A. Samsonov, Shyh-Shin Hwang 

Abstract: The design of the robot, driven by friction against the surface of the support 

and displacement of internal masses, is considered. The robot has one unbalanced 

rotor and one flywheel. A mathematical model of its plane-parallel motion is 

constructed. Friction is modeled using Coulomb's law. Angular accelerations of 

rotating structural elements are selected as control functions. To implement the 

forward translational motion of the robot, it is necessary to know the coefficient of 

friction of the body against the surface of the support. An algorithm for estimating this 

coefficient is proposed. 

1. Introduction 

 In recent years, there has been growing interest in the development of new types of robotic 

devices that are driven by internal masses and internal forces. The applications of such a system are 

quite widespread, such as the use of the robot in hard-to-reach places, in aggressive environments, in 

various types of pipes; the use of microrobots in medicine for accurate diagnosis or drug delivery 

directly to the treatment site inside the body, etc. 

 Chernousko ([1-3]) made a significant contribution to the study of vibration robots. In particular, 

together with Shmatkov [4] he recently considered the two-dimensional problem on the fastest turn of 

a rigid body by moving an internal mass. To determine unknown variables, they proposed numerical 

calculation of two nonlinear scalar equations based on boundary conditions.  

 The dynamics of a two-link robot with unbalanced vibration exciters was considered in [5]. For 

the case of small friction the averaging method was used. The three-linked robot was analyzed in [6]. 

It was noticed that the phase shifts among the internal excitations play a significant role in the 

appearance of stick–slip motions.  

 Another interesting object that uses friction to move is a ball-robot. Many different versions of 

ball-robot designs are proposed (for example, [7-9]). A spherical robot with an axisymmetric 

pendulum actuator on an inclined plane is considered in [9]. It is shown that the steady solutions exist 

only at an inclination angle less than some critical value and only for constant control action. 

 Rotation of the body with internal masses on a rough plane was considered in [10]. Cases of a 

hard horizontal disk and two material points as internal movable masses are analyzed. 
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 A vibration-driven system, which consists of a rigid body with an internal mass that uniformly 

circular moving inside the body, was considered in [11]. It was shown that there always exists a 

periodic mode of motion. 

 In [12], a robot design with one unbalanced rotor was considered for accelerated angular motion 

of the rotor. A method for constructing a control algorithm was proposed, which ensures the straight-

line motion of the robot on a rough surface.  

 A vibration robot with two unbalanced rotors was considered in [13]. Trajectories of the center of 

mass of the robot obtained numerically using various ratios of angular velocities.  

In [14], a design of an inertial robot with one unbalanced rotor and one flywheel was proposed. The 

plane mathematical model of the mechanical system was constructed. A control algorithm was 

developed, at which the body moves in a given direction.  

 This work continues the paper [14]. We assume that dry friction acts between rectangular body 

and rough horizontal plane. We model friction using Coulomb's law. To organize a motion of the 

body to needed direction it is necessary to know a coefficient of friction. An algorithm for estimating 

the friction coefficient is proposed. 

2. Problem statement 

We consider the mechanical system consisting of three links: the rectangular robot body 1 itself, the 

uniform round cylinder 2 (flywheel), and the crank 3 (Fig. 1).  

 

Figure 1.   Mechanical system. External and internal forces. 
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The boundaries of body 1 in Fig. 1 are shown by a dashed line. The cylinder is driven by the 

motor around point A. The rod (crank) BC of length r rotates by another motor around point B. 

Consider that the body can perform a plane-parallel motion along a rough supporting surface.  

The body slides on a horizontal plane, touching it with its rear edge (point P). The point S is the 

center of mass of the body 1. For simplicity, we assume that the mass of the rod is concentrated at 

point C. Other geometrical parameters are as follows: PE a , AE BD b  , AS SB c  .   

We consider the following external forces acting on the system:  the gravity forces of each 

element of the system: 1M g , 2M g , 3M g , as well as the normal reaction force N  of the support and 

the friction force frF . Here , ( 1,2,3)iM i   are masses of the body 1, flywheel 2 and crank 3 

correspondingly, g  is the gravity acceleration. The reaction force N  and the friction force frF  are 

applied to the body at point P, with the exception of the case when the lower edge of the body is in 

full contact with the reference plane. In this case, the point of application of the reactions is unknown. 

Let us describe the internal forces acting between the elements of the system: 

1. The motor torque 12m  acts from the body on the flywheel 2. Accordingly, the torque 

21 12m m 
 
acts from the flywheel on the body.  

2. The motor torque 13m  acts from the body on the rod BC. Accordingly, the torque 31 13m m 

acts from the rod upon the body. 

3. Reaction force 12 21F F  acts from the body to the flywheel. Hereinafter it is indicated ijF is 

the force with which the i-th body acts on the j-th body. 

4. The reaction force 13 31F F  acts from the body 1 to the rod 3.  

The mechanical system has 4 degrees of freedom. The system position is set by the following 

four coordinates: the cyclic coordinate x sets the position of the contact point P between the body and 

the supporting surface;  is the angle between the horizontal and the lower edge of the body;   is 

the cyclic angle of the rotation of the flywheel around point A;   is the angle between the straight 

line BD fixed in the body and the rod BC. The velocity PV of the contact point P is horizontal. PV x  

3. Dynamic system 

The system of equations describing the behavior of the mechanical system in consideration can be 

obtained from the theorem of the center of mass motion and the angular momentum theorem. In the 

dimensionless form, for the case 0   the dynamic system looks as follows: 
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2

20 30 0 0 30 0

2

20 30 0 30 0

30 0 0 30 0 0 0 30 0

20 0 20 30 30 0 0 0 0 0

(1 ) ( cos sin )

1 ( sin cos )

cos ( sin ) sin

( cos )

fr

NR

m m x F m r

m m N m r

m r x m r r c m r

J c m m m r N x b N

   

   

   

  

       

     

     

     

. (1) 

 

Here: 20 2 1 30 2 1/ , /m M M m M M  , 0 0 0/ , / , / ,b b a c c a r r a    2

0 2 1/ ( )J J m a  is the 

dimensionless moment of inertia of the flywheel, *2

0 1/ ( )N Nt m a  and *2

0 1/ ( )fr frF F t m a  are the 

dimensionless normal reaction and the dimensionless friction correspondingly, 
*t  is the characteristic 

time, 0 /NR NRx x a , NRx a c  is the unknown arm of the normal reaction,   is the friction 

coefficient between body and supporting plane. The prime means differentiation by dimensionless 

time / /t a g  . 

4. Determination of the coefficient of friction between the plane and the body. 

To evaluate the coefficient of friction, we place an accelerometer measuring horizontal acceleration 

on the robot body. We fix the cylinder 0   . Consider the following motion:  

In the initial position, the body is at rest, the crank is at rest in the lower position. To start the motion 

we set maximum angular acceleration to the crank. Since when the crank moves up, the body will be 

pressed harder to the surface, then the vertical motion of the body will not occur. On the other hand, if 

there were no friction, then the body would immediately begin to move horizontally, maintaining the 

position of the center of mass of the system. We assume that the angular acceleration of the crank is 

sufficient to overcome the friction, the body begins to move.  

The equations of this motion can be obtained from the theorem on the motion of the center of mass of 

a mechanical system: 

2

1 2 3 1 2 3 3

2

1 2 3 3 1 2 3

( ) ( cos sin )

( sin cos ) ( )

S A C fr

S A C

M x M x M x M M M x M r F

M y M y M y M r N M M M g

   

   

         


       

. (2) 

From the second equation of (2) we can determine the normal reaction. At the moment when the body 

begins to move, we use the accelerometer to measure its acceleration. Then the coefficient of friction 

can be obtained from the following formula: 

2

1 2 3 3( ) ( cos sin ) /M M M x M r N            . (3) 

To clarify this coefficient, we carry out such a process several times. As an estimate, we take the 

average value of the obtained friction coefficients. Knowing the friction coefficient it is possible to 

construct a control algorithm that provides a plane-parallel motion of body in the given direction. 
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5. Realization of the control algorithm 

Let us construct the trajectory of the mechanical system along which the body will translationally 

move along the plane in a given direction. The trajectory can be obtained by numerical simulation. 

The example of such trajectory is presented by blue curve on the phase plane as dependence of 

angular speed  on the angle   (Fig. 2). Parameters for the calculation were chosen as follows: 

20 30 0 0 00.2;  0.2;  1; 1; 1; 1.m m r c b         

We assume that the angular acceleration   can be set in such a way that the third equation of (1) 

holds for different values of other variables. To prevent rotation of the body, we also control the 

following inequality: 0 01NRx c  .  Under these conditions, the first two equations of the system (1) 

are separated. Below we will consider only these two equations. To satisfy the condition 0N  , from 

the second equation of (1) we obtain the following equation: 

2 20 30

30 0

(1 )
sin cos

m m

m r
   

  
   . (4) 

 

Figure 2.   Phase trajectory of the angle   providing the translational motion of the body. 

The solution of the equation (4) looks as following: 

20 30220 30

30 0 30 0

2(1 )(1 cos )1
arccos( 1 ),

2 sin

m mm m
t

m r m r


 



   
    . (5) 

This dependence is shown by black solid curves in the Fig. 2.  

In the initial position, the body is at rest, the crank is at rest in the lower position. To start the motion 

we set crank angular acceleration such a way that after some time angle   and angular speed   

satisfy the second expression of (5). Then the rotation of the crank is such that the relation (5) is 

satisfied, that is, the condition 0N   is met. During these two stages the body continues to be at rest. 
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When the angle   reaches some value 
* *, 2     . At the moment we “switch” the angular 

acceleration of the rod. In example shown if Fig. 2 we change the sign of the angular acceleration to 

the opposite and increase its absolute value. The reaction ceases to be equal to zero, and the body 

starts moving in the desired direction. The angular speed   decreases rapidly. When   decreases 

more than two times, we switch off the angular acceleration: 0  . The angle   continue 

increasing and still approaching value 2  . At the same time the speed of the body decreases, and 

the body stops. 

During next stage the body is motionless again. To ensure this immobility, the friction force must be 

less than the sliding friction force, that is, the following inequality must be satisfied: 

0 0.frF N  (5) 

The friction force value 0frF  and the support reaction N can be obtained from the first two equations 

of (1): 

2

0 30 0

2

0 30 0 20 30

( cos sin )

( sin cos ) (1 )

frF m r

N m r m m

   

   

  

     
 

We wait for the moment, when 2  , and then “turn on” the angular acceleration of the rod again. 

In example presented in Fig. 2 we set the angular acceleration   linearly dependent on time. Such 

mode of acceleration increase is enough to provide needed values of the angle   and the rod angular 

velocity   satisfying the curve (5). Checking condition (9), we control that during the process the 

speed of the body is zero. Later the trajectory passes along the curve (8). After some time the angle 

becomes equal to
* , and the system comes to the state that is identical to the initial conditions of the 

previous stage. 

6. Conclusions 

The design of the inertial robot containing one unbalanced rotor and one flywheel is considered. 

A mathematical model of its plane-parallel motion is constructed. Angular accelerations of rotating 

structural links are used as control functions. The procedure is proposed for estimating the friction 

coefficient between the robot body and the supporting plane. The control algorithm for providing the 

motion of the robot body in needed direction is proposed using obtained friction coefficient value. 

The numerical calculation was realized. For chosen set of parameters the forward translational motion 

of the body is realized. 
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Condition evaluation of components of multi-parametric space

determining the evolution of carcinogenesis in biological

systems

Larysa Dzyubak, Oleksandr Dzyubak, Jan Awrejcewicz

Abstract: The multi-parametric space ‘number of tumor cells – tumor cell volume –
glucose level – diffusion saturation level’ and its corresponding 3D initial state space
components were studied. It was shown that the choice of parameter sets from this
space  controls  the  carcinogenesis  in  biological  systems.  The  model  describing
interactions  of  the  tumor  cells,  matrix-metalloproteinases,  matrix-degradative
enzymes and oxygen was used to simulate the nonlinear multi-scale cancer invasion.
The  technique  based  on  wandering  trajectories  analysis  was  applied  to  quantify
chaotic  cancerous  attractors  in  the  studied  model.  Presented  are  the  results  of
evaluation of conditions in all control parameter planes as well as the modes to inhibit
and/or stabilize carcinogenesis. 

1. Introduction 

This work is a continuation of the study presented in [1] where, based on the performed analysis of

the mathematical model describing the tumor development in a biological system, the parameter sets

resulting in occurring cancer chaotic attractors have been found in control parameter plane ‘number of

tumor cells versus diffusion saturation level’. Also it was ascertained a significant influence of the

biological system initial state to carcinogenesis and it was illustrated by regions in phase planes of

initial conditions. The obtained resluts allowed under definite conditions a controlling and stabilizing

unpredictable behavior of metabolic reactions and suppressing carcinogenesis. 

It  should  be  noted,  that  the  contradictions  found in  the  recent  literature  (it  is  reported,  for

instance,  in  [2])  concerning  to  an  influence  of  glucose  level  and  oxygen  concentration  on

carcinogenesis can be explained not only by fact that in those studies the initial state of the biological

system was not taking into account, but also that a mutual influence of all components of the multy-

parametric space of the models studied was not taking into account. In the present work a significant

and complex mutual influence of all components of the multy-parametric space ‘number of tumor

cells – tumor cell volume – glucose level – diffusion saturation level’ as well as of the 3D initial state

space  components  on  inhibition/amplification  of  carcinogenesis  in  biological  systems  was

ascertained.  The evolution of conditions conducive to cancer  invasion was defined depending on

parameters of the multy-parametric space. 
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2. Mathematical model

Cancer is generally defined as a malignant tissue growth resulting from an uncontrolled division of

cells [3]. In the model studied in this work, the tumor development is governed by the inhomogeneous

dissipative set of differential equations [4–7, 2]:

ṅ=0,  (1)

ḟ =αη(m− f ) , (2)

ṁ=βκn+ f (γ−c )−m, (3)

ċ=ν f m−ωn−δ ϕ c , (4)

where  n denotes the tumor cell density,  f is the matrix–metalloproteinases (MM) concentration,  m

corresponds  to  the  matrix-degradative  enzymes  (MDE) concentration,  and  c denotes  the  oxygen

concentration. Parameters α is a tumor cell volume, β – glucose level, γ – number of tumor cells, δ –

diffusion saturation level; η and κ are coefficient that characterise the growth and decay of MM and

MDE concentration respectively; υ , ω, φ are parameters that govern growth and decay of the oxygen

concentration. 

The model (Eqs. 1–4) possesses three chemical equilibria 

m1,2,3
e = f 1,2,3

e =A+B ,− A+ B
2

± A−B
2

√−3 ,  (5)

c1,2,3
e = 1

δϕ (ν( f 1,2,3
e )2−ω n) , (6)

A=
3√−q

2
+√q 2

4
+ p3

27
, B=

3√−q
2
−√ q2

4
+ p3

27
, (7)

p=δϕ
ν (1−γ−ωn ) , q=δϕ

ν β κn . (8)

As mentioned in [8] pertaining to the self-organizing chemical systems: as soon as the product  is

also a part of the same chemical reaction, the system can express unstable behaviour which can be

controlled by the reaction parameters. Depending on control parameter values and initial conditions,

the  considered  biological  cancerous  cell  system can  also  approach  different  states:  a)  stationary

equilibrium state where any changes are damped; b) stable periodic chemical process or so called

‘chemical clock’ (a limit cycle); c) state of chemical instability with chaotic behaviour of MM, MDE

and oxygen concentrations. 

3. Numerical results

Cancer chaotic attractors  exist  within certain parameter ranges of mathematical model (Eqs.  1–4)

describing the tumor development  in  a  biological  system.  In this  section  multy-parametric  space
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‘number of tumor cells – tumor cell volume – glucose level – diffusion saturation level’ is studied. To

quantify conditions for carcinogenesis the technique based on the wandering trajectories analysis [9,

10, 1] was applied. 

After a discretisation of the multy-parametric space, the governing equations (Eqs. 1–4) are twice

solved numerically with two nearby initial conditions. Initial conditions of the nearby trajectories are

distinguished by 0.5 percent with ratio to the characteristic vibration amplitudes Af, Am, Ac  defined as

follows 

A f =
1
2|max

t 1⩽t ⩽T
f ( t)− min

t 1⩽t⩽T
f (t )| , (5)

Am=1
2|max

t 1⩽t⩽T
m (t )− min

t1⩽t⩽T
m(t)| , (6)

Ac=
1
2|max

t 1⩽t⩽T
c (t )− min

t1⩽t⩽T
c (t )| , (7)

e.g. the starting points of these trajectories are in the three-dimensional parallelepiped 

| f (t 0)−
~f (t 0)|<0.005 A f (8)

|m ( t0)−~m( t0)|<0.005 Am (9)

|c (t 0)−~c ( t0)|<0.005 Ac . (10)

Characteristic vibration amplitudes  Af, Am, Ac are calculated for all nodal points  of the  multy-

parametric  space simultaneously  with  integration  of  the  governing  equations  (Eqs.  1–4).  After

integration of the governing equations (Eqs. 1–4), the condition 

∃ t*∈[t 1,T ]:   {(| f (t*)−~f (t*)|>α A f )∨(|m (t *)−~m( t*)|>α Am)∨(|c (t*)−~c (t*)|>α Ac)} (11)

was verified. Here T is the time period for the simulation; [t0, t1]  is the time interval, where transient

processes are damped. The manifold of the nodal points of the multy-parametric space, for which the

inequality (Eq. 11) is satisfied, resulting in setting up the regions of chaos. 

An evolution of the chaotic regions in the control parameter plane 'tumor cell volume vs glucose

level'  (βκn,  αη),  (0βκn00,  0αη10),  depending  on  magnitude  of  diffusion  saturation  level

δφ=0.5,  δφ=1.0 and  δφ=2.0 for  the model  (Eqs.  1–4) is  observed in  Fig.  1 (a),  (b),  (c).  Other

parameters n=50,  γ= 100, η=50, κ=1, υ=0.5, ω=0.57, φ=0.025 are fixed and the initial conditions are

taken  f(0)=5.0; m(0)=5.0; c(0)=10.0. 

On the increase of the diffusion saturation level, the regions of conditions conducive to cancer

invasion are expanding. For the parameter ranges considered chaotic cancer attractors are generated
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(a)                                                                            (b)

   

(c)

Figure 1.  Control parameter plane (βκn, αη) – 'tumor cell volume vs glucose level': evolution of

conditions conducive to cancer invasion with increasing magnitude of diffusion saturation

level  (a)  δφ=0.5;  (b)  δφ=1.0;  (c)  δφ=2.0. 

for glucose levels  βκn<βcrκn,  where  βcrκn=175.0 at  diffusion saturation level  δφ=0.5 (Fig. 1, (a)),

βcrκn=270.0 at δφ=1.0 (Fig. 1, (b)) and for any glucose level at δφ=2.0 (Fig. 1, (c)). It should be noted,

all obtained regions in the parametric space have complex structure and substantially depend on other

parameters of the model (Eqs. 1–4) including initial conditions. 

An evolution of the chaotic regions in control parameter plane 'number of tumor cells vs tumor

cell volume' (αη,  γ), (0αη10, 0γ200), depending on  glucose level  βκn=2.5,  βκn=250.0,  and

βκn=500.0 for the model (Eqs.  1–4) is observed in  Fig.  2 (a), (b), (c).  Other parameters  δφ=1.2,

n=50,  δ=48.0,  η=50,  κ=1,  υ=0.5,  ω=0.57,  φ=0.025 are  fixed and the initial  conditions are  taken

f(0)=5.0; m(0)=5.0; c(0)=10.0. 

Fig.  2  demonstrates,  that  for  the  parameter  ranges  considered,  increase  in  glucose  level

substantially decreases a risk of cancer invasion in the biological system (see Fig. 2 (c): no chaotic 
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(a)                                                                            (b)

   

(c)

Figure 2.  Control parameter plane (αη, γ) – 'number of tumor cells vs tumor cell volume': evolution of

conditions conducive to cancer invasion with increasing glucose level: (a)  βκn=2.5;  (b)

βκn=250.0;  (c)  βκn=500.0. 

cancer attractors when γ<140.0  αη<2.0  αη>7.0  at βκn=500.0). It should be noted, depending on

accepted  parameters,  increase  in  the diffusion  saturation  level can  lead  to  both  suppression  and

generation  of  conditions  conducive  to  cancer  invasion  (figures  and  diagrams,  confirming  this

statement, are not presented here due to a brief content of this paper). 

We can observe also, in the parametric space 'number of tumor cells vs tumor cell volume' there

is some critical threshold α=αcr, that chaotic cancerous attractors exist only for α>αcr  (see Fig. 2 (a),

(b), (c): αcr = 1.9). It is clear, αcr depends on other parametes of the model (Eqs. 1–4) and αcr increases

for bigger magnitudes of diffusion saturation level. 

An evolution  of  the  chaotic  regions  in  the  control  parameter  plane  'tumor  cell  volume  vs

diffusion saturation level' (δφ, αη), (0δφ.0, 0αη10.0), depending on number of tumor cells  
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(a)                                                                            (b)

   

(c)

Figure 3.  Control parameter plane (δφ, αη) – 'tumor cell volume vs diffusion saturation level':

evolution of conditions conducive to cancer invasion with increasing number of tumor cells:

(a)  γ=70.0;  (b)  γ=150.0;  (c)  γ=200.0. 

 

γ=70.0,  γ=150.0 and  γ=200.0 for the model (Eqs. 1–4) is observed in  Figure 3 (a), (b), (c). Other

parameters βκn= 300.0,  n=50,  β=6.0,  η=50, κ=1, υ=0.5, ω=0.57, φ=0.025 are fixed and the initial

conditions are taken  f(0)=5.0; m(0)=5.0; c(0)=10.0. 

The study of the parametric space  'tumor cell  volume vs diffusion saturation level'  confirms

again a substantial mutual influence of all parameters of the model (Eqs. 1–4) to cancer invasion.

Indeed,  at  comparatively low glucose levels (for instance,  βκn=2.5) regions of chaotic cancerous

attractors are suppressed with an increase of number of tumor cells (figures and diagrams, confirming

this statement, are not presented here due to a brief content of this paper) while for higher glucose

levels (for instance, βκn=300.0) cancer invasion risk strengthens on the increase of number of tumor

cells (see Fig. 3 (a), (b), (c)). Generally, at fixed number of tumor cells the increase in glucose level
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(a)                                                                            (b)

   

(c)

   

Figure 4.  Control parameter plane (δφ, βκn) – 'glucose level vs diffusion saturation level': evolution of

conditions conducive to cancer invasion with increasing number of tumor cells: (a)  γ=20.0;

(b)  γ=100.0;  (c)  γ=200.0. 

has a suppressing effect on carcinogenesis (figures and diagrams, confirming this statement, are not

presented here due to a brief content of this paper). 

An evolution  of the chaotic regions in the control parameter plane 'glucose level vs diffusion

saturation level' (δφ, βκn),  (0δφ.0, 0βκn00),  depending on  number of tumor cells  γ=20.0,

γ=100.0 and γ=200.0 for the model (Eqs. 1–4) is observed in Figure 4 (a), (b), (c). Other parameters

αη=  8.0,  n=50, α=0.16,  η=50, κ=1, υ=0.5,  ω=0.57, φ=0.025 are fixed and the initial conditions are

taken  f(0)=5.0; m(0)=5.0; c(0)=10.0. 

For the considered planes 'glucose level vs diffusion saturation level' as sections of the multy-

parametric space of the model (Eqs. 1–4) both for comparatively small and for comparatively large

tumor cell volumes, a consistent pattern is observed: with an increase in the number of tumor cells,

the regions of chaotic cancerous attractors in this plane (δφ, βκn) first increase (see transition from 
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(a)                                                                            (b)

   

(c)

Figure 5.  Control parameter plane (βκn, γ) – 'number of tumor cells vs glucose level': evolution of

conditions conducive to cancer invasion with increasing tumor cell volume: (a)  αη=3.0;  (b)

αη=5.0;  (c)  αη=8.0. 

Fig. 4 (a) to Fig. 4 (b)) and then decrease (see transition from Fig. 4 (b) to Fig. 4 (c)). In most of the

previous cases, an increase in glucose level led to the suppression of regions of chaotic cancerous

attractors. However, in the parametric plane (δφ, βκn) there are regimes (for instance, at αη=  3.0, γ=

100.0;  αη=  5.0,  γ=  100.0, etc.) corresponding to absence of conditions for carcinogenesis at definite

values of glucose level, while a cancer invasion appears when glucose level increases (figures and

diagrams, confirming this statement, are not presented here due to a brief content of this paper). 

An evolution  of the chaotic regions in the control parameter plane 'number of tumor cells vs

glucose level' (βκn, γ), (0βκn00, 0γ200), depending on tumor cell volume   αη=3.0,  αη=5.0 and

αη=8.0 for the model (Eqs. 1–4) is observed in Figure 5 (a), (b), (c). Other parameters δφ=1.0, n=50,
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(a)                                                                            (b)

   

(c)                                                                            (d)

   

(e)

Figure 6.  Amplitude level contours of (a) MM concentration in (βκn, αη) control parameter plane at

γ=100.0, δφ=1.0; (b) MDE concentration in (αη, γ) plane at βκn=250.0, δφ=2.0; (c)  oxygen

concentration in (δφ, αη) plane at βκn=300.0, γ=150.0; (d)  MM concentration in (δφ, βκn)

plane at αη=8.0, γ=100.0; (e)  MDE concentration in (βκn, γ) plane at αη=8.0,  δφ=1.0. 
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δ=40.0,  η=50,  κ=1,  υ=0.5,  ω=0.57,  φ=0.025 are fixed and the initial conditions are taken  f(0)=5.0;

m(0)=5.0; c(0)=10.0. 

Under conditions considered for comparatively low diffusion saturation levels, for instance δφ=

0.5, chaotic cancerous attractors regions are suppressed with increasing tumor cell volumes and vice

versa:  for more higher  diffusion saturation levels, for instance  δφ= 2.0, with increasing tumor cell

volumes (αη= 3.0, αη= 5.0, αη= 8.0) the cancer invasion is increased (figures and diagrams for both

cases of diffusion saturation levels δφ= 0.5  and  δφ= 2.0, confirming this statement, are not presented

here due to a brief content of this paper). In Fig. 5 (b), (c) we can observe: there is some glucose level

threshold  βcr= βcr(γ) such that no carcinogenesis while  β>βcr(γ). So, passing this threshold in the

direction of increase, the definite glucose level completely suppresses carcinogenesis. It should be

noted, Fig. 5 (a), where chaotic cancer attractors regions have an inclined stripe form, demonstrates

another scenario. Thus, at αη=  3.0, δφ=1.0  (Fig. 5 (a))  (or in other cases, for instance,  (αη=  3.0,

δφ=2.0) or (αη= 5.0, δφ=2.0) etc.) in the parametric plane (βκn, γ) with increasing of glucose level the

state ‘no conditions for carcinogenesis’ passes to the state ‘cancer invasion’ and then again passes to

the state ‘no conditions for carcinogenesis’. That is, depending on other parameters of the model (Eqs.

1–4), increasing in glucose level can both suppress and generate carcinogenesis. 

For all studied control parameter planes the corresponding amplitude level contours of matrix-

metalloproteinases (MM), matrix–degradative enzymes (MDE) and oxygen concentrations have been

obtained and juxtaposed with them. In all  cases the carcinogenesis is accompanied by significant

increase  in  chemical  oscillation  amplitudes  of  the  MM,  MDE and oxygen concentrations.  Some

amplitude level contours of these characteristics are reported in Fig. 6. 

Amplitude level  contours of matrix-metalloproteinases  (MM) concentrations are presented in

Fig. 6, cases (a) and (d).  Case (a): control parameter plane (βκn, αη) ‘tumor cell volume vs glucose

level’ at γ= 100.0, δφ= 1.0 in accordance with Fig. 1 (b) with the same other fixed parameters as for

the case of Fig. (b). Case (d): control parameter plane (δφ, βκn) 'glucose level vs diffusion saturation

level' at αη=8.0, γ=100.0 in accordance with Fig. 4 (b) with the same other fixed parameters as for the

case of Fig. 4 (b). 

Amplitude level contours of matrix–degradative enzymes (MDE) concentrations are presented in

Fig. 6, cases (b) and (e). Case (b):  control parameter plane (αη,  γ) 'number of tumor cells vs tumor

cell  volume'  at  βκn=  250.0,  δφ=  2.0  in  accordance  with  Fig.  2  (b)  with  the  same  other  fixed

parameters as for the case of Fig. 2 (b). Case (e): control parameter plane (βκn, γ) 'number of tumor

cells vs glucose level' at  αη=8.0,  δφ=1.0 in accordance with Fig. 5 (c) with the same other fixed

parameters as for the case of Fig. 5 (c). 
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And finally, amplitude level contours of oxygen concentration is presented in Fig. 6 (c) in control

parameter plane (δφ, αη) 'tumor cell volume vs diffusion saturation level' at  βκn=300.0,  γ=150.0 in

accordance with Fig. 3 (b) with the same other fixed parameters as for the case of Fig. 3 (b). 

Figure  6  demonstrates,  that  in  all  cases  the  carcinogenesis  is  accompanied  by  a  significant

increase in chemical oscillations amplitudes of MM, MDE and oxygen concentrations. 

4. Conclusions

In this study it was demonstrated a significant and complex mutual influence of all components of the

multy-parametric  space ‘number of  tumor cells  –  tumor cell  volume – glucose level  –  diffusion

saturation level’ as well as of the 3D initial state space components on inhibition/amplification of

carcinogenesis in biological systems. A nonlinear multi-scale diffusion cancer invasion model that

describes the interactions of the tumor cells, matrix-metalloproteinases, matrix-degradative enzymes

and oxygen was used for simulation. To quantify chaotic cancer attractors the technique based on the

wandering trajectories analysis was applied. Conditions conducive to cancer invasion were defined

depending on parameters of the multy-parametric space. The numerous figures presented describe the

evolution of these conditions in the process when some parameters of the multy-parametric space

were changed. Amplitude level contours of matrix–metalloproteinases, matrix–degradative enzymes

and oxygen concentrations have been obtained and juxtaposed with the corresponding parametric

planes. In all cases the carcinogenesis is accompanied by significant increase in chemical oscillation

amplitudes of  matrix–metalloproteinases,  matrix–degradative enzymes and oxygen concentrations.

The results obtained allow evaluation of conditions in all control parameter planes as well as the

modes to inhibit and/or stabilize carcinogenesis. 
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Influence of the sliding bearing parameters on the dynamic 

behavior of external gear pumps  

 

 

Wiesław Fiebig, Piotr Kruczek  

Abstract: Variable forces resulting from pressure as well as from the interlocking of 

teeth in the gearing are responsible for the vibration and noise development in gear 

pumps. These various forces are transmitted to the pump housing and cause it to vibrate, 

as well as mechanical connected elements like electric motor, valves, tank and piping 

system. These dynamic loads are transmitted through the sliding bearings to the pump 

housing and they can reach very high values, especially at higher pressures. In this paper 

the model to determine  dynamic forces in the gear pump, taking into account the 

influence of sliding bearings has been presented.  

1. Introduction 

External gear pumps are a commonly used type of positive displacement pumps, because of their low 

price and readily available production technology. The downside of gear pumps is their noisiness, which 

for normal working conditions can reach 80-90 dB and more [8]. The causes of noise in gear pumps 

can be divided into two categories: hydraulic and mechanical. The hydraulic causes are related to flow 

of the fluid. Among these, causes such as pressure pulsations, impact pressure changes in trapped 

volume, cavitation, aeration of the hydraulic fluid and other can be mentioned [1-13]. 

The noise from the pump propagates to the surrounding via vibration of the casing, this however 

is stimulated by dynamic forces from the above mentioned mechanical and hydraulic causes. These 

forces are transmitted from the gears to the shafts, and from shafts through bearings to the casing. 

Because bearings are a single point of contact between the excited dynamic forces and the vibration-

prone casing it is very important to investigate the bearings influence on force transmission. 

There are many studies on noise generation in external gear pumps [1-13]. The variable pressure 

loads and pressure overdue in the trapped volumes as well as mechanical noise are considered to be the 

main reasons for vibration and noise generation. The shape of the teeth profile as well as the position 

and shape of the pressure relief grooves have big influence on the pressure courses in the trapped 

volumes. 

In [3] the solution has been proposed to reduce pressure gradients in the trapped volume by gear 

pumps by attaching a certain additional volume. So far, the most effective solution [2] is a cycloid teeth 
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profile "Silent Plus” pump", in which trapped volume is not present and due to a sloping mesh, the 

smooth change of loads and the pressure on the toothed wheels is achieved. 

There are known approaches based on multi body dynamics [2, 8, 10, 14] and FE- analysis [16, 

17]. Based on such models the dynamical forces inside the pumps, the natural frequencies and dynamic 

deformations of pump housings are determined. 

A discrete model describing dynamic loads in an external gear pump bearings is described in [14]. 

Calculating pump housing vibrations, e.g. by means of FEM, the sound pressure distribution on a 

defined surface surrounding the pump can be determined using BEM, which is caused by vibrations on 

the pump housing surface [12]. 

The task of this paper is to examine the influence of geometry of the bearings used in external gear 

pumps on dynamic forces transferred to the casing and collection of data on dynamic forces in bearings 

to allow further analysis of vibration and noise in external gear pumps. 

2. Mathematical model of sliding bearings 

The basis of the theory of hydrodynamic lubrication (HD) is Reynolds equation [4, 5] that describes the 

flow of a viscous fluid in an arrow gap between the surfaces of a regular curvature.  

In sliding bearing the journal 1 slides on the bearing surface 2.  (Fig. 1). 

 

Figure 1.   Shaft position in the sliding bearing [4] 

 

Since both of these surfaces are curves, as approaching to each other the distance h(x) decreases, 

so that a wedge is formed. For such a case, the Reynolds equation for transverse sliding bearings will 

take the form [4,14,15]: 
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where: p – local pressure in the liquid layer, ρ, μ-density and dynamic viscosity of the oil, h - thickness 

of the liquid layer, v1, v2–velocity of the surface 1 and 2. 

From Reynolds equation the pressure distribution on the perimeter can be determined, which in 

turn allows for bearing-load capacity or minimum lubricant film thickness calculation. 

For the range of practical application of the Reynolds equation below assumptions should be made 

[4]: 

 mass and gravitational forces are negligible,  

 lubricant liquid is a Newtonian liquid,  

 viscosity of the liquid is constant independent of pressure and temperature,  

 the lubricant fluid is incompressible,  

 in comparison with other dimensions lubricant film thickness is negligibly small,  

 there is no slippage on the liquid-solid border,  

 the effect of surface tension is negligibly small, 

 contacting surfaces are non-deformable. 

If one accepts the line connecting centers of the shaft and bearing as a reference when measuring 

the angle φ, one can write 

ℎ = 𝑐 + 𝑒𝑐𝑜𝑠𝜙 = 𝑐(1 + 𝜀𝑐𝑜𝑠𝜙)                                                                                                  (2) 

Therefore: 

𝑑ℎ

𝑑𝜙
= −𝑐𝜀𝑠𝑖𝑛𝜙                                                                                                                               (3) 

Geometric characteristics dimensions of the bearing are following: 

 d [mm] – nominal diameter of the bearing, shall be d=d1 

 d1 [mm] –journal diameter 

 d2 [mm] –bearing diameter 

 l [mm] – nominal width of the bearing (bearing’s length) 

 s [µm] –nominal clearance between journal and bearing; 𝑠 = 𝑑2 − 𝑑1  

 c [µm] –radial clearance in bearing; 𝑐 = 𝑠/2  

 𝑤–journal elative clearance in bearing (resulting from the assumed journal fitting in bearing), 

𝑤 =
𝑠

𝑑
= (𝑑2 − 𝑑1)/𝑑1                                                                                                                 (4) 
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Operation characteristics of the bearing are following: 

 e [µm] - eccentricity; 𝑒 =
𝑠

2
− ℎ0 = 𝜀𝑤

𝑑

2
  

 ε –relative eccentricity; 𝜀 =
2𝑒

𝑠
= 1 − 𝛿 

 δ - relative minimum lubricating oil layer thickness; 𝛿 =
2ℎ0

𝑠
=

2ℎ0

𝑤𝑑
 

Functional characteristics of the bearing are following: 

 F [N] – radial load of the bearing 

 �̅�[MPa] - average nominal individual unit bearing load 

     �̅� =
𝐹

𝑙𝑑
  

 n [min-1] –nominal shaft speed 

 ω [s-1] – nominal angular velocity of the shaft 

 μ [𝑃𝑎 ∙ 𝑠] – nominal value of the dynamic viscosity coefficient of lubricating oil 

The simulation model and the research will be carried out based on the data of the hydraulic 

external gear pump with the unit volume of 31 cm3/rev.  

The calculations will be carried out in the LMS Virtual Lab Rev. 11-SL1. This is the integrated 

software for CAE simulation and optimization of structural integrity, noise and vibrations, dynamics 

and durability of all mechanical systems [16].  

The development of the model and the task of excitation forces (excluding the definition of 

hydrodynamic bearings) will be carried out in the Motion module. Motion module provides advanced 

solutions in solid modeling, parameterization, geometry, CAD solutions of elements, possibilities of 

control and motion control, solver, animation and presentation of results. 

Using the Motion module, it is possible to  create and refine virtual prototype models by using 

fully integrated CAD engine supporting Software CATIA v5. Solid modeling allows for a full 

implementation of parameters of the model. There are mechanical components such as spring, friction, 

contact force and developed a list of connections and bonds. Stable and efficient solver provides 

accurate and efficient calculations of complex problems with results such as displacement, velocity, 

acceleration and reaction forces for all bodies in the simulation. For comparison purposes, the model 

of bearing using the Hydro dynamic bearings (CUIMPD method) has been used. 
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Figure 2.   Model of the gear pump with the sliding bearings in VirtualLab 

 

The pressure distribution at the begin of simulation will be shown in Fig. 3. 

 

 

Figure 3.   The initial bearing pressure (without load from the pump delivery pressure)  

Comparison of the results obtained on the four bearings is aimed to show the relation between the 

bearings on the drive shaft and the corresponding bearings on the driven shaft.  

In Tab. 1 the parameters for simulation has been described.  

Bearing 1 

Bearing 2 

Bearing 3 

Bearing 4 
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Table 1. Parameters for the simulation 

Description Symbol Value Dimension 

Width of the gears dg 36.3 mm 

Number of teeth z 12 - 

Module m 3,387 mm 

Pressure angle α 25 stopnie 

Gap between teeth ck 0,5 mm 

Damping coefficient in the gearing kk1 4873 kg/s 

Torsional stiffness of the driving shaft cw 29868 N*m/rad 

Torsional damping coefficient of the driving shaft kf 0,04 kg/(s*rad) 

Mass of the driving shaft ms1 0,686 kg 

Moment of inertia of the driving shaft Is1 5.591*10-5 kg*m2 

Mass of the driver shaft ms2 0,456 kg 

Moment of inertia of the driver shaft Is2 4.235*10-5 kg*m2 

Mass of the gear mg 0,21 kg 

Moment of inertia of the gear Ig 6.421*10-5 kg*m2 

Mass of the coupling ms 0,928 kg 

Moment of inertia of the coupling Is 5.485*10-4 kg*m2 

Young module - steel Es 2*1011 N/m2 

Density - steel ρs 7860 kg/m3 

Young module- bronze Eb 1,1*1011 N/ m2 

Density - bronze ρb 8860 kg/m3 

 

Parameters of the fluid were following: 

The kinematic viscosity is given by [1]: 

𝜈𝑇=20𝑜𝐶 = 250 [𝑐𝑆𝑡 =
𝑚𝑚2

𝑠
]  

𝜈𝑇=50𝑜𝐶 = 50 ÷ 55 [𝑐𝑆𝑡]  

𝜈𝑇=100𝑜𝐶 = 9,5 [𝑐𝑆𝑡]  

This is the temperature range and the corresponding viscosity at the entrance of the bearing, which 

is the oil temperature in the tank. The oil in the bearing will have a higher temperature due to friction 

inside the pump. The above values dynamic viscosity will be used to study the impact of temperature 

changes on the viscosity and dynamic response. The rest of the calculation is adopted has become a oil 

dynamic viscosity μ = 0.23 [Pa s] corresponding to the operating temperature of approximately 75 °C.  

3. The influence of the gap inside the bearing 

Four combinations were analyzed at working pressure (100 and 275 bar) and pump speed (1500 and 

3000 rpm). On the basis of the results, the following conclusions has been obtained:  
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• Change the gap inside the bearing practically does not affect the torque and inter teeth force, 

• The increasing of the gap in both bearings cause decrease of the maximum dynamical reaction 

force in horizontal direction by ∆ = 300 N (bearing 1) and by ∆ = 1600N (bearing 2). 

• The influence of the gap is opposite for vertical dynamic reaction forces. The increase of the 

force on the bearing 1 amounted to ∆ = 900N and on the bearing 2 to ∆ = 600N. 

• Comparing these values it is to notice that the increasing of the gap inside the bearings has a 

positive influence on the dynamic reaction forces in the bearings. This is resulting from the higher 

damping in case of bigger thickness of the oil layer between the shaft and sleeve. 

 

gap value  c=0,0235mm, n=3000 rpm, p=27,5 MPa 

 

Time [s]

 Figure 4. The dynamic reaction force Fxb2 in the bearing- driven gear 

gap value c=0,0235mm, n=3000 rpm, p=27,5 MPa 

 

Time [s] 

Figure 4.   The dynamic reaction force Fyb2 in the bearing- driven gear  
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gap value c=0,065 mm, n=3000 rpm, p=27.5 MPa 

 

Time [s] 

Figure 5.   The dynamic reaction force Fxb2 in the bearing- driven gear 

 

gap value c=0,065 mm, n=3000 rpm, p=27.5 MPa 

 

Time [s] 

Figure 6.   The dynamic reaction force Fyb2 in the bearing- driver gear 

4. Conclusions 

The influence of the gear pump and the sliding bearings parameters on the dynamic reaction forces 

inside the bearings has been analyzed with the model presented. The model has been developed in 

Virtual Lab which contains the module for calculation of sliding bearings. The influence of the pressure, 

rotational speed, the gap in the bearing and temperature on torsional torque on the drive shaft, the inter 

teeth force, the components of the dynamic reaction forces in the bearings and the position of the shaft 

inside the bearing can be analyzed. 
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On the basis of the simulation has been stated that the biggest influence on the dynamic reaction 

forces have the clearance inside the bearing. The values of the clearances in the sliding bearings are 

variable and depend on the manufacturing accuracy of the gear wheels and bushes in the bearings. 

 It was noted that increasing gap has a positive effect on the reaction forces in the bearings. From 

that one can state that the pump coming out from the same manufacturing process may have different 

noise radiation and the rate of surface wear. 

The final result of the work are dynamic forces passes in the bearings, which can be used for further 

analysis through their input on the housing of the pump and examination of vibration, and as a result, 

the noise radiation of the pump.  
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Deterministic chaos in a damage dynamics of the engineering structures 

under varying environmental and operational conditions 

 

 

Alexander V. Glushkov, Vasily V. Buyadzhi, Alexander Mashkantsev,              
Alexey Lavrenko 

Abstract: The paper is devoted to problem of development of effective mathematical 

and computational tools to studying and forecasting evolutionary dynamics of  

complex engineering systems (structures), based on the combined using the non-linear 

analysis methods and chaos theory. An advanced chaos-geometric approach to 

analysis, processing measurement data and their prediction for a damage parameter 

time series of the engineering structures is presented. The approach includes a 

combined group of non-linear analysis and chaos theory methods such as a correlation 

integral approach, average mutual information, surrogate data, false nearest 

neighbours algorithms, the Lyapunov’s exponents and Kolmogorov entropy analysis, 

nonlinear prediction models etc. As illustration we present the results of the numerical 

investigation of the chaotic elements in the dynamical parameters time series for 

experimental cantilever beam (forcing and environmental conditions are imitated by 

the damaged structure, variable temperature and availability of a pink-noise force). 

The data on the topological and dynamical invariants are listed. The perspectives of 

application to different engineering structures analysis are indicated.  

1. Introduction 

An analysis, identification and further prediction of the presence of damages (cracks), which above a 

certain level may present a serious threat to their performance of the technical structures, remains 

challenging problem in their monitoring. the engineering structures. The treatment  requires extensive 

use of measurement and advanced mathematical and computational tools of processing. Usually 

change of structural dynamic properties due to environmental, operational and other effects 

(temperature, moisture, pressure etc) allows to detect an existence, location and size of damages. 

Changing these conditions may cause significant changes in their properties and result in the damage 

detection algorithms to false decisions [1-9].  

 From experimental viewpoint, especially valuable are now methods of nondestructive testing, in 

particular, vibrodiagnostics (c.g., Refs. [1-4]). Each class and even each type of equipment is 

characterized by its own separate sets of criteria for assessing the vibration state, depending on the 

conditions of assembly, installation, operation, etc. A certain one-sidedness of the vibrodiagnostic 

methods, based primarily on the primary Fourier transform of the signal, does not allow for an 
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integrated approach to solving the problem. The wide spread and more advanced methodologies such 

as wavelet analysis, subspace-based identification methodologies, regression analysis, singular value 

decomposition, auto-associative neural network and factor analysis under situation etc have been 

discussed [1-5]. Especial interest attracts the pointwise summation of similar Wavelet Transform 

Modulus Maxima decay lines, which was used in [3] to detect the damages under varying 

environmental and operational conditions. However, a problem of development of new advanced 

mathematical and computational tools for analysis remains actual.  

 In this paper we present and apply an advanced computational approach to analysis, modelling 

and processing the corresponding chaotic time series, which represent the structural dynamic 

properties of the engineering structures. The computational code applied includes a combined set of 

non-linear analysis and chaos theory methods such as an autocorrelation function method, correlation 

integral approach, average mutual information, surrogate data, false nearest neighbours algorithms, 

the Lyapunov’s exponents (LE) and Kolmogorov entropy analysis, spectral methods and nonlinear 

prediction (predicted trajectories, neural network etc) algorithms (in versions [10-24]). The results of 

the numerical investigation of the chaotic  elements  in time series for the experimental cantilever 

beam [3] (the forcing and environmental conditions are imitated by  the damaged structure, the 

variable temperature and availability of the  pink-noise force) are presented. All computing is 

performed with using “Geomath” and “Quantum Chaos” computational codes [20-36]. 

2. A nonlinear analysis and processing data of the engineering structure  dynamical 

parameter time series: Chaos-geometric approach 

The chaos-geometric computational approach to analysis and processing the measurement data for the 

complex non-linear systems results in a few steps. In Figure 1 we present the flowchart of the 

combined vibration-dynamical and chaos-geometric approach to nonlinear analysis and prediction of 

chaotic dynamics, damage detection and locations of the complex engineering structures (see detailed 

description of all algorithms in Refs. [5,9,20-25]). Keeping in mind analysis of measurement data on 

damage detection in the engineering structure, we represent the typical dynamical parameter (say, the 

displacement quantity) as some scalar series s(n)=s(t0+ nt) = s(n), where t0 is a start time, t is time 

step, and n is number of the values measurements. The main task is to reconstruct phase space using 

as well as possible information contained in s(n). The method of using time-delay coordinates by 

Packard et al [11] can be used. The direct using lagged variables s(n+) (here  is the lag time) results 

in a coordinate system where a structure of orbits in phase space can be captured. A set of time lags is  

used to create a vector in d dimensions,  y(n)= [s(n), s(n + ), s(n + 2), .., s(n +(d1))],  the required 

coordinates are provided. Here d is the embedding dimension, dE. To determine the proper time lag at 

the beginning one should use the known method of the linear autocorrelation function CL() and look  
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I. Vibration-dynamical modelling and computing of the damaged 

complex engineering structures systems 

1. Preliminary analysis and processing dynamical variable series for the 

engineering structure  

2. Blind source separation monitoring 

 

II. Chaos-geometric method. Preliminary study and assessment of the presence 

of chaos:  

1. The Gottwald-Melbourne test:  K → 1 – chaos; 

2. Fourier decompositions, irregular nature of change – chaos; 

3. Spectral analysis, Energy spectra statistics, the Wigner distribution, the spectrum 

of power, "Spectral rigidity"; 

 

III. The geometry of the phase space. Fractal Geometry: 

1. Computation time delay τ using autocorrelation function or mutual 

information; 

5. Determining embedding dimension dE by the method of correlation dimension 

or algorithm of false nearest neighbouring points; 

6. Calculation multi-fractal spectra. Wavelet analysis; 

 

IV.  Prediction model: 

7. Computing global Lyapynov dimensions LE:  ; Kaplan-York dimension dL, 

KE, average predictability measure Prmax; 

8. Determining the number of nearest neighbour points NN for the best prediction 

results; 

9. Methods of nonlinear prediction. Neural network algorithm, the algorithm 

optimized trajectories, stochastic propagators etc ...; 

 

Figure 1.   Flowchart of the advanced chaos-geometric  approach to nonlinear analysis and prediction 

of chaotic dynamics, damage detection and locations of the complex engineering structures 

for that time lag where CL() first passes through 0.   The alternative additional approach is provided 

by the method of  average mutual information (for example, see [5,17-22]). 

 The further next step is to determine the embedding dimension, dE, and correspondingly to 

reconstruct a Euclidean space Rd large enough so that the set of points dA can be unfolded without 

ambiguity. The dimension, dE, must be greater, or at least equal, than a dimension of attractor, dA, i.e. 

dE > dA. To reconstruct the attractor dimension (see details in [5,11-20]) and to study the signatures of 

chaos in a time series, one could use different methods, however, the most effective ones are 

represented by the correlation integral algorithm and the false nearest neighbours [5,13,16]. The 

principal question of studying any complex system with a non-linear chaotic dynamics is to build the 
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corresponding prediction model and define how predictable is a chaotic system. At preliminary step it 

means the obligatory determination of such characteristics as the Kolmogorov entropy Kentr (and 

correspondingly the predictability measure as it can be estimated by Kentr), the LE, the Kaplan-Yorke 

dimension. Let us remind that according to the standard definition, the LE are usually defined as 

asymptotic average rates and they are related to the eigenvalues of the linearized dynamics across the 

attractor. Naturally, the knowledge of the whole spectrum of the LE allows to determine other 

important invariants such as the Kolmogorov entropy and the attractor's dimension. The Kolmogorov 

entropy is determined by the sum of the positive LE. The estimate of the dimension of the attractor is 

provided by the Kaplan-Yorke conjecture. The details of construction of the possible prediction 

models for non-linear systems with a chaotic elements can be found in Refs. [5,9-30].  

3. Input data, numerical results and conclusions 

As the initial data we use the data of the corresponding cantilever beam (excited by white and pink 

noise forces) time domain response series [3].  The detailed description of the experimental setup of a 

cantilever beam is presented in Ref. [3]. Here we only note that it consists of steel having the 

following dimensions: length 592 mm, width 30 mm, and thickness 1.5 mm, a density of 7.8710-6  

kg/mm3, Young modulus of 200106 mN/mm2, and second moment of area of 8.44 mm4. The  

electrodynamic shaker was used to excite the cantilever beam and it was connected to the beam via a 

stringer rod to minimize the interaction between the shaker and the structure.  

 Figure 1 shows the the typical experimental cantilever beam time domain response series under 

the definite environmental and forcing conditions (the series is related to the case of the damaged 

structure, the variable temperature and availability of the  pink-noise force) [3]. In table 1 we list data 

on the time delay (), depending on the different values of the autocorrelation function (CL) and the 

first minimum of mutual information (Imin1) for the studied time domain response series in a case of  

the damaged structure, the variable temperature and availability of the  pink-noise force. The 

correlation exponents (d2) and embedding dimensions determined by false nearest neighbours method 

(dN) with percentage of false neighbours (in parentheses) are listed in Table 1 too. Analysis of the 

obtained data shows that the correlation exponent d attains saturation with an increase in the 

embedding dimension, and the system is generally considered to exhibit chaotic elements.  

 The Table 2 summarizes the data of computational reconstruction of the attractors (correlation 

dimension  (d2), embedding dimension (dE), the first two LE  (1 and 2), the Kaplan-Yorke 

dimension (dL), as well as the Kolmogorov entropy (Kentr), and average limit of predictability (Prmax).   

The saturation value of the correlation exponent is defined as the correlation dimension (d2) of  

the attractor.  The similar data for a reconstruction of the attractor dimension have been obtained by 

using the alternative false nearest neighbouring points method (version [5]). 
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(a) 

 
(b) 

Figure 2.   The  cantilever beam time domain response series [3] for the case of the damaged structure: 

(a) constant T, pink-noise force; (b)  variable  temperature and  pink-noise force (see text). 

Table 1. The time delay (lag), depending on the different values of the autocorrelation  function 

(CL), the first minimum of mutual information (Imin1) and the correlation exponents (d2) and 

embedding dimensions determined by false nearest neighbours method (dN) with percentage of false 

neighbours (in parentheses) calculated for various time lags () for the time series studied (see text) 

CL = 0 114 d2 dN 

CL = 0.1 68 7.68 9 (9.1) 

CL = 0.5 6 5.45 6 (1.3) 

Imin1 9 5.48 6 (1.3) 

Table 2. Correlation dimension  (d2), embedding dimension (dE), first two LE (1 and 2), 

Kaplan-Yorke dimension (dL), the Kolmogorov entropy (Kentr), average limit of predictability (Prmax) 

d2 dE 1 2 dL Kentr Prmax 

5.45 6 0.0197 0.0061 3,98 0.026 39 

The dimension of the attractor is defined as the embedding dimension, in which the number of false 

nearest neighbouring  points is less than 3%. The Kaplan-Yorke dimension is less than the embedding 

dimension that confirms the correct choice of the latter. The presence of the two positive i suggests 

the conclusion above regarding presence of the chaotic elements. The concrete technical realization of 

the methodologies supposes a comparison of the real signals and some elementary ones. Their 

structure, character and dynamical and topological parameters can be different from each other, which 

made it possible in the future to relate the invariants of real signals to the attractors of "elementary" 
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signals and determine the nature of the defect. As the result of analysis of reconstructed attractors on 

the basis of real signals, a qualitative conclusion can be drawn about the presence and development of 

the defects in a system and to predict how close the state of a system is to the critical one. It is of a 

great interest to apply the approach to studying the damages, which above a certain level may present 

a serious threat to the engineering structures such as the hydrotechnical systems, equipment, including 

turbochargers, atomic reactors etc for different conditions (c.g., [1-9,31-36]).  
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Complex Patterned Precipitation Dynamics in Toroidal Reactors 
with Two Diffusion Sources 

 

 

Huria Ibrahim, Dalia Ezzeddine, Rabih Sultan 

Abstract: A toroidal reactor of 1.00 cm cross-sectional diameter, 6.50 cm inner diameter 

and 8.5 cm outer diameter is filled with CoCl2·6H2O (0.050 M) and 1% agar gel 

solution. Two outer electrolytes, of suitably chosen concentrations, are employed to 

diffuse into the gelled solution: from one end NH4OH to precipitate Co(OH)2, and from 

the other end Na3PO4 to precipitate Co3(PO4)2. The resulting diffusion-precipitation 

(Liesegang) pattern exhibits unusual trends wherein gaps, and formation of cobalt 

phosphate hydrates are observed. The self-organized structure reveals a complex 

underlying dynamical scenario. Using the well-known generic empirical laws, we 

attempt the computation of the band locations and represent them graphically within 

the torus.  

1. Introduction  

Periodic precipitation [1] is the beautiful display of macroscopic precipitate strata, obtained when two 

co-precipitate ions interdiffuse in a gel medium. Parallel discs of precipitate are obtained in 1D, and 

concentric rings are observed in 2D [2]. A paradigm of this beautiful outcome scene for the Co(OH)2 

system is portrayed in Fig. 1. 

 

Figure 1. Examples of typical Liesegang patterns for different sparingly soluble salts. 

 This phenomenon is coined Liesegang banding after R. E. Liesegang for his pioneering discovery 

in 1896 [3]. A typical analogy with Liesegang patterns in natural landscapes is the alternating bands of 

geological minerals observed in rocks [4-6]. A further wide spectrum of analogous band formation in 

a variety of systems is observed in Biology, Physics, Engineering and Medicine. A comprehensive 
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review of such diversified Liesegang structures is presented in Ref. [7]. 

 Extensive studies on the wealth of features in Liesegang patterns have subsequently followed, and 

enriched the Physical Chemistry literature. Features include, but are not restricted to, the empirical laws 

(band location and morphology, spacing, width) [8-10], the intriguing revert spacing [11,12], multiple 

precipitate systems [13], flow reactors [14] and theoretical modeling [15,16]. 

 Toroidal reactors design has long triggered interest in the chemistry and chemical engineering 

literature, notably in fluid hydrodynamics. Toroidal reactors with high velocity swirling flow were 

designed [17] to improve the distribution of mixing energy and jet entrainment ratio in comparison with 

spherical or hemispherical reactors. The reactor was used to study the CO+H2 combustion and correlate 

results with predictions based on a coalescence-dispersion model. Using a toroidal reactor operable in 

both batch and continuous modes, Benkhelifa et al. [18] carried out the flow modeling of a torus reactor 

for mixing water and glucose solutions. They established that the reactor hydrodynamics is 

characterized by the presence of two flow regimes: a laminar one and a turbulent one, corresponding to 

specifically determined ranges of the Reynolds number. Argawal and Nigam [19] used toroidal 

geometry approximation to model the convective diffusion equation with reaction in helically coiled 

tubes. They studied the influence of secondary flow for high Dean numbers, under the assumption of 

neglected axial diffusion. The hydrodynamic behavior of both fine and coarse fused alumina particles 

moving under the propulsion of gas jets in an annular ring was investigated by Shu et al. [20]. The 

measured behavior was found to be well predictable by conventional hydrodynamic models. Self-

engineered torus fibrils of spectrin were obtained [21] by polymerization of the protein through 

fractionation and differential precipitation with Ca-ATPase. A variant from these studies in the present 

work is a longer time scale with diffusion-precipitation reactions carried out in gel.      

 In the present paper, we investigate the Liesegang phenomenon in a toroidal reactor, wherein the 

diffusion of two different anions (OH from NH4OH, and PO4
3) is realized from two opposing ends, 

into a semi-torus gel medium containing a common cation system (Co2+), thus precipitating Co(OH)2 

and Co3(PO4)2. 

2. Experimental procedure 

2.1. 1D tubes 

Before starting the reaction in the torus tube, we carry out measurements to establish the spacing and 

width laws in a 1D tubular reactor, for both Co(OH)2 and Co3(PO4)2 patterned precipitations. The 

detailed procedures were described in Refs. [22] and [23]. A typical appearance of the obtained patterns 

for the two precipitates is shown in Fig. 2. 
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Figure 2. Co(OH)2 pattern (a) and Co3(PO4)2 pattern (b) in 1D tubes. 

                                                                     

We measure the location of the bands for different values of the outer electrolyte concentration (a0) and 

the inner electrolyte concentration (b0), then determine the spacing coefficient p in the well-known 

Jablczynski spacing law [4]: 

                                                          

𝑥𝑛+1

𝑥𝑛
= 1 + 𝑝(𝑎0, 𝑏0)                                                                                                                          (1) 

                                           

where xn is the location of band numbered n. Then the spacing coefficient p is taken to obey the so-

called Matalon-Packter law [9,24]: 

                                                         

𝑝(𝑎0, 𝑏0) = 𝐹(𝑏0) + 𝐺(𝑏0)/𝑎0  (2) 

                                                    

where F (b0) and G (b0) are taken to be constants for a given b0. We then determine F (b0) and G(b0) by 

fitting the plot of the spacing coefficient p versus 1/a0 into a straight line. We perform the measurements 

in a regular tube (not the torus), and then we equate the band location xn to the length of the circular arc 

within the torus starting from a preset origin. The band location from that origin corresponds to the 

angle n swept within the torus, corresponding to the arc of length xn, given by: 

                                                                            

𝑛 = 𝑥𝑛/𝑟 (3)                                                         

 

where r is the radius of the torus reactor. 

 The values from the fittings for Co(OH)2 and Co3(PO4)2 are recorded in Table 1.  
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 F (b0) G (b0) 

Co(OH)2 0.016 0.0983 

Co3(PO4)2 0.071 0.010 

Table 1. Functions F(b0) and G(b0) for the salts Co(OH)2  

and Co3(PO4)2 obtained by curve fitting. 

2.2. Experiments in a torus 

0.50 g of agarose (Sigma-Aldrich) were weighed and added to 50.0 ml of a pre-prepared 0.050 M 

CoCl2.6H2O (Fluka) in double distilled water. The resulting mixture was heated to 87°C under constant 

stirring thus yielding a 1.0% (w/w) agar-agar gel. A Pyrex tubular reactor of toroidal shape is clamped 

in a vertical, upright position; then using a long ended Pasteur pipette, the Co2+-doped gel solution is 

transferred to the torus, until the two ends of the torus become evenly leveled (a semi-circle). The 

mixture is left for 4 hours to settle and gel. Afterwards, two solutions, 0.50 M Na3PO4 and 2.0 M 

NH4OH, were delivered simultaneously (using Pasteur pipettes) at the two ends of the torus reactor on 

top of the gel. The two ends of the (open) toroidal reactor are covered with parafilm paper and placed 

in a thermostated medium at 20C. The appearance of the obtained pattern after 4 weeks is displayed 

in Fig. 3. 

 

Figure 3. Complex pattern obtained by precipitation of Co(OH)2 and Co3(PO4)2 in a Liesegang-

type experiment carried out in a glass toroidal tube. 

3. Analysis of the torus pattern 

We distinguish between five main zones in this pattern with rich morphological characteristics. We 

label those zones A, B, C, D and E, as shown in Fig. 4.a.  
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a. 
 

b. 

 

c. 

Figure 4. (a) The toroidal pattern shown in Fig. 2, with distinct zones A-E. (b) Dark blue 

(Co3(PO4)24H2O) and violet (Co3(PO4)2 anhydrous) precipitates after extraction and freeze drying. 

(c) Angular position of the bands as calculated from their circular arc locations (Eq. 3). 

 

 Zone A (right) is -cobalt hydroxide Co(OH)2, characterized by IR and X-ray diffraction. The 

color of -cobalt hydroxide is typically blue (when the crystals or the bands are grown in gelatin). It 

shifts to green blue in agarose gel, as seen in our experiment. The pattern at the left, wherein the 

phosphate ion PO4
3 diffuses (from the  Na3PO4 solution at the left end) notably has a complex structure 

and morphology. Zone B is characterized as Co3(PO4)24H2O, of dark blue color shown in the left vial 

of Fig. 4.b (after freeze drying). Following is zone C, consisting of a mixture of blue Co3(PO4)24H2O 

and anhydrous Co3(PO4)2 of typical violet color (see right vial in frame 4.b), hence zone C is an 

equilibrium between the tetrahydrate and the anhydrous salts. After zone C, we observe a region 

apparently void of precipitate (zone D). In reality, zone D is predominantly light pink Co3(PO4)28H2O 

[23], which subsequently dehydrates into the violet Co3(PO4)2, continuing to form as  Liesegang bands. 

 The pattern on the phosphate side (left of the torus in the photos) thus seems to be controlled by a 

series of hydration-dehydration steps, as evident from the spectral analysis of the extracted precipitates. 

The reaction schemes are as follows: 

       3 CoCl2.6H2O (aq) + 2 PO4
3  (aq)    Co3(PO4)24H2O (s) + 6 Cl  (aq) + 2 H2O (l)              (4) 

         Co3(PO4)24H2O (s)     Co3(PO4)2  (s)  +  4 H2O (l)                                                                  (5) 

         Co3(PO4)2  (s) + 8 H2O (l)     Co3(PO4)28H2O  (s)                                                                   (6)                                  

         Co3(PO4)28H2O  (s)      Co3(PO4)2  (s) + 8 H2O (l)                                                                  (7)             

 This sequence of reactions, coupled to diffusion in space, leads to the pattern in the torus (Figure 

4-left side). The products in reactions (4)-(7) correspond to the dominant precipitates in regions B to E 

(Figure 4.a) respectively.  
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4. Simulation 

We now turn to the simulation of the pattern using the spacing law and the width law for both the 

Co(OH)2 and Co3(PO4)2 precipitates. The width law [10] is an additional tool to measure the width of a 

given band as a function of its position, which is an important parameter to include it in the simulation. 

The relation between the width (wn) of band n and its position is xn is:  

                                                          𝑤𝑛 = 𝑎 (𝑥𝑛)𝛼                                                                     (8) 

 With the aid of Fig. 4.c showing the angles from the interfaces at both ends, we incorporate all the 

parameters of the model into a Mathematica [25] notebook to compute the position and the width of all 

the bands. We then use graphics to depict the pattern. The result is shown in Fig. 5. 

 

a. 

 

b. 

Figure 5: Simulation of the toroidal pattern using Mathematica. (a) focus view on the Co3(PO4)2 

bands. (b) focus view on the Co(OH)2 bands. 

 

The above simulation code serves as generator of a ‘prototype’ pattern, which predicts the detailed 

morphology of the bands obtained upon variation of the parameters of the problem such as the 

concentrations a0 and b0. 

5. Conclusions 

The main results of the present study may be as summarized as follows: 

1. Using a glass toroidal reactor, we carry out Liesegang-type experiments that lead to complex 

patterns. 

2. The phosphate end of the tube yields various patterning zones mediated by various hydration levels 

of the cobalt phosphate salt, which couple to the existing diffusion-reaction processes. 

3. Using the empirical laws, we generate a graphical output of the patterns produced in the torus, 

which could serve as a model of prediction of the pattern to be formed. 
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Controlled dynamical system for lowering vibrations of 

longitudinal forces in railway couplers of multiple-unit railway 

trains 

 

 

Jacek Jackiewicz 

Abstract: The work presents a technical solution designed for modern, multiple-unit 

railway-trains, which move at high speeds and have one low-floor to increase the 

comfort of travelers. In the multiple-unit train without an appropriate control system, 

braking forces, as well as tractive forces of each unit-vehicle of this train cannot appear 

with proper values at the same time. In most cases, the time-varying external forces 

acting on each unit-vehicle can be a source of the generation of unfavorable braking or 

acceleration waves. Therefore, the proposed solution uses suitable cruise control, 

coupled with a simple active eliminator of longitudinal vibrations in such type of 

railway-train, in which each unit-vehicle has its traction motor. Moreover, during 

braking, the action of the energy recovery system of each unit-vehicle of the train is 

under the simultaneous influence of cruise control. 

1. Introduction 

In the multiple-unit train, railway couplers have a meaningful effect on the longitudinal train stability, 

as well as its dynamics. Since the railway couplers have high stiffness at relatively small inertia 

compared to the large inertia of each body of the unit-vehicle, in the absence of hydraulic damping in 

the couplers mechanical vibrations of high frequencies can be easily generated. 

 Let look at a simplified 2D model of two screw-coupled railway-vehicles illustrated in Fig. 1. In 

this figure, the designation, F, denotes the propelling force, while the following denotations: R1, R2, 

R3, and R4 represent reactions at the track due to lateral force created at buffers. Coupler rotations of 

this type of connection of two carriages or wagons create lateral in-train forces generated by 

longitudinal in-train forces. Generated in such way lateral in-train forces become a more and more 

significant safety issue closely associated with the level of their values. Runnings off the rails of tracks 

caused by excessive lateral in-train forces have been reported many times. 

A the beginning of the 1950s the French National Railway Company began works to develop a 

high-speed train. During one of the tests carried out in 1955, a disaster happened [1]. On the line, 

Bordeaux–Hendaye, a train with a locomotive type BB 9104 reached a top speed of circa 331 km/h. 

However, when trying to break a speed record, the track was displaced sideways by lateral in-train 

forces generated by its movements. Moreover, the overhead, as well as the traction line, were torn 
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down. The main reason for this catastrophe has been an unstable run of the prototype of the high-speed 

train. 

 

Figure 1.   Simplified 2D model of two screw-coupled railway-vehicles. 

2. Modeling of longitudinal dynamics of multiple-unit railway-trains 

A system of differential equations can describe the longitudinal dynamic behavior of multiple-unit 

railway-train. After assuming that there is no vertical or lateral movement of each unit-vehicle of the 

considering train, the established equations of the system for modeling and simulation of this motion-

type behavior have a much simpler structure. The application of two-dimensional models, shown in 

Fig. 2 and considered as multibody systems composed of interconnected rigid bodies, allows 

developing the governing differential equations for the considering here problem. Moreover, Fig. 2 

depicts the differences in the structure of railway-trains with Jacobs’ bogies and also with standard train 

bogies. Jacobs’ bogie supports the ends of two adjacent separate unit-vehicles of the train (see lower 

drawing). However, each bogie, which belongs to any selected unit-vehicle of the train with the standard 

arrangement, supports the only one unit-vehicle (see upper drawing). The Jacobs idea provides for a 

reduced number of bogies supporting the train. Nevertheless, this idea has disadvantages associated 

with higher axle burdens as well as a more complex design (see [2]). 

Approaches based on the Newton–Euler equations or the Euler-Lagrange equations are methods 

of developing equations of motion. For the body 𝑖 in a multibody system, the Euler-Lagrange equations 

take the following form: 

𝑑

𝑑𝑡
(

𝜕𝐿

𝜕�̇�𝑖
) −

𝜕𝐿

𝜕𝑞𝑖
+

𝜕𝐷

𝜕�̇�𝑖
= 𝑄𝑖 , (1) 

where 𝐿 ≝ −𝑉 is called the Lagrangian, wherein 𝑇 is the total kinetic energy and 𝑉 is the total potential 

energy of the entire system. Besides, 𝑞𝑖 (𝑖 = 1,2, … , 𝕟) are the independent generalized coordinates 

necessary to describe the system motion at any instant, 𝑄𝑖 (𝑖 = 1,2, … , 𝕟) are the generalized non-

conservative forces associated with 𝑞𝑖 (𝑖 = 1,2, … , 𝕟), and 𝐷 is the energy dissipation due to viscous 

friction. The symbol, 𝕟, indicate the number of degrees of freedom of the multibody system. 
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 The shown in Fig. 2a train-model consists of three separate unit-vehicles with the masses: m𝑖
A, 

which are connected by the stiffness and damping couplers. Note that k𝑖
A (𝑖 = 1,2) and b𝑖

A (𝑖 = 1,2) are 

the stiffness coefficients and the damping coefficients, respectively. In turn, tractive forces of electric 

or hybrid traction systems, assigned to each unit-vehicles of the train, are denoted by 𝐹𝑖
A (𝑖 = 1,2,3). 

Therefore, in a two-dimensional setup written in terms of Cartesian coordinates, the kinetic energy 𝑇A, 

the potential energy 𝑉A, and the energy dissipation 𝐷A become 

𝑇A =
1

2
m1

A�̇�1
2 +

1

2
m2

A�̇�2
2 +

1

2
m3

A�̇�3
2 , (2a) 

𝑉A =
1

2
k1

A(𝑥1 − 𝑥2)2 +
1

2
k2

A(𝑥2 − 𝑥3)2 , (2b) 

𝐷A =
1

2
b1

A(�̇�1 − �̇�2)2 +
1

2
b2

A(�̇�2 − �̇�3)2 . (2c) 

There are three independent generalized coordinates here, 𝑥1, 𝑥2, and 𝑥3. Let use Eq. (1) along with 

Eq. (2) three-times once with 𝑥1, once with 𝑥2 and once with 𝑥3. So, the three Euler–Lagrange equations 

are 

m1
A�̈�1 + c1

A(�̇�1 − �̇�2) + k1
A(𝑥1 − 𝑥2) = 𝐹1

A − 𝑅1
A , (3a) 

m2
A�̈�2 − b1

A�̇�1 + (b1
A + b2

A)�̇�2 − b2
A�̇�3 − k1

A𝑥1 + (k1
A + k2

A)𝑥2 − k2
A𝑥3 = 𝐹2

A − 𝑅2
A, (3b) 

m3
A�̈�3 + b2

A(�̇�3 − �̇�2) + k2
A(𝑥3 − 𝑥2) = 𝐹3

A − 𝑅3
A . (3c) 

 

(a) 

 

(b) 

Figure 2.   Models of multiple-unit railway trains. 

In the above system of equations, 𝑅𝑖
A (𝑖 = 1,2,3) are summary forces of the resistance to motion. 
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 Similarly, to describe the motion of the rigid body elements of railway-train model illustrated in 

Fig. 2b, let first determine the kinetic energy 𝑇B, the potential energy 𝑉B, and the energy dissipation 𝐷B 

𝑇B =
1

2
m1

B�̇�1
2 +

1

2
m2

B�̇�2
2 +

1

2
m3

B�̇�3
2 +

1

2
m1

Q
�̇�1

2 +
1

2
m2

Q
�̇�2

2 +
1

2
m3

Q
�̇�3

2 +
1

2
m4

Q
�̇�4

2 , (4a) 

𝑉B =
1

2
k1

B(𝑥1 − 𝑞1)2 +
1

2
k2

B(𝑞1 − 𝑥1)2 +
1

2
k3

B(𝑥1 − 𝑞2)2 +
1

2
k4

B(𝑞2 − 𝑥2)2 + 

+
1

2
k5

B(𝑥2 − 𝑞3)2 +
1

2
k5

B(𝑞3 − 𝑥3)2 +
1

2
k7

B(𝑥3 − 𝑞4)2 +
1

2
k8

B(𝑞4 − 𝑥3)2 ,
 (4b) 

𝐷B =
1

2
b1

B(�̇�1 − �̇�1)2 +
1

2
b2

B(�̇�1 − �̇�1)2 +
1

2
b3

B(�̇�1 − �̇�2)2 +
1

2
b4

B(�̇�2 − �̇�2)2 + 

+
1

2
b5

B(�̇�2 − �̇�3)2 +
1

2
b5

B(�̇�3 − �̇�3)2 +
1

2
b7

B(�̇�3 − �̇�4)2 +
1

2
b8

B(�̇�4 − �̇�3)2 ,
 (4c) 

Because the train bogies have the masses: m𝑖
Q

 (𝑖 = 1,2,3,4), this model has as much as seven degrees 

of freedom. Furthermore, since it is not a significant problem to derive the differential equations of 

motion for the second railway-train model, it will be here skipped preserving the compactness of the 

presented description. 

 Although each unit-vehicle of the train is subjected to various external loads, only these loads 

related solely to the longitudinal direction are considered here. The resistance forces acting on each 

unit-vehicle, while the train is moving on along a straight line, occur as the result of wheel-rail friction, 

and bearing friction, and, moreover, are independent of the unit-vehicle speed but are functions of its 

type. Despite occurring the velocity-dependent resistance forces due to track deflection, it is generally 

assumed that they are to be constant. Based on Davis’ relationship [3, 4], the sum, of both rolling and 

wind resistances acting on the unit-vehicle 𝑖, is given as 

𝑅i = A𝑖 + B𝑖𝑣 + C𝑖𝑣2, (5) 

where A𝑖 ≝ (𝔸𝑖 + 𝔹𝑖η𝑖)W𝑖 and B𝑖 ≝ ℂ𝑖W𝑖 , wherein W𝑖 is the weight of the vehicle, 𝑣 its speed, 𝔸𝑖 

the rolling resistance coefficient, 𝔹𝑖 bearing resistance coefficient, ℂ𝑖 the flange resistance (in curved 

track), C𝑖 the aerodynamic resistance coefficient, and η𝑖 denotes the number of axles. Note that the 

subscript of each symbol, 𝑖, indicates the number assigned to the unit-vehicle. 

 Sample coefficient values of Davis’s constants for the unit-vehicles, which compose the train are 

given in [3]. 

3. Applications of train dynamics models and computer simulation implementations 

Simulating dynamic systems means solving systems of differential equations, such as given by Eq. (3). 

The numerical integration of differential equations is a universal way to solve them. A software package 

of Scilab, called Xcos, for modeling and simulation of explicit and implicit dynamical systems comes 

with a variety of numerical solvers which can be used to integrate the differential equations describing, 
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considering here, dynamic systems. Xcos provides functionalities to establish the proper control 

strategy by simulating testing systems not only in open but also in closed loops. 

The posed task is to design a cruise controller to bring the train smoothly up to speed 50 m/s 

followed by a step back down to 0 m/s utilizing an electric or hybrid traction system, which allows the 

possibility of the energy recovery. The shown in Fig. 3 model of the controller system generates both 

the traction force, 𝐹1
A, and the motor regenerative braking force (also represented by 𝐹1

A) directly, by 

neglecting the dynamics with which one of the selected train motors (or all of them) creates the torque 

applied to the wheels, as well as, by neglecting the way of the creation of forces at wheel/track 

interfaces. The introduced subsystem block mimics the longitudinal train-dynamics, represented by Eq. 

(3), to make the Xcos model of the cruise controller more understandable. 

 

Figure 3.   Cruise control system of the multiple-unit railway train. 

 During the computer simulations, the relationship between coupler forces and traction forces is 

analyzed, based on under two kinds of operating conditions. Both passive and active vibration damping 

allow lowering vibrations of longitudinal forces in railway couplers of multiple-unit railway trains. The 

use, of viscous dampers with the damping coefficients: b1
A and b2

A, provides to passively reduce 

vibrations (see Figs 2, 4, and 5). In turn, the application of active damping ensures to reduce vibrations, 

and above all lowering the dynamic force values in elastic coupler-elements with the stiffness 

coefficients: k1
A and k2

A as well as in damping coupler-elements with the damping coefficients: b1
A and 

b2
A by the appropriate tuning of values of both traction and braking forces as a result of the selection of 

values of coefficients: 𝑎1, 𝑎2 and 𝑎3, which take values between 0 and 1 (Fig. 5). 
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 Two separate scenarios of simulation tests are adopted. The first of them, which is implemented 

by the use of the subsystem shown in Fig. 4, is when the only first unit-vehicle of the multiple-unit 

railway train has a performing motor enabling the train to be accelerated and braked (i.e., 𝐹1
A ≠ 0, 𝐹2

A =

0, 𝐹3
A = 0). The second of them, which is implemented by the use of the subsystem shown in Fig. 5, is 

when all unit-vehicles of the multiple-unit railway train have performing motors (i.e., 𝐹1
A ≠ 0, 𝐹2

A ≠ 0, 

𝐹3
A ≠ 0). 

 

Figure 4.   Subsystem block for the longitudinal train-dynamics with only passive vibration damping. 
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Figure 5.   Subsystem block for the longitudinal train-dynamics with both passive and active vibration 

damping. 

The computational results for both Xcos simulation scenarios are depicted in Figs 6, 7, 8, and 9. 
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(a) 

 

(b) 

 

(c) 

Figure 6.   Computational results for the first scenario: (a) velocity of the train vs. time, (b) traction 

force, F_1, vs. time, (c) spring force, F_s1, vs. time. 
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(d) 

 

(e) 

 

(f) 

Figure 7.   Computational results for the first scenario: (d) spring force, F_s2, vs. time, (e) damping 

force, F_d1, vs. time, (f) damping force, F_d2, vs. time (continuation of Fig. 6). 
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(a) 

 

(b) 

 

(c) 

Figure 8.   Computational results for the second scenario: (a) velocity of the train vs. time, (b) traction 

force, F_1, vs. time, (c) spring force, F_s1, vs. time. 
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(d) 

 

(e) 

 

(f) 

Figure 9.   Computational results for the first scenario: (d) spring force, F_s2, vs. time, (e) damping 

force, F_d1, vs. time, (f) damping force, F_d2, vs. time (continuation of Fig. 8). 
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4. Conclusions 

By applying the original method for lowering vibrations of longitudinal forces in railway couplers of 

multiple-unit railway trains, the dynamic forces transmitted through the couplers have been reduced 

approximately 20-times. As a consequence of that, it seems that the problems associated with the 

material fatigue of railway couplers become less significant in such a case. 

The standard PID regulator is here applied in its double coupled system. The settings of the PID 

regulator constitute a compromise between the possibility of obtaining simultaneously the low 

overshoot and the close to zero value of the steady-state error. 

Because the dynamic system considered here is nonlinear, the self-tuning control system should be 

applied [6]. 
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Adaptive, nonlinear synchronization of a Duffing oscillator with 

unknown parameters 

 

 

Jacek Kabziński 

Abstract: For many years, the Duffing oscillator was investigated intensively as a 

benchmark of a chaotic system which demonstrates all phenomena of chaos. 

Contemporarily, oscillating systems that exhibit Duffing-like behavior are present in 

many areas: MEMS, laser technique, wireless power harvesters, and many others. 

Therefore, the problem of controlling a Duffing system becomes more and more 

practical. A general tracking control problem is solved for a chaotic system (Duffing 

oscillator) with unknown parameters. The additional requirement that the tracking error 

must remain inside an imposed hard constraint is considered. Barrier Lyapunov 

functions  (BLF) approach is selected to solve the problem and different BLFs are 

compared. Several system properties are investigated and the influence of design 

parameters is discussed.  

1. Introduction  

The Duffing oscillator [1] has been investigated intensively for many years. It is commonly recognized 

as a fundamental benchmark of a chaotic system which is able to demonstrate all phenomena of chaos. 

In modern engineering, oscillating systems that exhibit Duffing-like behavior are present in many areas: 

MEMS [2], laser technique [3], wireless power harvesters [4] and numerous others. Controlling a 

Duffing system becomes a practical problem. In practical applications, it is usually desirable to suppress 

a chaotic motion of a Duffing oscillator to avoid the fracture or degradation of the mechanism. The 

control aim is usually to navigate the trajectory of a chaotic system to a periodic one, and such a task, 

formulated as a general tracking problem, is the main topic of this contribution. However, the approach 

presented here may be as well applied to other tasks, such as chaos synchronization or generation of 

chaos – “choaotification” [5].  

The tracking problem for chaotic systems was investigated intensively and many control techniques 

were applied. Some classical results applicable to Duffing oscillators are described in [5, 6]. Among 

many others, the adaptive control techniques based on the backstepping [7] approach are used and 

recommended [8,9,10,11]. Some distinct nonlinear approaches such as phasor control [12] or fuzzy 

modular control [13], have been reported recently.  

The common drawback of these solutions is that they do not offer any possibility to impose hard 

constraints on the tracking error. Any design technique includes design parameters which may be used 
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to shape the system trajectories and the error dynamics, but it is impossible to be sure that the error will 

remain inside the pre-specified interval for any dynamic conditions. For practical tracking systems, 

especially microscale mechanisms, respecting hard constraints is a matter of safe operation or failure. 

Therefore, in this contribution, an adaptive tracking problem for an unknown Duffing oscillator with 

hard tracking error constraints imposed a priori is formulated and solved.  

The proposed solution is based on the adaptive backstepping design with the application of barrier 

Lyapunov functions (BLF). Control Lyapunov functions of this type were introduced and investigated 

in recent papers [14-17], mostly for systems with multiple state or output constraints. Here this strategy 

was adopted for a chaotic Duffing oscillator with unknown parameters. Similar nonlinear control 

techniques were successfully applied in some previous and contemporary works of the author [18-22]. 

In this contribution, two BLFs are compared and the influence of design parameters is investigated.   

1.1. Problem statement 

The Duffing’s equation was formulated by Georg Duffing in 1918 [1] to describe the motion of a 

mechanical system with harmonic excitation and a nonlinear restoring force: 

��� = ��,��� = −��� − ���� − ����	 + ������� + �, (1) 

where � is time, � - external force frequency, �- it’s amplitude, �, ��, �� are real constants. The variable � represents the control – external force added to the periodic excitation. For ��>0, the Duffing 

oscillator can be interpreted as a forced oscillator with a spring whose restoring force is � = −���� −����	. When �� > 0, we have a ‘hardening spring’, and when �� < 0, we have a ‘softening spring’, 

although this interpretation is valid only for small �. For�� < 0, the Duffing oscillator describes the 

dynamics of a point mass in a double well potential, and it can be a model of a periodically forced steel 

beam deflected towards the two magnets.  

Because the Duffing oscillator (1) with unknown, constant parameters is considered, eq. (1) may 

be expressed as 

��� = ��,��� = � + �, (2) 

where 

� = −��� − ���� − ����	 + ������� = �� �� �� �� � −��−��−��	������� = ��  . (3) 

The function   is known and unknown parameters � will be approximated by the adaptive parameters �" . The error of adaptation will be denoted by �# = � − �". 
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The control aim is to follow a smooth, desired trajectory ��$ , ���$ in such a way that the tracking error %� = ��$ − �� tends to zero asymptotically and the hard constraints are fulfilled. The symmetric 

constraints imposed on the tracking error are considered: 

|%����| ≤ ∆)�. (4) 

2. Barrier Lyapunov function approach 

A barrier Lyapunov function (BLF) is a continuous, positive definite scalar function *���, defined 

with respect to the system �� = ���� on an open region + containing the origin, has continuous first-

order partial derivatives at every point of +, is such that *��� → ∞ as � approaches the boundary of +, 

and satisfies: ∃/, ∀� > 0  *1����2 < /  along any system trajectory starting inside +. Usually it is 

assumed that + is a hyperrectangle defined by  + ≔ 4�:  |�6| ≤ ∆768. The following corollary can be 

easily proved [15]: 

Corollary 1. Consider a smooth dynamical system 9� = ���, �, :�, with the state variables 9 =��  :��. Let *6��6� be a BLF satisfying *6��6� → ∞ if ⌊�6⌋ → ∆76. Let * = ∑ *6��6�>?@ �7�6A� + :�B:  for 

any positive definite matrix B. If the inequality *� = CDCE� � ≤ 0  holds anywhere in the set F =4��, :�:  |�6| ≤ ∆768, then any trajectory which fulfills the initial constraints  ∀G  |�6| ≤ ∆76  remains in F for any �.  

2.1. Selection of a BLF 

The commonly accepted form of a single variable BLF corresponding to the interval + = �−∆, ∆� is a 

logarithmic BLF [14-17]: 

*�∆, �� = �� ln ∆J∆JK7J. (5) 

In this contribution, we introduce two different BLFs: 

*L�∆, �� = �� ln ∆J)MJ
∆JK7J ,   *N�∆, �� = ∆JO tan RO� 7J∆JS (6) 

Each function possess this attractive feature that for any constant �, −∆< � < ∆ 

lim∆→V *L�∆, �� = lim∆→V *N�∆, �� = �� ��, (7) 

so, for increasing bound ∆ a barrier Lyapunov function is, in a certain sense, transformed into quadratic 

Lyapunov function (a standard control Lyapunov function in case of unconstraint design)  and the 

closed-loop system properties may be changed smoothly from the bounded to unbounded case, although 

the nature of  this transformation is different for both functions, as it is illustrated in fig. 1-2. 
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Figure 1.   Barrier Lyapunov functions (dotted) for ∆= 1, … ,5 and quadratic Lyapunov function (solid) 

- *L�∆, �� (left) and *N�∆, �� (right) 

 

Figure 2.   
�� �� − *L�∆, �� -  (left) and 

�� �� − *N�∆, �� (right) for ∆= 1, … ,5 as a function of 
7∆. 

. 

 

The derivative of each function (6) or (7) along a trajectory ���� possesses a similar form: 

*�∗�∆, �� = ���[∗�∆, ��,∗= �, \,   [L�∆, �� = 1 + �∆JK7J ,   [N�∆, �� = 1 + tan� R O�∆J ��S. (8) 

Both functions [∗�∆, ��, ∗= �, \ are strictly positive. 

2.2. Control algorithm 

The tracking error dynamics is given by the equation 

%�� = ���$ − ��� = ���$ − ��. (9) 

The state variable �� will be a virtual control for the tracking error. The desired trajectory for ��  will 

be denoted by ��$ and the error between the desired and the actual value by %� = ��$ − ��. Hence, the 

tracking error dynamics may be represented as 
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%�� = ���$ − ��$ + %�. (10) 

In order to satisfy the tracking error constraints |%�| < ∆)�, one the BLFs *��∆)�, %�� = *∗�∆)�, %��, ∗= �, \ is applied during the first stage of backstepping. The system derivative is given by: 

*�� = %�����$ − ��$ + %��[∗�∆)�, %��. (11) 

The choice 

��$ = ���$ + ]�%�, (12) 

where k1 is a positive design parameter results in:  

*�� = �−]� %�� + %�%��[∗�∆)�, %��, (13) %�� = ���$ − ��$ + %� = %� − ]�%�, (14) ���$ = �̂�$ + ]�%�� = �̂�$ + ]�%� − ]��%�. (15) 

The derivative of the desired trajectory ���$ is available for control purposes. The dynamics of e2 is 

described by: 

%�� = ���$ − ��� = ]�%� − ]��%� + �̂�$ − � − �. (16) 

A smart way to smooth the trajectories is to introduce the constraint on the second tracking error |%����| ≤ ∆)�, although increasing ∆)� transforms the problem smoothly into the unconstrained case. 

The Lyapunov function for the second stage of backstepping is selected as  

 *��%�, %�� = *��∆)�, %�� + *∗�∆)�, %�� + �� �#�ΓK��#, (17) 

where ∗ indicates the same Lyapunov function (A or B) as it was selected in the first loop and the 

positive definite matrix Γ is selected by the designer. The derivative of the Lyapunov function along 

the system trajectory is  

*�� = �−]� %�� + %�%��[∗�∆)�, %�� + %�[∗�∆)�, %��1���$ − ��  − �2+�#� ΓK��#� . (18) 

The control �  is chosen to cancel unnecessary components and to introduce a stabilizing factor: 

� = ���$ − �"�  + ]�%� + %� `∗�∆ab,)b�`∗�∆aJ,)J�, (19) 

where ]� > 0 is  the design parameter. The application of this control law reduces () to 

*�� = −]� %��[∗�∆)�, %�� − ]� %��[∗�∆)�, %�� − �#� R[∗�∆)�, %��%�  − ΓK��#�S. (20) 

The simplest adaptive law to cancel the last, unknown term is  

�#� = [∗�∆)�, %��%� Γ ⇒ �"� = −[∗�∆)�, %��%� Γ . (21) 

Corollary 2. Consider the reference trajectory, the closed loop error system (14), (16) with the 

adaptation laws (21) and control (19), under all assumptions formulated above. Consider any trajectory 
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with initial conditions fulfilling |%��0�| ≤ ∆)�, |%��0�| ≤ ∆)�, then the following properties hold along 

this trajectory: 

1. The variables %�, %�, �# remain inside a compact set and the constraint |%����| ≤ ∆)�, |%����| ≤∆)� is satisfied. 

2. All closed loop signals are bounded. 

3. The tracking errors %�, %�, converge to zero asymptotically.  

Indeed, as *�d ≔ *��%��0�, %��0�� is bounded and *�� ≤ 0, *� ≤ *�d along the considered trajectory, 

the corollary 1 yields that  |%����| ≤ ∆)�, |%����| ≤ ∆)�. Moreover e�#e ≤ f �DJghijk�lmb�, where no6p�∗� 

denotes the smallest eigenvalue of the symmetric matrix ∗. Therefore, the adaptive parameters �" and 

the state variables are bounded, and hence, the control � is bounded. The tracking error asymptotic 

convergence may be obtained by demonstrating that *̂�  is bounded and making use of the Barbalat’s 

lemma [18]. 

Note that the error %� is not the gap between ���$ and ��, but between ��$ = ���$ + ]�%� and ��. 

Therefore, design parameter ]� influences the error %� directly, and so the selection of ∆)� must be 

done taking some feasibility conditions into account. The initial error value %��0� fulfils 

%��0� = ���$�0� + ]����$�0� − ���0�� − ���0� (22) 

and therefore depends on the initial conditions, the desired trajectory and the selected design parameter ]�. The constraint ∆)� must be carefully chosen with a sufficient margin with respect to |%��0�|. 
Moreover, for any � |�� − ���$| ≤ ]�∆)� + ∆)�, so the increase of the design parameter ]� improves 

the convergence of the tracking error  %�, but also enlarges the obtained bound for |�� − ���$|. 
3. Numerical experiments 

The Duffing oscillator with parameters  � = 0.4, �1 = −1.1, �2 = 1, � = 2.1, � = 1.8, is considered. 

The control aim is to synchronize the output with a limit cycle described by:  

��$ = ���2.5��, ��$ = ���$ (23) 

It is assumed that only the sign of the parameters is known, so the initial values of the estimated 

parameters are ∓1. The system starts at the point ���0� = 1.07,  ���0� = 0 - outside the desired 

trajectory. The uncontrolled system demonstrates chaotic behavior, while the typical controlled case 

with *L�∆, �� and the constraint ∆)�= 0.1, ∆)�= 0.2 is presented in fig. 3. 

The first experiment demonstrates the influence of the position constraint ∆)�, while ∆)� is sufficiently 

big. The plots are presented in fig.4. The tracking errors are bounded by the stabilizing feedbacks and 

by the influence of BLFs. For both values ∆)�= 0.2, 0.1 the tracking error is (almost) inside the 

narrower constraint. For ∆)�= 0.2 it is mostly due to the action of adaptive, stabilizing feedback. For 
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∆)�= 0.1 the impact of BLFs is higher, as the trajectory moves closer to the constraint. The narrower 

constraint ∆)�= 0.1 results in slightly higher values of control and faster movement if the system is 

close to the constraint. The BLF *L�∆, �� (with logarithm) provides more rapid reaction then *N�∆, �� 

(with tangent) – what is understandable in context of the plots from fig. 1. 

 

Figure 3.   Trajectories of the uncontrolled (left) and controlled (right) Duffing oscillator. 

 

Figure 4.   Tracking errors and control for ∆)�= 2 and ∆)�= 0.2 (solid), ∆)�= 0.1 (dotted). *L�∆, �� 

(left) and *N�∆, �� (right) BLFs are used.  

The next experiment is performed to demonstrate the influence of the velocity constraint ∆)�. The plots 

are presented in fig. 5. More restrictive constraint ∆)� diminishes the tracking error %�, what is obvious, 
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but also provides smoother and less-oscillatory trajectory of the position error %�. Again, the influence 

of  BLF *L�∆, �� (with logarithm) is stronger then *N�∆, �� (with tangent). 

 

 

Figure 5.   Tracking errors and control for ∆)�= 0.1 and ∆)�= 1 (solid), ∆)�= 0.2 (dotted). *L�∆, �� 

(left) and *N�∆, �� (right) BLFs are used.  

Finally, the Duffing oscillator was synchronized with first two state variables of the Arneodo chaotic 

system  

���L = ��L                                                ���L = �	L                                                ��	L = 7.5��L − 3.8��L − �	L − ��L� . (24) 

The output of  (24) was scaled to get ��$ = 0.1��L, ���$ = 0.1��L. The controller was designed with 

parameters ]� = ]� = 5, ∆)�= 0.1, ∆)�= 0.5. The remaining settings were the same as in the previous 

examples. The tracking of the trajectories is illustrated in fig. 6 while the signals in the closed-loop 

system are plotted in fig. 7. The tracking is sufficiently accurate, the tracking errors are kept inside the 

predefined constraints, control signal is moderate, and the adaptive parameters are bounded (see fig. 8).   
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Figure 6.   Trajectories of Arneodo system (solid) and the Duffing oscillator (dotted) ∆)�= 0.1 and ∆)�= 0.5 . *L�∆, �� (upper) and *N�∆, �� (lower) BLFs are used.  
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Figure 7.   Tracking errors and control – tracking the Arneodo system  for ∆)�= 0.1 and ∆)�= 0.5. *L�∆, �� (left) and *N�∆, �� (right) BLFs are used.  

 

4. Conclusions 

The proposed approach allows to suppress the chaotic motion of a completely unknown Duffing 

oscillator and to preserve hard constraints imposed on the tracking errors. Both tested BLFs provide 

satisfactory results. The one containing logarithmic function results in more aggressive control near the 

constraint, the one containing tangent function results in slightly smaller control values. Without any 

doubt, the control system must be tuned properly to the particular application. The design parameters: 

control gains ]�, ]�, adaptive gain Γ and tracking error bounds ∆)�, ∆)� must be designed appropriately. 

Values proposed in the discussed examples were selected to demonstrate the system features clearly 

and are not optimal. The “responsibility” of each design parameter is clear but also interactions among 

them influence the final choice. 

It is noticeable that even small changes of control result in important changes of trajectories - it is not 

surprising with a chaotic system. Even numerical inaccuracies cause the errors to oscillate (with small 

amplitude) instead of approaching zero asymptotically. Therefore any practical realization of the 

controller must be done with proper care and take numerical and real-life aspects into account. 
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The simplest adaptive law was used in this study, but the adaptive parameters remain bounded. In spite 

of this, for real-life applications, robust adaptive laws [18] are strongly recommended. 

The main drawback of the proposed approach is that the constraints are imposed on the tracking errors 

and not on the original state variables itself. Another approach based on a special nonlinear state 

transformation allows to formulate constraints for state variables directly but results in more 

complicated control [22]. 

 

Figure 8.   Adaptive parameters while tracking the Arneodo system  ( ∆)�= 0.1 and ∆)�= 0.5. *N�∆, �� 

BLFs are used).  
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Application of the Drazin inverse of matrices to analysis of the pointwise 

completeness and the pointwise degeneracy of the descriptor linear systems 

 

Tadeusz Kaczorek 

Abstract: The Drazin inverse of matrices is applied to analysis of the pointwise 

completeness and the pointwise degeneracy of the descriptor linear continuous-time 

and discrete-time systems. It is shown that: 1) The descriptor linear continuous-time 

system is pointwise complete if and only if the initial and final states belong to the 

same subspace. 2) The descriptor linear discrete-time system is not pointwise 

complete if its system matrix is singular. 3) System obtained by discretisation of 

continuous-time system is always not pointwise complete. 4) The descriptor linear 

continuous-time system is not pointwise degenerated in any nonzero direction for all 

nonzero initial conditions. Considerations are illustrated by example of descriptor 

linear electrical circuit. 

 

1. Introduction 

A dynamical system described by homogenous equation is called pointwise complete if every final 

state of the system can be reached by suitable choice of its initial state. A system, which is not 

pointwise complete is called pointwise degenerated. The pointwise completeness and pointwise 

degeneracy of linear continuous-time systems with delays have been investigated in [2, 3, 8-11], the 

pointwise completeness of linear discrete-time cone systems with delays in [11] and of fractional 

linear systems in [1, 6-8]. The pointwise completeness and pointwise degeneracy of standard and 

positive hydrid systems described by the general model have been analyzed in [4] and of positive 

linear systems with state-feedbacks in [5]. 

In this paper the Drazin inverse of matrices will be applied to analysis of the pointwise 

completeness and the pointwise degeneracy of the descriptor linear continuous-time and discrete-time 

systems. 

The paper is organized as follows. In section 2 the basic definitions and theorems concerning 

descriptor linear continuous-time and discrete-time systems and the Drazin inverse of matrices are 

recalled. The pointwise completeness of descriptor linear continuous-time and discrete-time systems 

is investigated in section 3 and the pointwise degeneracy in section 4. Concluding remarks are given 

in section 5. The considerations are illustrated by linear electrical circuit. 

195



The following notation will be used:   - the set of real numbers, 
n m  - the set of n m  real 

matrices, 
n m

  - the set of n m  real matrices with nonnegative entries and 
1n n

    , nI  - the 

n n  identity matrix. ImP is the image of the operator (matrix) P. 

 

2. Autonomous descriptor linear systems and their solutions 

Consider the autonomous descriptor continuous-time linear system 

,Ex Ax   
dx

x
dt

                                                         (2.1) 

where ( ) nx x t   is the state vector and , .n nE A   

It is assumed that det 0E   but the pencil ( , )E A  is regular, i.e. 

det[ ] 0Es A   for some s C  (the field of complex numbers)            (2.2) 

Assuming that for c  det[ ] 0Ec A   and premultiplying (2.1) by 
1[ ]Ec A   we obtain 

,Ex Ax                                                             (2.3a) 

where 

1[ ] ,E Ec A E   
1[ ] ,A Ec A A                                          (2.3b) 

The equations (2.1) and (2.3a) have the same solution .x  

Definition 2.1. A matrix 
D q nE   is called the Drazin inverse of E  if it satisfies the conditions 

,D DEE E E                                                             (2.4a) 

,D D DE EE E                                                           (2.4b) 

1 ,D q qE E E                                                             (2.4c) 

where q  is the index of E  defined as the smallest nonnegative integer satisfying the condition 

1.q qrankE rankE                                                              (2.5) 

Theorem 2.1. Let 

,DP EE                                                             (2.6a) 

,DQ AE                                                             (2.6b) 

then 

kP P  for 2,3,...k                                                    (2.7a) 

,PQ QP Q                                                                 (2.7b) 

,D DPE E                                                                    (2.7c) 
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.Px x                                                                          (2.7d) 

Proof is given in [8]. 

Theorem 2.2. The solution of the equation (2.3a) has the form 

( ) AEt Dx t e EE w                                                             (2.8) 

where 
nw  is any vector and (0) Im Im .Dx EE P   

Proof is given in [8]. 

Consider the autonomous descriptor discrete-time linear system 

1 ,i iEx Ax    0,1,...i                                                          (2.9) 

where 
n

ix   is the state vector and , .n nE A   

It is assumed that det 0E   and  

det[ ] 0Ez A   for some z C                                               (2.10) 

Choosing c  such that det[ ] 0Ec A   and premultiplying (2.9) by 
1[ ]Ec A   we obtain 

1 ,i iEx Ax                                                              (2.11) 

where E  and A  defined by (2.3b). 

Theorem 2.1 is also valid for the discrete-time systems. 

Using the Drazin inverse 
DE  of the matrix E  we may find the solution ix  of the equation 

(2.11) by the use of the following Theorem. 

Theorem 2.3. The solution of the equation (2.11) has the form 

0[ ] ,i D i

ix E A E Ev Q x    1, 2,...i                                        (2.12) 

where 
nv  is any vector and 0 Im Im ,Dx EE P   the matrices P  and Q  are defined by (2.6). 

Proof is given in [8]. 

 

3. Pointwise completeness of descriptor linear systems 

In this section conditions for the pointwise completeness of descriptor continuous-time and discrete-

time linear systems will be established. 

 

3.1. Continuous-time systems 

Definition 3.1. The descriptor continuous-time linear system (2.1) is called pointwise complete for 

ft t  if for final state ( ) n

f fx x t   there exists an initial condition (0) Imx P  such that  

( ) Im ,f fx x t P                                                           (3.1) 
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where P  is defined by (2.6a). 

Theorem 3.1. The descriptor system (2.1) is pointwise complete for any 
ft t  and every 

n

fx   if and only if the condition (3.1) is satisfied. 

Proof. Note that det 0Qte   and 
1[ ]Qt Qte e   for any .t  From (2.8) for 

ft t  we have 

(0) .fQt

fx e x


                                                          (3.2) 

Therefore, for every fx  there exists (0) Imx P  such that ( )f fx x t . □ 

Example 3.1. Consider the descriptor linear electrical circuit shown in Figure 3.1 with given 

resistances 1,R  2 ,R  3 ,R  inductances 1,L  2 ,L  3L  and source voltages 1 ,e  2 .e  

 

Fig. 3.1 

 

Using Kirchhoff’s laws we may write the equations 

31

1 1 1 1 3 3 3

32

2 2 2 2 3 3 3

1 2 3

,

,

0,

didi
e R i L R i L

dt dt

didi
e R i L R i L

dt dt

i i i

   

   

  

                                                (3.3) 

which can be written in the form 

1 1

1

2 2

2

3 3

,

i i
ed

E i A i B
edt

i i

   
    

      
       

                                                    (3.4a) 

where 

1 3

2 3

0

0 ,

0 0 0

L L

E L L

 
 


 
  

  

1 3

2 3

0

0 ,

1 1 1

R R

A R R

  
 

  
 
  

  

1 0

0 1 .

0 0

B

 
 


 
  

                          (3.4b) 
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The assumption (2.2) for the electrical circuit is satisfied, since the matrix E  is singular 

(det 0)E   and  

1 1 3 3

2

2 2 3 3 1 2 3 2 3

1 2 3 2 1 3 3 1 2 1 2 3 2 3

0

det[ ] 0 [ ( ) ]

1 1 1

[ ( ) ( ) ( )] ( ) .

L s R L s R

Es A L s R L s R L L L L L s

R L L R L L R L L s R R R R R

 

       

  

       

         (3.5) 

Therefore, the electrical circuit is a descriptor linear continuous-time system. 

Note that the matrix A  defined by (3.4b) is nonsingular and we may choose in (2.2) 0.s   In 

this case we obtain 

1 2 3 2 3 3 2

1

1 3 2 1 2 3 1

1 2 3 2 3

1 2 2 1 3 1 2

( )
1

[ ] ( )
( )

( )

L R R L R L R

E A E L R L R R L R
R R R R R

L R L R L R R



  
 

    
  
  

        (3.6) 

1

3[ ]A A A I                                                                                                   (3.7) 

and 

,11 ,1 ,13

,21 ,22 ,23 2

,31 ,32 ,33

1
,

d d d

D

d d d

L

d d d

e e e

E e e e

e e e

 
 

   
 
 

                                                         (3.8) 

1 2 3 2 3 2 3

1 3 2 1 3 1 3 2

1 2 1 2 3 1 2

( )
1

( ) ,

( )

D

L

L L L L L L L

P EE L L L L L L L

L L L L L L L

  
 

   
  
  

              (3.9) 

,D DQ AE E                                                                            (3.10) 

where 

2 2 2 2

,11 1 2 1 3 1 2 3 3 2 2 3 1( 2 ),de L L R L R L R L R L L R      

2 2

,12 2 3 1 3 2 1 2 3 1 3 2 2 3 1( ),de L L R L R L L R L L R L L R       

2 2

,13 3 2 1 2 3 1 2 3 1 3 2 2 3 1( ),de L L R L R L L R L L R L L R      

2 2

,21 1 3 1 3 2 1 2 3 1 3 2 2 3 1( ),de L L R L R L L R L L R L L R       

2 2 2 2

,22 2 1 2 1 3 3 1 3 2 1 3 2( 2 ),de L L R L R L R L R L L R      

2 2

,23 3 1 2 1 3 1 2 3 1 3 2 2 3 1( ),de L L R L R L L R L L R L L R      

2 2

,31 1 2 1 2 3 1 2 3 1 3 2 2 3 1( ),de L L R L R L L R L L R L L R      
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2 2

,32 2 1 2 1 3 1 2 3 1 3 2 2 3 1( ),de L L R L R L L R L L R L L R      

2 2 2 2

,33 3 1 2 2 1 1 3 2 3 1 3 3( 2 ),de L L R L R L R L R L L R      

1 2 3 2 3( ) .L L L L L L     

The solution of the equation (3.4a) for 0B   satisfies the condition 

1 1

2 2

3 3

( ) (0)

( ) (0) Im

( ) (0)

f

f

Qt

f

f

i t i

i t e i P

i t i

   
   

    
     

.                                                (3.11) 

Therefore, the descriptor electrical circuit is poinwise complete.  

From the above considerations we have the following conclusion. 

Conclusion 3.1. In descriptor linear electrical circuit for 0B   by suitable choice of initial 

conditions (currents in coils and voltages on capacitors) belonging to ImP  it is possible to obtain in 

a given time 
ft  the desired values of currents in coils and voltages on capacitors belonging also to 

Im .P  

 

3.2. Discrete-time systems 

Definition 3.2. The descriptor discrete-time linear system (2.9) is called pointwise complete for 

i q  if for every final state 
n

qx   there exists an initial condition 0 Imx P  such that 

Imq fx x P  . 

Theorem 3.2. The descriptor discrete-time linear system (2.9) is not pointwise complete for any 

i q  and every .fx  

Proof. From (2.12) for i q  we have 0 .
q

qx Q x  Hence for given 
qx  it is possible to find 0x  

if and only if det 0.Q   Note that det det det 0DQ A E   since det 0DE   for any singular 

matrix E  [8]. □ 

Now we shall show that by Euler type discretization from pointwise complete continuous-time 

system (2.1) we obtain corresponding discrete-time system (2.9) which is not pointwise complete for 

any .qi   

Let ( ),ix x ih  0,1,...,i   0h   and 

1( ) i ix x
x t

h

 
                                                       (3.12) 

Then from (2.1) and (3.12) we have 
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1 ,i i

i

x x
E Ax

h

 
   0,1,...,i                                                      (3.13) 

and 

1 ( ) ,i iEx E hA x     0,1,...,i                                                      (3.14) 

Note that 

   1

1 2

1

2

1
det det det 0

1
for 0 and

nc
Ec E hA h E A h Ec A

h

c
h c

h

   
           

  


 

                    (3.15) 

If and only if  1det 0.Ec A   

Therefore, the pencil of the corresponding discrete-time system (3.14) is regular if and only if the 

pencil of the continuous-time system (2.1) is regular. 

By Theorem 3.1 the descriptor continuous-time system (2.1) is pointwise complete and the 

corresponding discrete-time system (3.14) by Theorem 3.2 is not pointwise complete. Therefore, we 

have the following theorem. 

Theorem 3.3. The system obtained by the discretisation of continuous-time system is always not 

pointwise complete. 

 

4. Pointwise degeneracy of descriptor linear systems 

In this section conditions for the pointwise degeneracy of descriptor continuous-time and discrete-

time linear systems will be established. 

 

4.1. Continuous-time systems 

Definition 4.1. The descriptor continuous-time linear system (2.1) is called pointwise degenerated in 

the direction 
nv  for 

ft t  if there exists nonzero vector v  such that for all initial conditions 

(0) Im ,x P  the solution of (2.1) satisfies the condition 

0,T

fv x                                                                       (4.1) 

where ( ).f fx x t  

Theorem 4.1. The descriptor continuous-time linear system (2.1) is not pointwise degenerated in 

any nonzero direction 
nv  for all nonzero initial conditions (0) Im .x P   
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Proof. Note that det 0fQt
e   for any matrix 

DQ AE  and all .ft  Substitution of 

(0)fQt

fx e x  into 
T

fv x  yields 

(0) 0fQtT T

fv x v e x                                                          (4.2) 

for all nonzero initial conditions (0) Im .x P  □ 

Example 4.1. (Continuation of Example 3.1). 

Consider the descriptor linear electrical circuit shown in Figure 3.1 with given the resistances, 

inductances and source voltages. The electrical circuit is described by the equation (3.4). 

The matrix (3.10) of the descriptor electrical circuit is singular since 

det 0Q                                                           (4.3) 

but the matrix fQt
e  is nonsingular. 

Therefore, by Theorem 4.1 the descriptor electrical circuit is not pointwise degenerated in any 

nonzero direction 
3v  for all nonzero initial conditions. 

 

4.2. Discrete-time systems 

Definition 4.2. The descriptor discrete-time linear system (2.9) is called pointwise degenerated in the 

direction 
nv  for fi q  if there exists nonzero vector v  such that for all initial conditions 

0 Im ,x P  the solution of (2.9) satisfies the condition 

0.T

qv x                                                                       (4.4) 

Theorem 4.2. The descriptor discrete-time linear system (2.9) is pointwise degenerated in the 

direction 
nv  if and only if 

det 0.Q                                                                       (4.5) 

Proof. Note that 0Tv Q   if and only if (4.5) holds. In this case 

0 0T T q

qv x v Q x    for all 0 .x P                                                        (4.6) 

Therefore, the descriptor system (2.9) is pointwise degenerated in the direction 
nv  if and only if 

the condition (4.5) is satisfied. □ 

 

5.Concluding remarks 

The Drazin inverse of matrices has been applied to analysis of the pointwise completeness and the 

pointwise degeneracy of the descriptor linear continuous-time and discrete-time systems. It has been 

shown that: 
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1) The descriptor linear continuous-time system is pointwise complete if and only if the initial and 

final states belong to the same subspace (Theorem 3.1). 

2) The descriptor linear discrete-time system is not pointwise complete if its system matrix is singular 

(Theorem 3.2). 

3) The system obtained by discretisation of continuous-time system is always not pointwise complete 

(Theorem 3.3). 

4) The descriptor linear continuous-time system is not degenerated in any nonzero direction for all 

nonzero initial conditions (Theorem 4.1). 

Considerations have been illustrated by example of descriptor linear electrical circuit. 

The considerations can be easily extended to fractional linear systems. 
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The influence of asymmetric electrodes on the non-planar
dynamics of a parametrically excited nonlinear microbeam

P. N Kambali, T. Mintz, K. Mora, E. Buks and O. Gottlieb

Abstract: An initial-boundary value problem describing the three dimensional
motion of a parametrically excited nonlinear microbeam in an asymmetric dual
gap configuration is investigated asymptotically and numerically to study the
influence of imperfections on its spatio-temporal dynamics. The analytical
and numerical investigation of the non-planar dynamics reveals coexisting pe-
riod doubled and quasiperiodic solutions corresponding to saddle-node and
secondary Hopf instabilities in the slowly varying evaluation equations. The
results are also compared with measurements from an experiment with asym-
metric electrode gaps demonstrating that a planar model with parametric exci-
tation cannot predict the documented bias in the observed frequency response
of a nonlinear microbeam with an imperfect electrode configuration.

1. Introduction

Electrodynamically excited nano- and micro-mechanical resonators [1, 8] consist of configu-

rations and structural elements which make use of one of their resonance frequencies. Their

applications include atomic force microscopy [2], mass sensing [7] etc. These devices are

mechanical structures (eg:electrodes and beams) consisting of various configurations which

include both single element and multi-element arrays [3, 4] that are excited electrodynam-

ically along in-plane direction [8], out-of-plane direction or both directions [3]. Majority of

theoretical studies in literature assume that electrodes and beams are symmetrically spaced

for both single and multi-element arrays. Thus in this work we study the influence of an

imperfect configuration with asymmetric gaps between the electrodes (Fig.1) and investi-

gate the bifurcation structure resulting from spatio-temporal effects of the asymmetrical gap

configuration on a non-planar, nonlinear micro-beam-string response.

2. Problem Formulation

2.1. Initial-Boundary-Value Problem

We consider a fixed-fixed microbeam of length L, width B, thickness H separated from two

side electrodes by distances G1 and G2 on either side respectively as shown in Fig. 1 (a). Fol-

lowing [5] we show a general view of electrostatically excited microbeam with assymetricaly
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placed side electrodes in Fig. 1 (b). The experimental frequency and phase measurements are

depicted in Fig. 1 (c). Following [6] we derive an initial-boundary value problem describing

the three-dimensional motion of a parametrically excited microbeam with asymmetric elec-

trodes.The equations of motions and boundary conditions for a microbeam with nonlinear

damping and nonlinear stiffness can be written as

ρAUtt −

[
NUx + EA

[
Ux +

1

2

(
V 2
x +W 2

x

)]
+DA

(
Utx + VxVtx +WxWtx

)]
x

= 0 (1)

ρAVtt −

[
NVx + EAVx

[
Ux +

1

2

(
V 2
x +W 2

x

)]
+DAVx

(
Utx + VxVtx +WxWtx

)]
x

+
[
EIzVxxx +DIzVtxxx

]
x

= QV (2)

ρAWtt −

[
NWx + EAWx

[
Ux +

1

2

(
V 2
x +W 2

x

)]
+DAWx

(
Utx + VxVtx +WxWtx

)]
x

+
[
EIyWxxx +DIyWtxxx

]
x

= QW (3)

U(0, t) = V (0, t) = W (0, t) = U(L, t) = V (L, t) = W (L, t) = 0, Ux(0, t)

= Vx(0, t) = Wx(0, t) = Ux(L, t) = Vx(L, t) = Wx(L, t) = 0, (4)

where A = BH cross sectional area of the beam, ρA is the mass per unit length of the beam,

E is the Young’s modulus, N is the pretension, Iy = HB3/12 and Iz = BH3/12 denotes the

moment of inertia, D is Kelvin-Voigt viscoelastic damping constatnt . The forcing QV along

y direction is a combination of an electrostatic force [6] and a linear damping force, whereas

the forcing QW along z direction is a linear damping force. QV and QW are given by

QV =
ε0B

2
Vf

2
[ 1(
G1 − V

)2 − 1(
G2 + V

)2 ]− CVt, QW = −CWt (5)

where Vf = Vac cos(ωact), ε0 = 8.854 × 10−12 is permittivity of free space. We non-

dimensionlize the governing equations with the variables u = U/L, v = V/L, w = W/L,

τ = t/Ts and s = x/L, where T 2
s = (ρAL2/N). Subsequently, we neglect inertia and damp-

ing terms in the longitudinal direction to yield the following coupled integro-differential

equations of motions

vττ −
[
1 + αC1(vs, ws, τ) + δC1,τ (vs, vτs, ws, wτs, τ)

]
vss + β1vssss + µ1δvτssss = Qv (6)

wττ −
[
1 + αC1(vs, ws, τ) + δC1,τ (vs, vτs, ws, wτs, τ)

]
wss + β2wssss + µ2δwτssss = Qw (7)

where C1 = 1
2

∫ 1

0

(
v2
s + w2

s

)
ds, C1,τ =

∫ 1

0

(
vsvτs + wswτs

)
ds are the quadratic integro-

differential terms and the forcing Qv and Qw are written as

Qv =
ηac
γ2

1γ
2
2

(
1 + cos(2Ωacτ)

)[ (
γ2 + v

)2 −
(
γ1 − v

)2
1 + a1v + a2v2 + a3v3 + a4v4

]
− νvτ , Qw = −νwτ (8)
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The corresponding non-dimensional boundary conditions are as follows

u(0, τ) = v(0, τ) = w(0, τ) = u(1, τ) = v(1, τ) = w(1, τ) = 0, us(0, τ) = vs(0, τ)

= ws(0, τ) = us(1, τ) = vs(1, τ) = ws(1, τ) = 0, (9)

Note that the denominator in Eqn. (8) is a fourth-order polynomial with coefficients a1 =

2 1−Γ
γ2

, a2 = 1−4Γ+Γ2

γ22
, a3 = 2 Γ−1

γ1γ
2
2
, a4 = 1

γ21γ
2
2
, Γ = γ2

γ1
. The non-dimensionalized parameters

in Eqns. (6)-(8) are defined as

β1 =
EIz
NL2

, β2 =
EIy
NL2

, µ1 =
Iz
AL2

, µ2 =
Iy
AL2

, α =
EA

N
, δ =

D

L

√
α

ρE
, ν =

C

ρAωs
, ηac =

1

4

ε0B

LN
V 2
ac,Ωac =

ωac
ωs

, ωs =

√
N

ρAL2
, γn =

Gn
L
. (10)

Figure 1. : (a) Definition sketch of the dynamical system (b) General view of the sample

(c) Experimental frequency and phase measurements of a microbeam

2.2. Modal Dynamical System

We premultiply Eqn. (6) by denominator in Eqn. (8) and derive the modal dynamic equa-

tions of a microbeam by applying Galerkin’s method [6]. We rescale the amplitudes by the

nondimensional gap γ1 as x = q(τ)/γ1, y = p(τ)/γ1 and time τ by natural frequency ωq as

t = ωqτ . Thus the rescaled equations of motion are

M(x)
(
ẍ+ x+

(
δ11 + δ12x

2
)
ẋ+ δ12xyẏ + α1x

3 + α1y
2x
)

= η
[
1 + cos(2Ωt)

]
(h1 + h2x) (11)

ÿ + k2y +
(
δ21 + δ22y

2
)
ẏ + δ22xyẋ+ α2y

3 + α2x
2y = 0 (12)
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where M(x) = 1 + ā1x+ ā2x
2 + ā3x

3 + ā4x
4 and the rescaled parameters are thus defined as

δ11 =
ν + δµ1k4

ωq
, δ12 =

δk3I2γ
2
1

ωq
, α1 =

αk3I2γ
2
1

2ω2
q

, η =
2ηac(Γ + 1)

γ1γ2
2ω

2
q

,Ω =
Ωac
ωq

,

h1 =
(Γ − 1)

2
I4, h2 = I5, k2 =

w2
p

J1w2
q

, δ21 =
ν + δµ2J4

J1ωq
,

δ22 =
δJ2J3γ

2
1

J1ωq
, α2 =

αJ2J3γ
2
1

2J1ω2
q

, ā1 = a1I22γ1, ā2 = a2I33γ
2
1 ,

ā3 = a3I44γ
3
1 , ā4 = a4I55γ

4
1 , ωq =

√
k3 + k4β1, wp =

√
J2 + J4β2 (13)

3. Analysis of Results

3.1. Asymptotic Analysis

We assume small displacements which are the functions of multiple time scales as x =∑3
j=1 ε

jxj(T0, T1, T2) +©(ε4) and y =
∑3
j=1 ε

jyj(T0, T1, T2) +©(ε4) where, T0 = t, T1 = εt,

and T2 = ε2t. We also assume small excitation (η = εη̂), small damping (δ11 = ε2δ̂11,

δ21 = ε2δ̂21) and substitute them into Eqns. (11) and (12). We apply the reconstitution

multiple-scales method [6] to Eqns. (11) and (12) to deduce complex modulation equations

for both spatial 3D and planar 2D configurations. The polar form of modulation equations

for spatial 3D configuration are as follows

εat = [r̄1 + r̄2 cos(2φ1) − r̄3 sin(2φ1)]εa+ r̄5ε
3a3 + [r̄7 sin 2(φ2 − φ1)

− r̄8 cos 2(φ2 − φ1)]ε3b2a (14)

εaφ1t = [ε2σ1 − r̄4 − r̄2 sin(2φ1) − r̄3 cos(2φ1)]εa− r̄6ε
3a3 − [r̄7 cos 2(φ2 − φ1)

+ r̄8 sin 2(φ2 − φ1) + r̄9]ε2b2a (15)

εbt = [s̄1 + s̄2 cos(2φ2) − s̄3 sin(2φ2)]εb+ s̄5ε
3b3 + [s̄7 sin 2(φ2 − φ1)

− s̄8 cos 2(φ2 − φ1)]ε3ba2 (16)

εbφ2t = [ε2(σ1 + σ2) − s̄4 − s̄2 sin(2φ2) − s̄3 cos(2φ2)]εb− s̄6ε
3b3 + [s̄7 cos 2(φ2 − φ1)

+ s̄8 sin 2(φ2 − φ1) − s̄9]ε3ba2 (17)

where φ1(t) = ε2σ1t − θ1(t), φ2(t) = ε2(σ1 + σ2)t − θ2(t) The polar form of modulation

equations for Planar 2D configuration are

at =
[
r̄1 + r̄2 cos(2φ) − r̄3 sin(2φ)

]
a+ ε2r̄5a

3 (18)

aφt =
[
ε2σ1 − r̄4 − r̄2 sin(2φ) − r̄3 cos(2φ)

]
a− ε2r̄6a

3 (19)

where φ(t) = ε2σ1t− θ(t).

The comparison of non-planar frequency response of a microbeam plotted by slow vary-

ing evolution equations (solid blue line) and by numerical method (blue dots and red circles)
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Figure 2. Non-planar frequency response (a) In-plane (b) Out-of-plane (c) Comparison of

non-planar frequency response with experimental measurements

along in-plane and out-of-plane directions are shown in Fig. 2 (a) and (b). The in-plane

and out-of-plane frequency response in Fig. 2 reveals nine different bifurcation regions. In

Fig. 2 region I and IX depict a unique stable trivial solution. In region II the trivial solution

becomes unstable. Region III is bounded by two Hopf bifurcation points H1 at Ω = 0.997297

and H2 at Ω = 0.9974 and it has two solutions, a unstable trivial solution and a unstable

nontrivial solution. In region IV the nontrivial solution becomes stable and trivial solution

remains unstable. Region V depicts one stable nontrivial solution for maximum amplitude,

two nontrivial, stable and unstable solutions for minimum amplitude separated by a saddle

node point S2 at Ω = 0.998396 and a unstable trivial solution. Region VI is bounded by

a supercritical Hopf bifurcation point H3 at Ω = 0.998424 and a subcritical Hopf point H4

at Ω = 0.998516. In this region there exist four solutions which include a stable nontrivial

solution with a maximum amplitude, two unstable nontrivial solutions with minimum am-

plitude and an unstable trivial solution. Region VII shows a stable nontrivial and a unstable

trivial solution. In region VIII a stable nontrivial solution loses its stability at a saddle node

bifurcation point S1 at Ω = 0.999059 and becomes unstable, this region also has a stable

trivial solution.

We consider a AuPd microbeam with length L = 500µm, width H = 1.75µm, and

thicknessB = 165 nm developed by Mintz [5] and depicted in Fig. 1 (b). Subsequently,

we estimate the linear and nonlinear parameters of a parametrically excited microbeam

by comparison of the asymptotic results with the experimental measurements dipicted in

Fig. 1 (c). The comparisons between experimental results with asymptotic results (both

planar 2D and spatial 3D) using estimated parameters demonstarte that a 2D palnar model

with parametric excitation cannot portray the documented bias in the observed frequency

response of the microbeam whereas a spatial model that exhibits a 1:1 internal resonance
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between coupled in and out-of-plane transverse modes enables an accurate prediction of the

biased response. The comparison of non-planar frequency response of a microbeam plotted

by slow varying evolution equations (solid blue line) with experimental measurements (black

dots and red circles) are shown inFig. 2 (c)

3.2. Numerical Analysis

Numerical analysis of the dynamical system shows the existence of stable period-doubled

solutions (Fig. 3 (a),(b) and (c)) in regions IV, V, VI (maximum amplitude), VII and

quasiperiodic solutions corresponding to Hopf points in regions III (between H1 and H2)

and VI (between H3 and H4) (Fig. 3, (e) and (f)).

Figure 3. (a), (b), (c) Time history, Power spectra and Phase plane with Poincar overlaid

points for Ω = 0.998 in region IV of Fig. 2 (a) and (b). (d) (e), (f) Time history, Power

spectra and Poincar map for Ω = 0.99735 in region III of Fig. 2 (a) and (b).

4. Conclusions

In this work we formulated an initial-boundary value problem describing the three dimen-

sional motion of a parametrically excited nonlinear microbeam in an asymmetric dual gap

configuration and was investigated asymptotically and numerically to study the influence of

imperfections on its spatio-temporal dynamics. The analytical and numerical investigation

of the non-planar dynamics reveals coexisting period doubled and quasiperiodic solutions

corresponding to saddle-node and secondary Hopf instabilities in the slowly varying evalu-

ation equations. The results were also compared with measurements from an experiment

with asymmetric electrode gaps demonstrating that a planar model with parametric excita-

tion cannot predict the documented bias in the observed frequency response of a nonlinear

microbeam with an imperfect electrode configuration whereas a spatial model that exhibits

a 1:1 internal resonance between coupled in and out-of-plane transverse modes enables an
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accurate prediction of the biased response. This study can be utilized to design a resonator

for multi-functional sensing and actuation [2].
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Dynamics of a spherical robot in cases of periodical control actions

and oscillations of the underlying surface

Yury Karavaev, Alexander Kilin, Alexey Borisov

Abstract: The dynamics of a spherical robot of combined type is investigated.
The spherical robot is set in motion by moving the position of the center of
mass and by generating variable gyrostatic momentum. Problems of stabilizing
the rolling of the spherical robot using periodic control actions are considered
within the framework of a nonholonomic model. A mathematical model is pre-
sented which describes the movement of the spherical robot on an oscillating
flat surface. The results of numerical modeling of the motion of the spheri-
cal robot for various combinations of control actions and parameters of plane
oscillations are discussed.

1. Introduction

In recent studies of nonholonomic systems the problems of moving a Chaplygin sleigh and

Chaplygin top by small periodic control actions are considered. The results confirm the

possibility of constant acceleration (speedup) of the wheeled vehicle due to the periodic

change in the mass distribution [1, 2], as well as acceleration of the Chaplygin top with the

help of an internal rotor [4].

This paper presents the results of the study of the dynamics of a real spherical robot of

combined type in the case of control using small periodic oscillations. The spherical robot

is set in motion by controlled change of the position of the center of mass and by generating

variable gyrostatic momentum [3, 7, 8].

We demonstrate how to use small periodic controls for stabilization of the spherical

robot during motion. The results of numerical simulation are obtained for various initial

conditions and control parameters that ensure a change in the position of the center of mass

and a variation of gyrostatic momentum.

The problem of the motion of a spherical robot of combined type on a surface that

performs flat periodic oscillations is also considered. The results of numerical simulation

are obtained for different initial conditions, control actions and parameters of oscillations.

Possible modes of motion of the spherical robot on the oscillating plane are discussed.

213



2. Equations of motion of a spherical robot of combined type

Consider a spherical robot of combined type rolling without slipping on a horizontal abso-

lutely rough plane (Fig. 1). To describe the dynamics of the spherical robot, we define two

coordinate systems: a fixed (inertial) coordinate system Oαβγ with unit vectors α, β, γ,

and a moving coordinate system Ce1e2e3 with unit vectors e1, e2, e3, attached to the pen-

dulum so that the unit vector e1 is perpendicular to the plane of rotation of the pendulum

and the unit vector e3 is directed along its symmetry axis.

a)
b)

Figure 1. A schematic model of a spherical robot of combined type (a) and a 3D model of

prototype (b)

This scheme can be implemented with various designs in practice. For example, by

modification of the famous pendulum mechanism installing the rotor on it. But the simplest

design is realized in the case of installation of the wheeled platform with rotor inside the

spherical shell. Figure 1b shows a three-dimensional model of the proposed design of a spher-

ical robot of combined type. In this figure, a wheeled platform moves inside the spherical

shell — 1 along the rim — 2. The platform is driven by two wheels — 5 with individual drive

motors — 6, synchronized by the control system. The profile of the drive wheels, as well as

the material from which they are made, ensure that they roll without slipping around the

rim. The contact of the driving wheels with the rim is provided by a spring-loaded roller —

7. A rotor — 3 actuated by an motor with a gearbox — 4, ensures the rotation of the

spherical robot relative to the vertical axis.

The origin of the moving coordinate system is at the geometric center of the shell C

(see Fig. 1). In what follows, all vectors are referred to the moving coordinate system

Ce1e2e3. The position of the system is given by the coordinates of the center of the sphere

r = (x, y, 0) in the fixed reference frame, by the angle of rotation ϑ of the pendulum about the

axis e1, by the angle of rotation ϕ of the rotor relative to the axis e3 and by the orthogonal
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matrix of rotation Q of the moving coordinate system relative to the fixed one. The columns

of the matrix Q are the coordinates of the fixed vectors α, β, g, referred to the moving

coordinate system Ce1e2e3: Q = (α, β, g).

The absence of slipping at the point of contact of the shell with the plane is described

by the nonholonomic constraint

F = v −RsΩ× g = 0,

where v and Ω are the velocity of the center and the angular velocity of rotation of the shell,

respectively, Rs is the radius of the shell, and γ = (γ1, γ2, γ3)
T is the unit vector of the fixed

reference frame in the direction of the vertical axis.

The kinetic and the potential energy of the sphere-pendulum system can be represented

in the following form:

T =
1

2
msv

2 +
1

2
(Ω, IsΩ) +

1

2
mbv

2

b +
1

2
(ω, Ibcω), U = −mbRbg(γ,e3),

where ms and Is = diag(Is, Is, Is) are the mass and the central tensor of inertia of the

spherical shell, mb and Ibc = diag(Ibc1, Ibc1, Ibc3) are the mass and the central tensor of

inertia of the pendulum, respectively, and the velocity of the center of mass of the pendulum

vb and its angular velocity ω are given by

vb = v −Rbω × e3, ω = Ω+ e1ϑ̇+ e3ϕ̇,

where Rb is the distance from the center of the sphere to the center of mass of the pendulum.

The equations governing the dynamics of the system considered can be written in the

form of the d’Alembert – Lagrange equations of the second kind in quasi-velocities with

undetermined multipliers and forcing actions. As shown in [8], the equations of motion for

the variables ϕ̇, ϑ̇, Ω, g decouple from the complete system and take the following form:

(

e3, Ib(Ω̇+ ϕ̈e3)
)

= Kϕ,
(

e1, Ib(Ω̇+ ϑ̈e1) +Ω× ((Is + Ib)Ω+ ϕ̇Ibe3)−

−mbRbRse3 ×

(

(Ω̇+ ϑ̇e1 ×Ω)× g
)

+mbRbgg × e3

)

= Kϑ,

(Is + Ib)Ω̇+ ϑ̈Ibe1 + ϕ̈Ibe3 + (Ω+ ϑ̇e1)× ((Is + Ib)Ω+ ϑ̇Ibe1 + ϕ̇Ibe3)+

+(ms+mb)R
2

sg×((Ω̇+ ϑ̇e1×Ω)×g)−mbRbRs

(

e3×((Ω̇+ ϑ̇e1×Ω)×g)+

+g × ((Ω̇+ ϑ̈e1)× e3 + (Ω+ ϑ̇e1)× ((Ω+ ϑ̇e1)× e3))
)

+mgRbg × e3 = 0

ġ = g × (Ω+ ϑ̇e1),

(1)

215



where Ib = diag(Ib1, Ib1, Ib3) = diag(Ibc1 + mbR
2

b , Ibc1 +mbR
2

b , Ibc3) is the tensor of inertia

of the pendulum relative to the center of the sphere, Kθ is the moment of external forces

(control action) which defines the rotation of the pendulum in the given plane, and Kϕ is the

moment of external forces which defines the rotation of the rotor about its symmetry axis

(the rod of the pendulum). Supplementing equations (1) with kinematic relations describing

the motion of the center of the spherical robot and the rotation of the moving axes relative to

the fixed axes, we obtain a closed system of equations that completely describes the rolling

of the spherical robot on the plane.

The control of a spherical robot of combined type with a feedback stabilizing the given

partial solutions of the free system is considered in [5, 6]. In the approach considered, the

feedback depends on the current position and the velocities of the spherical robot, does not

depend on the specific type of trajectory, and involves specifying the control torques Kϑ and

Kϕ.

The results of simulation of the motion of the spherical robot of combined type using

feedback, as presented in [5, 6], confirm the possibility of stabilizing the spherical robot.

However, the question of choosing and verifying the values of the coefficients k̃ϑ and k̃ϕ

remains open. The results of experimental investigations of the proposed algorithm show

that the control actions for stabilization are similar to periodical oscillations [3, 7].

3. Motion in the case of periodically oscillating control actions

Consider the influence of control actions in the form of periodic oscillation on the stability

of motion. Periodic control actions are provided by periodic rotations of the rotor of the

pendulum, which are specified as

ϕ̇(t) =











0, t < 0.1

0.05 (sin (10.0 π t))3 , t ≥ 0.1.
(2)

Taking into account the smooth acceleration from the initial rest position of the pendu-

lum, the motion along the straight line is realized by the deviation of the pendulum in the

form

θ̇(t) =























0, t < 0.055

0.314 (sin (10.0 π t− 0.55 π))2 0.055 < t ≤ 0.105

0.314, t > 0.105.

(3)

Depending on the initial conditions in the process of movement, the spherical robot

will perform various oscillations. Consider the most illustrative examples for different initial

conditions, which we define as follows:
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Figure 2. Graphical representation of control actions for the spherical robot.

a) b) c)

Figure 3. Oscillations of a spherical robot during its motion by control actions (3)

and initial conditions: a) IC1, b) IC2, c) IC3. The evolution of the component γ3 by
control action ϕ̇ = 0 is shown as dashed line, and the solid line corresponds to control
action (2).

IC1: a = (1, 0, 0), b = (0, 1, 0), g = (0, 0, 1);

IC2: a = (1, 0, 0), b = (0, 0.7, −0.714), g = (0, −0.714, 0.7);

IC3: a = (0.7, 0, 0.714), b = (0, 1, 0), g = (−0.714, 0, 0.7).

Figure 3 shows the results of numerical simulation of the system (1) with regard to (3)

and various initial conditions for the mass-geometric parameters of a real spherical robot:

Rs = 0.150 m, ms = 1.625 kg, Is = diag(25.27 · 10−3, 20.73 · 10−3, 25.27 · 10−3) kg·m2,

Rr = 0.087 m, mr = 2.46 kg, Ir = 5.64 · 10−3 kg·m2, mb = 3.25 kg, Ib = diag(31.88 · 10−3,

30.59 · 10−3, 8.76 · 10−3) kg·m2.

The results obtained and presented in Fig. 3 show that, regardless of the initial condi-

tions, small periodic oscillations contribute to the stabilization of the motion of a spherical

robot, while, for example, the constant rotation of the rotor leads to significant deviations

of the trajectory [7]. In practice, such small periodic oscillations of control actions can be

used to stabilize motion in the case of deviations caused by obstacles, deviations of geometric

dimensions, and uncertainties.
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4. Dynamics of the spherical robot rolling on a periodically oscillating under-

lying surface

Consider the problem of motion of the spherical robot on a periodically oscillating underlying

surface (Fig. 4). Oscillations of the surface are realized by the angular velocity of the plane

Ω(t).

Figure 4. The model of a spherical robot rolling on an oscillating plane.

The nonholonomic constraint in the case of a rotating underlying plane is

f = v + ω × r − Ω(t)γ ×R = 0, R = xα+ yβ, (4)

where r is the radius vector of the contact point from the center of mass position.

After reduction the system under consideration takes the form in variables ω, γ, R:

Ĩω̇ = (Ĩω +K)× ω +mr × (ṙ × ω) +mΩ(t)r × (Ṙ× γ)−mΩ(t)(ω,γ)R × r +

+mΩ̇(t)r × (R× γ) +mgγ × r,

γ̇ = γ × ω, Ṙ = R× (ω − Ω(t)γ) + r × ω − (ω, c× γ)γ,

(5)

where K = (K1,K2,K3) is the gyrostatic moment and c = (c1, c2, c3) is the displacement of

the center of mass relative to the geometrical center of the sphere.

Consider the results of numerical simulation of the system (5) for various control actions

given by the gyrostatic moment: without any control, with constant gyrostatic moment and

by periodical gyrostatic moment.

Results of simulations for different actions K by Ω(t) = sin(t):

The results presented in Fig. 3 show that, regardless of the initial conditions, small

periodic oscillations contribute to the stabilization of the motion of the spherical robot.

Conclusions

In conclusion, we present the most important problems obtained in this work and plans for

the future in the study of the rolling of a spherical robot in the case of small periodic control

actions or on the surface performing small oscillations:
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a) b) c)

Figure 5. Trajectories of the spherical robot moving on an oscillating plane in the
case of: a) K(t) = 0, b) K(t) = (0, 0, 1), c) K = (0, 0, 0.5 · sin(2 · t)).

1. Small periodic oscillations contribute to the stabilization of the motion of a spherical

robot keeping the desired direction of motion of the robot.

2. In addition to oscillations of the underlying surface in the horizontal plane, oscillations

along the vertical should also be considered. Taking them into account will allow

modeling more complex dynamic behavior.

3. Future research will be aimed at developing an algorithm for calculation of control

actions to compensate for the influence of the oscillating underlying surface.
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Ultrasensitive mass sensing using a single cantilever coupled with a
computational cantilever

Yuki Kasai, Hiroshi Yabuno, Takeshi Ishine, Yasuyuki Yamamoto, Sohei Matsumoto

Abstract: Mass sensing based on the eigenmode shift of coupled cantilevers
achieves very high sensitivity. In this method, identical cantilevers and the
weaker coupling stiffness between them enable higher sensitivity. However, the
sensitivity is restricted because the identity of cantilevers and the coupling
stiffness depend on machining accuracy. To maximize the sensitivity, we pro-
pose completely identical weakly coupled cantilevers using a single cantilever
and a digital computer. The digital computer calculates the dynamics of one
of the conventional coupled cantilevers and the effect of coupling. Then, the
calculated effect of coupling moves the single cantilever’s supporting point.
The system enables us to set the physical parameters of the cantilever whose
dynamics is calculated and the coupling stiffness appropriately. In addition,
to use even in viscosity environments, we apply the self-excited oscillation
with a steady-state amplitude proposed in our previous work to the coupled
cantilevers. We realized the identical coupled cantilevers and their arbitrary
coupling stiffness in the experiment using the prototype system with a macro-
cantilever. Furthermore, we achieved ultrasensitive mass sensing.

1. Introduction

Recently, various MEMS sensors using eigenmode shift of coupled microresonators have

been investigated [7, 9, 15, 16, 17]. In the field of mass sensing, Spletzer, et al. developed

the sensitive mass sensor using weakly coupled cantilevers [10]. This method improved the

sensitivity when compared with the conventional methods using eigenfrequency shift of a

single cantilever [3, 8, 14]. Theoretical analysis of sensors based on the eigenmode shift shows

that weaker coupling stiffness between cantilevers realizes higher sensitivity [10]. However,

because the coupling between the cantilevers is usually established by the overhang between

them, the ultimate weakness is not mechanically realized due to the limitation of machining

accuracy. Furthermore, in practical systems, the physical parameters in the cantilever pairs

have slight differences due to the machining accuracy, despite the assumption that they are

identical in theory. For weak coupling stiffness, the electrical coupling was proposed, which

is tunable arbitrary coupling stiffness [5, 6, 11, 12]. On the other hand, any methods for the

identity of the cantilevers had not proposed.
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To realize both the weak coupling and the identity, we proposed the concepts of “virtual

coupled cantilevers” in our previous study [4]. In this concept, the dynamics of one of the

coupled cantilevers and the effect of coupling are calculated by a digital computer in real-

time; these are called “virtual cantilever” and “virtual coupling”. The other “real cantilever”

with a mass to be measured is vibrated by the coupling effect. In this way, the physical

parameters of the virtual cantilever in the digital computer can be set for those of the real

cantilever. Also, the virtual coupling can be ultimate weakness without the restriction of

machining accuracy.

In addition, we produce the self-excited oscillation with stable steady amplitude [1, 2, 13]

to the virtual coupled cantilevers. The self-excited oscillation enables us to use the mass

sensor in high viscosity environments. The amplitude control realizes the mass sensing

based on the linear theory by decreasing the influence of the cantilever’s nonlinearity. It

prevents the accuracy of the mass sensor from decreasing.

In this study, we examine the processing time and the error of the real-time calculation

using in the system proposed in [4] and show the validity of the system method by showing

the experimental results whose parameters are different from those in [4].

2. Theoretical summary of the virtual coupled cantilevers

We introduce the discretized model of two coupled cantilevers in the conventional study [10]

as Fig. 1, where m is the equivalent mass of cantilevers, ∆m is the mass to be measured,

k is the equivalent stiffness of cantilevers, kc is the equivalent stiffness of coupling part, c

is the viscosity damping coefficient, and ∆x is the actuation at the supporting point. The

absolute displacements of the cantilever-1 and 2 are denoted by x1 and x2, respectively. The

conventional coupled cantilevers [10] is implemented by two real cantilevers coupled through

an overhang part. On the other hand, the cantilever-1 and the coupling part of the virtual

coupled cantilevers [4], which are enclosed by the dashed lines in Fig. 1, are implemented by

a real-time calculation. The cantilever-1 and 2 in Fig.1 correspond to the virtual and real

cantilever in our previous research [4], respectively. The dimensionless equation of motion

for the coupled cantilevers are expressed as


d2x∗

1

dt∗2
+ 2γ

dx∗
1

dt∗
+ (1 + κ)x∗

1 − κx∗
2 = ∆x∗ (1)

(1 + δ)
d2x∗

2

dt∗2
+ 2γ

dx∗
2

dt∗
− κx∗

1 + (1 + κ)x∗
2 = ∆x∗, (2)

where x∗ and t∗ are the dimensionless displacement x∗ = x/L (L is the representative

displacement) and the dimensionless time t∗ = Tt =
√

k/mt (T is the representative time),
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x1 x2

kc

m m+Δm

c

kΔx

c

cantilever-2

kΔx

cantilever-1 & coupling part

Figure 1. Analytical model corresponding to the two coupled cantilevers for mass sensing.

m is the equivalent mass of cantilevers, ∆m is the mass to be measured, k is the equivalent

stiffness of cantilevers, kc is the equivalent stiffness of coupling part, c is the viscosity damping

coefficient, and ∆x is the actuation at the supporting point. The absolute displacements of

the cantilever-1 and 2 are denoted by x1 and x2, respectively. Reproduced from [4], with the

permission of AIP Publishing.

respectively. The parameters, δ, γ and κ, are the mass ratio, the damping ratio and the

coupling ratio, respectively. These dimensionless parameters can be expressed in terms of

the dimensional parameters of the coupled cantilevers model as

δ =
∆m

m
, 2γ =

c√
mk

, κ =
kc
k
. (3)

Based on the studies about the mass sensor using weakly coupled cantilevers [10, 13],

the 1st eigenmode of coupled cantilevers is expressed as

p1 ≈

 1− δ
2κ

1

 (4)

under the assumption of δ << δ/κ << 1. We can observe the 1st eigenmode from the

amplitude ratio of the coupled cantilevers oscillated in 1st mode. The mode shift is in

proportion to the mass ratio δ. The proportionality constant of the eigenmode shift is 1/2κ.

Therefore, we can improve the sensitivity of the mass sensor using coupled cantilevers by

decreasing the coupling ratio κ.

In our previous research [4], in order to realize mass sensing based on the linear theory in

viscosity environments, we produced the self-excited oscillation with stable steady amplitude

[2] in the virtual coupled cantilevers. We can realize the nonlinear dynamics inspired by the

Rayleigh oscillator with a limit cycle in the coupled cantilevers by setting the actuation ∆x

as

∆x∗ = βl
dx∗

2

dt∗
− βn

(
dx∗

2

dt∗

)3

, (5)
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where βl and βn are the dimensionless linear and nonlinear feedback gains, respectively.

When the linear feedback gain βl is set slightly larger than twice damping ratio 2γ, we can

compensate for viscosity and produce self-excited oscillation in the coupled cantilevers. The

nonlinear feedback realizes stable steady amplitude of self-excited cantilevers as shown in [2].

Larger nonlinear feedback gain makes amplitude smaller, which prevents the measurement

accuracy from decreasing.

In the virtual coupled cantilevers we proposed [4], the cantilever-1 and the coupling

part, which are enclosed by the dashed lines in Fig. 1, was implemented by the real-time

calculation and the actuation to the cantilever-2, which is enclosed by the solid lines in

Fig. 1. This method enables us to change the physical parameters of the cantilever-1 and the

coupling part. In order to obtain the dynamics of the cantilever-1, we solve Eqs. (1) and (5)

by using the fourth-order Runge-Kutta method. The coupling between the cantilevers is

implemented by the feedback actuation ∆xc. According to the conventional study [4], the

equation of motion of a single cantilever is expressed as

(1 + δ)
d2x∗

2

dt∗2
+ 2γ

dx∗
2

dt∗
+ x∗

2 = ∆x∗
c , (6)

where ∆x∗
c is the dimensionless feedback actuation (∆x∗

c = ∆xc/L). We set the feedback

actuation ∆x∗
c as

∆x∗
c = κ (x∗

1 − x∗
2) + ∆x∗

= κ (x∗
1 − x∗

2) + βl
dx∗

2

dt∗
− βn

(
dx∗

2

dt∗

)3

(7)

so that the dynamics of the single cantilever will correspond to that of cantilever-2. Equa-

tion (6) is equivalent to the equation of motion of the cantilever-2 expressed by Eq. (2) when

we apply the feedback actuation Eq. (7).

3. Experiment

For mass sensing experiments, we built the virtual coupled cantilevers using a macro can-

tilever as a prototype system. Figure 2 shows the experimental apparatus of the virtual

coupled cantilevers. The cantilever-2, whose dimensions are 210mm × 15mm × 0.3mm,

is made of a phosphor bronze sheet. The mass m is 7.758g. When we measure mass of

a sample, we fix it on the cantilever-2 using a double sided tape. The laser displacement

sensor (KEYENCE Corp.: IL-S025) measures the displacement of the cantilever-2 x2. Dig-

ital Signal Processor (DSP) (dSPACE GmbH: DS1104) calculates the displacement of the

cantilever-1 x1 by using the fourth-order Runge-Kutta method in real-time as mentioned

bellow. From the result, the feedback actuation to the cantilever-2 through the piezo actua-

tor (TOKIN Corp.: AHB700C801FD0LF), which is based on the feedback actuation Eq. (7)
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DSP

Cantilever-2

Δxc

x2 Cantilever-2

Laser displacement
sensor

Piezo actuator

Slide rail

Figure 2. Experimental apparatus. When we measure mass of a sample, we fix it on the

cantilever-2 using a double sided tape. The laser displacement sensor measures the displace-

ment of the cantilever-2 x2. Digital Signal Processor (DSP) calculates the displacement of

the cantilever-1 x1. The cantilever-2 moves smoothly in the excitation direction because it

is on the slide rail. Reproduced from [4], with the permission of AIP Publishing.

for the effect of coupling, the linear feedback, and the nonlinear feedback, is determined in

DSP. The cantilever-2 moves smoothly in the excitation direction because it is on the slide

rail (THK CO., LTD.: LSP2050).

For the application of Runge-Kutta method, we set the state valuables as

X∗ =


x∗
1

ẋ∗
1

x∗
2

ẋ∗
2

 , (8)

where x∗
2 and ẋ∗

2 are the displacement and the velocity of cantilever-2 measured by the laser
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displacement sensor, respectively. Equations (1) and (2) can be rewritten as

d

dt∗
X∗ =


0 1 0 0

−(1 + κ) −2γ κ βl

0 0 0 1

κ 0 −(1 + κ) −2γ + βl

X∗ −


0

βnẋ2
3

0

βnẋ2
3



− δ

1 + δ


0 0 0 0

0 0 0 0

0 0 0 0

κ 0 −(1 + κ) −2γ + βl

X∗ +
δ

1 + δ


0

0

0

βnẋ2
3

 . (9)

By solving Eq. (9), we can obtain the dynamics of cantilever-1. However, we cannot solve it

because the mass ratio δ is unknown. Therefore, we solve Eq. (9) under the approximation

of δ = 0. The order of the error from the actual model due to this approximation is O(h∗2δ),

where h∗ is the step-size of the numerical calculation. In this research, the orders of both the

step-size h∗ and the mass ratio δ are 10−3. Therefore, the error due to the approximation

of δ = 0 is small enough to ignore. Thus, we use the solution of Eq. (9) with δ = 0 as the

displacement and the velocity of cantilever-1. On the other hand, we do not use those of

cantilever-2 calculated because we can get the measurement data of the laser displacement

sensor in real-time.

We consider the processing time of our system to verify that it is fast enough to realize

the virtual coupled cantilevers without a delay. The laser displacement sensor measures

every 1ms. The A/D converter of the DSP takes 9ns to convert the displacement signal from

the laser displacement sensor into digital signals. We set the step size of real-time calculation

as 1ms. Therefore, the order of the processing time of the system is millisecond. On the

other hand, the period of the cantilever-2 is 0.255 seconds. Therefore, the processing time is

fast enough to ignore the influences of the delay derived from the processing of the system.

In order to calculate the dynamics of the coupled cantilevers, we solve the equation of

motion of cantilevers, i.e., Eq. (9), by using the fourth-order Runge-Kutta method. We set

the representative time T and the dimensionless damping ratio γ to solve Eq. (9). These

parameters derive from the physical parameters of the cantilever-2. The representative time

T accords with the inverse of the cantilever-2’s angular frequency. We measured the period

of the cantilever-2 by Fast Fourier transform analysis and obtained the inverse of angular

frequency. We set the representative time T as the inverse of angular frequency obtained

(4.057×10−2). The dimensionless damping ratio of the cantilever-1 accords with that of the

cantilever-2. We can obtain the dimensionless damping ratio from the envelope curve of a

free oscillation wave and the eigenfrequency of the cantilever-2. We described the envelope
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curve of the free oscillated cantilever-2 from the experimentally measured time history and

obtained the dimensionless damping ratio of the cantilever-2. We set the dimensionless

damping ratio of cantilever-1 to be same as that of cantilever-2 (8.65× 10−4).

4. Experimental behavior of coupled cantilevers including a virtual cantilever

We measured the amplitude of the virtual coupled cantilevers applied the amplitude control

method expressed as Eq. (5). Figure 3 is the time histories of the cantilever-2’s displacement

when the virtual coupled cantilevers have no additional mass, i.e., δ = 0. The horizontal and

vertical axes represent time and displacement of the cantilever-2, respectively. Figure 3 (a)

shows the cantilever-2’s displacement with the linear feedback only. Figures 3 (b) and (c)

show the displacement with the linear and nonlinear feedbacks when the nonlinear feedback

gain is set as βn = 0.02 and βn = 0.04, respectively. We observed almost same time

histories of cantilever-1 because the two cantilevers oscillate in accordance with Eq. (4).

The cantilever-2 is self-excited by the linear feedback. Figure 3 (a) shows the amplitude
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Figure 3. Time histories of cantilever-2’s displacement. (a) without nonlinear feedback

gain (βn = 0), (b) with nonlinear feedback gain (βn = 0.02), (c) with nonlinear feedback

gain (βn = 0.04). The horizontal and vertical axes represent time and displacement of the

cantilever-2, respectively.

of the cantilever-2 grows with time when the nonlinear feedback does not apply to the

cantilevers. On the other hand, Figs. 3 (b) and (c) show the amplitude of cantilever-2

does not grow unbounded, but reach the finite stable steady amplitude by the effect of the

nonlinear feedback. Furthermore, we can observe higher nonlinear feedback realizes lower

amplitude of the cantilever. The application of the self-excited oscillation and the amplitude

control to the virtual coupled cantilevers leads to the same behaviors as the real coupled

cantilevers [2].

We performed the mass sensing of ten mass samples ranging from 0.010g to 0.001g with

two different coupling ratios κ (0.010 and 0.005). We carried out the measurement ten times

per a sample. Figure 4 presents the mass sensing results. The horizontal and vertical axes
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Figure 4. Relationship between the amplitude ratio and mass ratio δ. The horizontal

and vertical axes represent the mass ratio δ and the amplitude ratio, respectively. The red

circles and the blue squares represent the averaged ratio of the cantilever-1’s amplitude to

cantilever-2’s when their coupling stiffness κ are 0.010 and 0.005, respectively. The red solid

line and the blue dashed line represent the regression lines corresponding to the red circles

and the blue squares, respectively.

represent the mass ratio δ and the amplitude ratio, respectively. The red circles and the

blue squares represent the averaged ratio of the cantilever-1’s amplitude to cantilever-2’s

when their coupling stiffness κ are 0.010 and 0.005, respectively. The red solid line and the

blue dashed line represent the regression lines corresponding to the red circles and the blue

squares, respectively. The amplitude ratio of the virtual coupled cantilevers is in proportion

to the mass ratio δ. In addition, the rate of the amplitude ratio shifts is larger when we

set the coupling ratio κ to be smaller. Therefore, weaker coupling stiffness realizes higher

sensitivity. These results experimentally confirmed the theoretical analysis of amplitude

ratio shown as Eq. (4).

5. Conclusion

In this paper, we examined the effect of the processing time and the error of the real-time

calculation in the mass sensing using the virtual coupled cantilevers proposed in our previous

study. From the theoretical and experimental approaches, we confirmed that they do not

affect the accuracy of the measurement results. We experimentally showed that nonlinear

feedback avoids the unbounded amplitude growth of the self-excited oscillation and the

higher nonlinear feedback gain realizes the self-excited oscillation with smaller steady state

amplitude. Tuning the weakness of the virtual coupling as different values, we preformed

mass sensing to verify that the weaker coupling leads to higher sensitive mass sensing. The
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virtual coupled cantilevers can achieve ultrasensitive mass sensing because they can realize

identical cantilevers and the weak coupling stiffness between them.
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Improving functionality of absorber/harvester system by a smart
adaptive suspension

Krzysztof Kecik, Rafal Rusinek

Abstract: In this work, a vibration absorber/harvester is designed and the
interaction between its vibration absorption ability and harvesting capability
is investigated. The special designed pendulum is mounted to the oscillator
leads to the autoparametric system. In order to increase the effectiveness, the
adaptive smart suspension consisting of the magnetorheological damper and
shape memory spring is applied. The smart elements can improve or worsen
effecivness of vibration mitigation as well as energy harvesting. However, the
unstable zones can be easy reduced by a MR damper.

1. Introduction

Unwanted vibration have been one of the major problems for engineers. The harmful vi-

bration caused in a resonance condtion existing in multifarious engineering applications.

Buldings, bridges, towers and offshore rigs can execute large amplitude oscillations when

the frequencies of excitation are close to their natural frequencies. This phenomenon can

be amplified by geometric and material nonlinearity. To suppress the unwanted motions,

passive, semi-active, active and hybrid control strategies were investigated in the literature

[3, 8, 13]. Therefore, the civil structures demand special requirements of vibration mitigation

or isolation. The basis way for achiving these requirments is the stiffness or/and damping

control. The common method that changes the stiffness and damping is an use of compo-

nents with controllable properties like magnetorheological (MR) damper and shape memeory

alloy (SMA) spring. Combining stiffness element with a damping is common way to avoid

unwanted vibrations.

On the other hand, the vibration energy that has attracted a lot of attention lately,

is a renewable sustainable energy. The large amplitude vibration can be used to effective

energy harvesting. The harvested energy could be accumulated to operate small devices such

as microelectromechanical systems (MEMS), various type of actuators or wireless sensors

[9, 15]. An example of this could be bridges, tunnels or buildings where sensors are required

to assess continually the vibration levels whilst at the same time, being powered by those

same vibrations [10, 11]. A typical vibration energy harvesting system consists of the excited

mechanical system and the transducer which converts the vibration energy into electric one.
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The effectiveness of harvester depends greatly on transducer mechanism and nonlinearity of

the system.

The aim of this paper is to control of the non-linear dynamics and recovered power from

the absorber/harvester system by the smart adaptive suspension.

2. Absorber/harvester model

2.1. Equations of motion

In this section the absorber/harvester is proposed. The system is based on modification of

the model presented in the paper [4]. It consists of the host structure (I), the tuned mass

damper (II) with the maglev harvester. The maglev harvester uses magnetic levitation effect.

The detail description of the system can be found in papers [4, 5]. The classical suspension

of the tuned mass damper has been changed into the adaptive smart suspension consists of

the MR damper and the SMA spring.

Figure 1. Model of absorber/harvester system (a), and the maglev harvester (b).

The equations of motion governing the motion of the system derives from the Lagrange’s

equation of the second kind and given as [4]:

(m1 +m2 +m3)ẍ+ (m2s+m3(z + r))[ϕ̈sinϕ+ ϕ̇2cosϕ] +m3(2ṙϕ̇sinϕ− r̈cosϕ)

+FMR + kSMAx+ k2x = k2x0sin(ωt),
(1)

(I0 +m3(z + r)2)ϕ̈+ (ẍ+ g)[m2s+m3(z + r)]sinϕ+ 2m3ϕ̇ṙ(z + r) + c2ϕ̇ = 0, (2)

m3r̈ −m3[ẍcosϕ+ ϕ̇2(z + r)] −m3gcosϕ+ c3ṙ + k3r + k4r
3 + αi = 0, (3)

Li̇+ (RL +RC)i− αṙ = 0, (4)
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where m1,m2,m3 are masses of the oscillator, the pendulum and the magnet. Parameter

k2 is stiffness of the excitation linear spring, c2 is the pendulum’s pivot damping, s is the

pendulum gravitation centre, I0 is the pendulum momentum inertia, z is the initial position

of the magnet. Parameters x0 and ω are the kinematic amplitude and frequency of excitation.

The kSMA means SMA spring which depends on the phase transformation state. The term

FMR is the force in the MR damper. The maglev harvester can be treated as mechanical

suspension consisting of the linear damper c3 (friction) and the strong nonlinear spring with

the stiffness k3 and k4. The harvester electrical circuit includes the coil (with the inductance

L and resistance RC), and the resistor load RL. The mechanical and electrical systems are

coupled by the transduction (electromechanical) factor α. The system has four degrees of

freedom, namely: x for the host structure, ϕ for the tuned mass damper, r for the magnet

and i for the recovered current.

2.2. Smart absorber/harvester suspension

The adaptive suspension of the absorber/harvester system consists of the SMA spring and

the MR damper. Shape Memory Alloy (SMA) is one of most promising material with an

enormous growth in usage [7, 14]. SMAs are naturally classified as metallic materials with

high damping capacity, consequence of a hysteretic behavior related to phase transformations

of the material. The SMA material characterizes the unique property of ”shape effect”(simple

and double), super elasticity and biocompatibility.

In this work, the simplified mathematical Ikuta’s model [1, 2] was applied to describe

the behaviour of the theoretical stiffness of the SMA spring. The model is a function of

applied temperature and phases change. The SMA spring stiffness during heating is

kSMA(A) = kmin + [(kmax − kmin) − kmax − kmin

1 + e((β/(Af−As))(T−((Af+As)/2)))
], (5)

and colling

kSMA(M) = kmin + [(kmax − kmin) − kmax − kmin

1 + e((β/(Ms−Mf ))(T−((Mf+Ms)/2)))
], (6)

where:

• kSMA(A), kSMA(M) are stiffness of the SMA spring during heating and cooling,

• kmin, kmax are minimum and maximum stiffness of the SMA spring,

• Ms, Mf , As and Af are martensite and austenitic start and finish temperatures,

• T is the SMA spring temperature,
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• β is the coefficient (β = 6.2).

The coefficient β is adapting transformation temperature obtained from the Differential

Scaling Calorimeter method [2].

The stiffness-temperature relationship of the simplified Ikuta’s model is presented in

Fig.2 (a). The red line means transformation in austenitic phase (heating process), while the

blue line in martensite (cooling process). The phase transformation temperatures obtained

were Ms=56.8oC (martensite start) and Mf=24.8oC (martensite finish) during cooling and

As=30.4oC (austenite start) and Af=61.5oC (austenite finish) during heating.

(a) (b)

Figure 2. Theoretical stiffness of the SMA spring as a function of the temperature (a),

obtained for parameters: kmin=550N/m, kmax=2000N/m (a). The force-velocity character-

istics of the MR damper for c1=10Ns/m (b).

It can be observed that the stiffness increased 3.6 times at the end of heating when is

compared with the initial value. If temperature is higher than 60oC the stiffness tends to

stabilize, due to the fact that from this point the crystalline structure (fully austenitic phase).

Similarly, stabilization of stiffness can be obtained at temperatures below 25oC when the

SMA spring gets fully martensitic.

The second smart element is the MR damper. The design and applications of the MR

devices have been an area of recent interest due to the controllable characteristics of the MR

material. They are controlled in terms of the applied current, which almost simultaneously

changes the magnetic field and thus the shear viscosity of the damper. When it is not

activated, the MR fluid behaves like a free flowing liquid, with a consistency similar to that

of typical oil.
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In our research, the MR damper can described by the modified Bingham’s model [6]

FMR = dtanh(e1ẋ+ e2x) + c1ẋ, (7)

where c1 is the viscous damping coefficient, d is the force coefficient related to the rheological

behaviour produced by the fluid, x and ẋ are the piston displacement and velocity of the

MR damper. The constant values e1 and e2 are assumed 100 and 0.25. They describe

the hysteresis shape and are usually obtained by the curve fittings. Attitude of the MR

damper in force-velocity curves in Fig. 2(b) are presented. The relationship shows hysteresis

loops whose shapes vary according to the applied d parameter. The hysteresis is due to the

difference between the accelerating and decelerating paths of the force-velocity curve.

3. Results and Discussion

The proposed smart suspension provides an important new tool for an engineer. The modifi-

cation of the stiffness or damping gives possibility to control and improve vibration mitigation

as well as energy harvesting. The set of equations 1-4 is solved numerically, and the various

bifurcation scenarios by mens of pseudo-arclength continuation method is analysed.

The unstable solutions are marked by the dashed line, while the solid line denotes the sta-

ble solutions. The bifurcation point are labelled: PD (period doubling bifurcation) and

NS (Neimark-Sacker bifurcation). The semi-trivial solution (pendulum in a rest) loss of

the stability caused by the PD bifurcation, while the parametric instability in the main

parametric resonance is caused by the NS bifurcation. The simulation data were taken from

laboratory rig: m1=0.45kg, m2=0.3kg, m3=0.1kg, k2=1kN/m, k3=200N/m, k4=180kN/m3,

c1=10Ns/m, c2=0.125Nms/rad, c3=0Ns/m, z=0.1m, L=1.46H, RC=RL=1.1kΩ, α=30V/A.

3.1. Frequency response under SMA spring

In order to check the amplitude excitation influence on the system response for the martensite

and austenite phases, the heating and cooling of the SMA spring was applied. The results

were compared for the fully martensite phase (T=20oC). The activated temperature changes

the SMA spring stiffness according to equations Eqs. 5-6.

The resonance curves of the oscillator, the pendulum and the recovered current for a

system with the SMA spring in three different temperatures are presented in Figs. 3(a)-(c),

respectively. Firstly, the system with the SMA spring at 20oC that correspond to the spring

stiffness kSMA=550N/m (green curve) is analysed. Then, it is heated to 40oC (black curve)

and heating for the fully austenit phase is applied. Next, cooling from fully austenit phase

to the temperature of 40o (blue curve) was applied. We observe one wide resonance region

from ω ≈15−52rad/s. The vibration mitigation region is clearly observed in the frequency
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range of ω ≈16.5−32.5rad/s. In this region the oscillator’s amplitude is significantly reduced.

However, in the frequency range of ω ≈32.5−52rad/s the unstable region can appears. [12].

This region is dangerous for the vibration absorbers [12]. Increasing of temperature causes

(a) (b)

(c)

Figure 3. Frequency response of the oscillator (a), the pendulum (b) and the recovered

current (c). The green color means response for temperature T=20oC (550N/m), blue for

T=40oC (1220N/m, cooling), and black T=40oC (880N/m, heating).

that the main resonance curve divided into two separate curves (blue color in Fig.3(b)). The

resonance frequency range became narrowed, and the oscillation of the main system and the

pendulum are reduced. Unfortunately, the vibration mitigation is also significantly decreased

(Fig. 3(a)). Increasing of the temperature reduces the recovered current for low frequency

range and improves in higher frequencies (Fig. 3(c)). The maximal recovered current was at

the level imax=0.04A, what corresponds power P=1.76W (for 40oC), while for temperature

T=20oC the maximal recovered energy is 1.36W.
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3.2. Frequency response under MR damper

To change the dynamics of the absorber/harvester system the second option based on the MR

damper is proposed. The damping force FMR can only be commanded by the input voltage

adjusted to the MR damper, therefore this is simply to implementation in the real structures.

Additionally, the unstable region can be controlled by proper value of the damping force.

Introducing damping force d to the system, we reduced the amplitudes of the oscillator

(Fig. 4(a)) and pendulum (Fig. 4(b)), but the vibration mitigation effect still exists in the

wide range. The analysis shows that increase of d causes smal reduce the resonance region.

Moreover, reduction of the unstable area in the main resonance region is observed. This

(a) (b)

(c)

Figure 4. Frequency response for the oscillator (a), the pendulum (b), and the recovered

current (c) obtained for kSMA=550N/m. The green color means response for d=0N, blue

line for d=5N and black for d=10N.

is a very important result from a practical point of view, because the parameter d can be
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used to the dynamics control of the vibration absorber without decrease its efficiency. For

parameter d=0N the unstable region appears in the frequency range of ω ≈ 32.5−52rad/s

(green line), but for d=10N (black line) the instability is located for ω ≈ 36.5−40rad/s.

Interesting situation is observed for the recovered current response (Fig. 4(c)). For frequency

ω >50rad/s increase of d to 10N causes decreasing of imax about 77% to power Pmax=0.45W

(for d=5N, Pmax=0.58W). However, for lower ω (<23rad/s) activation of the MR damper

causes increasing in the recovered current. For d=0N the current is imax ≈ 5mA (30mW),

for d=5N, imax ≈6mA (40mW), and for d=10N, imax ≈9.5mA (90mW). This suggest, that

MR damper can improve energy harvesting effect.

4. Conclusions

The dynamic response, bifurcation analysis and control of a pendulum vibration absorber

system with added the harvester device, operating under the parametric resonance condi-

tions are discussed in the paper. The system originally designed to vibration mitigation

allows energy recovery. The modification of the pendulum absorber by adding the harvester

can influence on the response of mechanical parts. All subsystems are coupled by the elec-

tromechanical transduction coefficients. Additionally, the moment of inertia and the gravity

centre of the pendulum changes as a result of the motion of the magnet. This can lead to

unwanted vibration and the unstable regions.

The SMA spring analysis shows that an increase of the temperature causes modification

of the resonance curve shape. It is divided into two separate resonance curves (Fig. 3). The

vibration mitigation region is significantly reduced. However, the unstable region under the

SMA spring is similar. Comparing result for the same temperature (40oC) during heating

and cooling the best results obtained if the SMA spring is heating. Then, the maximal

recovered power was on the level 1.76W.

The MR damping analysis shows that an increase of the MR parameter damping prac-

tically does not reduce the mitigation effect. Furthermore, it can be improving by the

reduction of unstable regions. The recovered energy generally decreases if the MR damper is

activated. However, for the lower frequency range the MR damper slightly increases energy

harvesting efficiency.

In next step the proposed suspension will be implemented in the real laboratory system.

The different algorithms to control will be proposed and tested. The description to find the

compromise region between vibration mitigation and energy harvesting will be found.
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Rapid vibro-acoustic optimisation of laminated composites

Matthias Klaerner, Steffen Marburg, Lothar Kroll

Abstract: Lightweight and stiff composites are sensitive the propagation of
structure-borne sound, but simultaneously offer a broad spectrum for adjust-
ing material behaviour. Stiffness and damping of composites are contradictory
material properties related to the fibre orientation. Commonly, the composite
design is based on FEA simulations requiring special modelling efforts. In con-
trast, the multi-dimensional optimisation of a laminate with numerous layers
of different materials and orientations requires very fast numerical solutions
for numerous repetitions. In this study, a complex but efficient vibro-acoustic
model is presented. The FEA is extended by a strain energy-based modal
damping approach for the layerwise accumulation of the anisotropic damp-
ing. In addition, the radiated sound power is determined by a velocity-based
approach directly from steady state simulations of the structure avoiding com-
plex multi-physical modelling. Moreover, the frequency dependent radiation is
consolidated to a single scalar optimisation objective using a fast and efficient
semi-analytic approach. Therefore, analytical formulations of amplification
factors of the modal power contributions are introduced. This efficient simu-
lation methodology is further applied to design a vibro-acoustically optimised
composite part. The achieved results show the vibro-acoustic optimisation po-
tential of thermoplastic composites compared to a steel reference case by pure
material substitution as well as an additional laminate optimisation.

1. Introduction

The simulation-based design and optimisation of dynamically loaded and acoustically sensi-

tive components is state-of-the-art and essentially includes the determination of the radiated

sound power. Exact analytical solutions of the sound power are available for only a few sim-

ple geometries. Thus, numerical approximation methods are used but are computationally

expensive due to fluid-structure-interactions. This typically includes the solution of both,

structural and acoustical domains as well as the coupling in one or both directions. In addi-

tion, the boundary element method (BEM) is a very popular approach but it is limited for

optimising huge problems in a wide frequency range [13].

Avoiding complex multi-physical models, different velocity-based approaches of the sound

power P can be used instead for hard reflecting surfaces [8, 4]. These approximation meth-

ods are based on structural simulations only using the normal surface velocity for the in-

tensity determination. Namely, there are the equivalent radiated sound power (ERP), the
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weighted ERP (wERP), the lumped parameter model (LPM) as well as the volume velocity

(PVV) [4, 8]. In addition, the kinetic energy or the related mechanical power of the vibrating

system can be used as a qualitative measure of the sound radiation [10, 8]. All power levels

LW are further related to a reference value of 10−12 W as well as the energy level LE of

10−12 J.

When solving such complex optimisation problems, an efficient simulation model is es-

sential, but in contrast to the huge number of required frequency steps. As fibre-reinforced

components with anisotropic stiffness and damping [1, 2] offer a wide range of variable ma-

terial properties this implies numerous design parameters and leads to a multi-dimensional

optimisation problem. Therein, the modal damping can be modelled with an energetic

approximation [7]. Within this study, a new semi-analytic approach is presented to deter-

mine the sound power within the given frequency domain with only one simulation step

per resonance for the estimation of the radiated sound power in the whole frequency range.

Computationally expensive steady state simulations thus are significantly reduced.

2. Analytical description of the sound power contributions

2.1. Sound power contribution of a single mode

The determination by different sound power approaches require numerous frequency steps to

represent the entire frequency range with sufficient accuracy [9]. Accordingly, the required

frequency resolution is dependent on the modal attenuation, the considered frequency range

and the distance to the adjacent modes. Thus, at least 50 to 500 frequency steps per

resonance (see section 3).

As a reference for an analytical solution, the sound radiation of an oil pan was in-

vestigated. The power was determined with a high frequency resolution of 250 steps per

eigenfrequency with biasing of bf = 2.5 (Fig. 1, left). Thus, the narrow local extrema are

well represented with a narrow frequency step size while the anti-resonances with only small

contributions have a sufficiently accurate but coarse frequency resolution. The modal con-

tributions were further isolated for PERP . Each eigenfrequency shows a similar frequency

characteristic. The superposition of all modal contributions leads to the overall sound power

in the frequency domain (Fig. 1, right).

Ensuring sufficient data for the identification of the functional approach in a wide fre-

quency range, the sound power of the first eigenfrequency at 913 Hz has been investigated

based on 2,000 narrow equidistant frequencies near and 1,000 additional more distant points

within an order of magnitude of the frequency range (here 100–10,000 Hz in Fig. 2, left). The

characteristics of the used approaches are equally detectable for each eigenfrequency whereas

the differences can be associated to the different assumptions [4, 8]. Therein, kinetic energy
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Figure 1. Radiated sound power of an oil pan: modes 1-6, determined with 250 frequency

steps each (left) as well as modal contributions of PERP (right)

and ERP show a consistent frequency characteristic with symmetry to resonance. LPM and

PVV correlate for the frequencies below resonance and slightly above. As the frequency

increases, the less accurate PVV results in constant power levels, while the LPM converges

to the ERP. Since the different local maxima are dependent on the underlying FEA results,

the frequency responses are further normalised to their modal maximum P̂k and Êk (Fig.

2, right).

In total, three different characteristic frequency profiles can be identified for which an-

alytical descriptions are derived with the mode-specific frequency ratio ηk = f/fk and the

modal damping Dk
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Figure 2. Radiated sound power of the first eigenfrequency of an oil pan: power and energy

level (left) as well as power and energy normalised to maximum value (right)

similar to the various amplification factors of single-degree-of-freedom systems (e.g. in [3])

and using the abbreviations

V ? =
4D2

kη
2
k

(1− η2k)2 + 4D2
kη

2
k

, CPkin =
2D4

k + (2D2
k − 1)(

√
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(2D2
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√
D4
k −D2

k + 1− 1)3
. (5)

The modal characteristics are contrasted for selected approaches in Fig. 3. Due to the

observed interactions of the individual monopole sources, the analytical description of the

LPM model is not readily possible. Based on Bessel-functions, those can be derived from

ERP similar to the wERP.
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Figure 3. Frequency response of the amplification factors for the sound radiation power

for different damping values

The defined amplification factors all have a maximum of 1 but with different locations

(Table 1). As the variation of the location is significant only for high damping, the determi-

nation of the modal maxima at the undamped eigenfrequency is sufficient, c.f. [11].
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Table 1. Maxima and its locations for the sound power amplification factors

ERP,Ekin PV V Pkin

ηk,max 1
1√

1− 2D2

√
2D2 − 1 + 2

√
D4 −D2 + 1

V (ηk,max) 1 1 1

The determined function expressions and numerical simulations show a very good agree-

ment. In addition, the deviations of LPM and wERP due to their transition from VPV V to

VERP are clearly visible.

2.2. Semi-analytical determination of the frequency-dependent sound power

The analytical descriptions are further used for a semi-analytical synthesis of the total radi-

ated sound power. This can be understood as a superposition of the modal radiated sound

power [5] similar to radiation modes e.g. [6, 14]. The whole process including finite element

simulations (Abaqus 2017) as well as python routines, is shown in Fig. 4.

iterative optimisation

anisotropic

materials only

modal damping determination

steady state analysis in modal space

(resonances only)

numerical modal analysis

(parametric) FEA-model

model development

modal strain energy

sound power determination

modal amplification factors

modal superposition

mean power/energy 

determination

optimisation

parameter set

Python routine

CAE-Software (Abaqus)

data

objective function

legend:

vibro-acoustical

optimised part

Figure 4. Velocity-based sound power approaches: FEM simulations, developed programme

routines and transferred data as well as integration into iterative optimisation procedures
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Accordingly, a numerical modal analysis for determining the eigenfrequencies fk is fol-

lowed by the determination of the modal damping Dk for anisotropic materials as well as

the steady state analysis in modal space. Due to the semi-analytical approach only one fre-

quency step per eigenfrequency is required. The velocity fields vµk and vνk are determined.

From there, the maximum sound power within the resonance is calculated with certainty by

either the ERP, the LPM or the PVV approach.

Fig. 5 illustrates the further process for the ERP exemplarily. Using the modal damp-

ing the amplification factors (1)–(4) give the modal frequency response Pk(f) in the entire

frequency range. The superposition of all modes then gives the total radiated power P (f)

or energy Ekin(f) and can easily be determined with a high frequency resolution. Lastly, it

shows very good agreement with a reference solution.

This process is extended by a vibro-acoustic optimisation with an average sound power

or energy objective.
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Figure 5. Radiated sound power (ERP) of the first six modes of the oil pan: power values at

resonance; analytical solutions for the modal contributions; synthesis of the entire frequency

response by superposition (from top to bottom)
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3. Average sound power in the frequency domain

The radiation behaviour is frequency dependent. Resonance points produce significant con-

tributions dominating the overall behaviour. This effect is significant for low damped mate-

rials and a low modal density. The variation of material or geometry parameters in optimiza-

tion processes leads to a different number of modes that contribute within the considered

frequency range [fl, fu].

In order to evaluate different components and design variants, objective functions based

on scalar values are implemented in numerical optimisation processes instead of the complex

frequency-dependent power results [12, 15]. For the minimisation of the sound radiation,

therefore, the average power within the considered frequency range (Fig. 6) is therefore

based on

P̄ =
1

(fu − fl)

∫ fu

fl

P (f)df. (6)

For the determination of the limited integrals both analytical and numerical approaches

are possible. The numerical integral approach is based on the midpoint rule. It applies to

the average sound power

P̄ =
1

(fu − fl)

Nf∑
n=1

(dfnPn) with (7)

df1 =
f2 − f1

2
; dfn =

fn+1 − fn−1

2
for 1 < n < Nf ; dfNf =

fNf − fNf−1

2
. (8)

This averaging process can also be applied to non-equidistant frequency step sizes and com-

bined with known A/B/C-weighting [8]. It also allows to evaluate narrowband analyses with

scalars. In contrast, such scalar quantities are determined by normative methods of acoustics

using octave band values by shifting fixed reference curves.
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Based on the modal contributions of the radiated sound power, an analytical formula-

tion of the mean power of a single mode was derived. The determination is based on the

approaches of the amplification factors by integrating them in the frequency domain with

the limits fl, ηl and fu, ηu with the assumptions η > 0 and 0 < D << 1.

P̄ERP =
−P̂D
ηu − ηl

[
D

2
√

1 +D2
ln

∣∣∣∣η2 + 2η
√
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4D2 − 3

2
· ln
∣∣∣∣−η2 + 2η

√
1−D2 − 1

η2 + 2η
√

1−D2 + 1

∣∣∣∣+ 4η(D2 − 1)

)]ηu
ηl

P̄kin =
2P̂ CPkin
ηu − ηl

[
ln
∣∣η4 + 2η2(2D2 − 1) + 1

∣∣ · · · (11)

− 2(2D2 − 1)√
1− (2D2 − 1)2

tan−1 η2 + 2D2 − 1√
1− (2D2 − 1)2

]ηu
ηl

These solutions are based on standard integrals (e.g. in [17]) as well as computer-algebra-

systems. The analytical and numerical solutions were validated with different parameter

ranges for D and η. The results agree with very good accuracy.

4. Application: composite optimisation

The whole system of structural FEA based sound power approximation with semi-analytic

approaches has been applied to a laminate optimisation of the oil pan as a material substi-

tution wherein the shape remains the same. In detail, a unidirectional glass-fibre-reinforced

polypropylene thermoPreR© material with anisotropic elastic and damping properties is used

(table 2). To achieve an optimal lightweight design, the fibre orientations within the layup

Table 2. Material properties of unidirectional glass-fibre-reinforced polypropylene

thermoPreR© GF 47-PP-UD

elastic parameters density damping

E1/GPa E2/GPa G12/GPa ν12 %/g/cm3 D1/% D2/% D12/%

34.80 5.39 1.42 0.30 1.75 0.15 1.30 1.35
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are varied. Due to manufacturing restrictions, symmetrical layups are practicable. For il-

lustration, two independent fibre orientations ϕ1 and ϕ2 within an eight-layer laminate with

[ϕ1, ϕ2]2s-layup are used as optimisation parameters here. The layer thickness is chosen as

1.1142 mm for a mass-equivalent setup of 2.1 kg from the steel reference.

The sound power synthesis was implemented in the optimisation loop by complementary

steps (Fig. 4, grey). First, the mean power P̄ is determined as scalar optimisation objective

from the frequency depended sound power estimations. The objective of the constraint

optimisation problem

Φ(ϕ?1, ϕ
?
2) = min[P̄ (ϕ1, ϕ2)] with ϕ1, ϕ2 = [−90◦, 90◦] (12)

is used to estimate a new parameter set with in any arbitrary deterministic or evolutionary

optimisation algorithm.

For an all-encompassing overview of the objective, a full parameter study with a step size

of 2◦ was performed. Fig. 7 shows the mean ERP. This complex and curvaceous objective

function contains several local minima. Therefore, metaheuristics are typically used for the

solution (e.g. [16]). In this case, the fibre orientations have been determined by a particle

swarm optimisation. In addition, the changes in stiffness due to varying fibre orientations
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Figure 7. Mean radiated sound power (left) and number of contributing modes (right) of

the oil pan from 100 to 2,000 Hz for a layup with varying fibre orientations [ϕ1, ϕ2]2s)

result in escalations of the number of contributing modes (Fig. 7, right). This causes changing

sound power objectives, too. The results reflect the contradictory effects in stiffness and

damping. A compliant layup may have lower eigenfrequencies and thus more contributing

modes but offers significantly more damping. The global minimum is found for a laminate

with a [−82◦,−84◦]2s layup.
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To avoid imperfect solutions, stochastic optimisations such as the used particle swarm

algorithms are helpful in finding the global optimum. Fig. 8 shows the development of the

particles in the value range up to the global minimum. Using continuous model parameters,

the global minimum was reached here for a [−82.2◦,−81.7◦]2s layup.
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Figure 8. Parameter sets of a particle swarm optimisation of the mean radiated sound

power

Regarding computational costs, the full parametric study with discrete fibre orientations

of 2◦ accuracy required 8,281 simulation runs. In contrast, the particle swarm optimisation

with continuous fibre orientations converged after 44 runs with 30 particles each and thus

1,320 runs in total.

5. Conclusions

In summary, the radiated sound power is an important objective for acoustic optimisation

procedures of vibrating surfaces. Therefore, the known FEA-based approaches of the sound

pressure, such as ERP, LPM or PVV, are helpful but still cause significant computational

costs. Consequently, a huge number of frequency steps is required for a satisfying accuracy.

In this study, analytical formulations for a precise prediction of the frequency charac-

teristics of the sound power of a single mode were derived. Therefore, only one frequency

step per mode was evaluated to determine the modal contributions of the entire frequency

range. A further super-positioning of all modal contributions achieves equivalent results but

requires significantly less simulation runs compared to a full steady-state FEA with a high

frequency resolution .

This semi-analytical approach has been successfully implemented and further applied

to an optimisation problem. Therein, a laminate with two independent fibre orientations

was optimised by minimising the radiated sound power of the component with a particle

swarm optimisation. Due to numerous required simulation runs within any kind of multi-

dimensional optimisation, the derived analytical formulations of the amplification factors are

a key issue in accessing fast acoustic optimisation procedures.
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bei nichtlinearem und lokal variierendem Dämpfungsverhalten von Mehrlagenverbunden, the

Cluster of Excellence EXC 1075 MERGE Technologies for Multifunctional Lightweight Struc-

tures, supported by the Deutsche Forschungsgemeinschaft (DFG), as well as hybCrash - Seri-

ennahe Technologien für hochbelastete hybride Multilayer-Crashstrukturen, supported by the
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Influence of the shoe type on the ground reaction forces 

 

 

Małgorzata Klepczyńska, Bartłomiej Zagrodny, Wiktoria Wojnicz,  
Michał Ludwicki, Jan Awrejcewicz 

Abstract: The aim of this work was to estimate a relationship between the type of the 

footwear and ground reactions. Differences in medio-lateral, anterior-posterior and 

vertical reactions are compared for different shoe-types for male and female volunteers. 

Each of the participants gait was recorded in case of different shoes and without them, 

also stabilograms were analyzed. Results revealed differences in ground reaction forces 

for different shoe-types and its influence on static stability. 

1. Introduction 

The concept of gait measurement can have various approaches, depending on the used method.  One of 

the way is to record ground reaction forces/pressure distribution during locomotion [1], [2]. For this 

purpose, a dynamometric platform or pedobarographic forceplates are used [1–4]. 

Over the years, different types of footwear were created depending on activity and in order to 

facilitate foot. A differences between shoes are i.e.: sole thickness and its shape, height of the heel, 

presence of additional elements, geometry and used materials etc. According to research project, 

conducted by [5], which aim was to present the relation between well-fitted sports shoes and 

pain/discomfort reduction. Good assistance at store level in shoe selection has a great influence on 

orthopedic condition, heel’s stability and grip, which give shock absorption and prevent sliding, vertical 

or horizontal movement. This leads to reduced risk of pain, fractures and overloads and also extends 

the life span of shoe. 

Coordination between postural and locomotive mechanisms is essential to provide effective 

locomotion. Maintaining constant speed requires continuous renewing of energy – dissipated during 

center of pressure (COP) movements, limbs swing, friction and drag [6]. The energy is recovered by 

production of driving and support forces by alternating lower limb work. Under the movement, stability 

conditions are disturbed. It refers to initial swing phase, when a lower limb pushes off and area of 

support is reduced. Decreasing periods of double support phase, along with increased speed of gait, can 

influences balance. With regard to biomechanics, improper transmission of acceleration from limbs to 

trunk can also affect stability control [6], [7]. 

As soon as the heel strikes the ground, elastic structures of ankle joint absorbs the energy. 

Exchange of energy is low and only a small part of it can be reused in loading response (LR) phase. 
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Rest is dissipated as a sound and heat. Some kinds of soles may influence energy absorption and its 

further transformation [1].  Knee joint is subjected to inner, bending moment, which results in release 

of power, while the energy comes from concentric work of knee flexors and elastic strain energy of 

ligaments. Contrary to knee joint, a hip joint is affected by inner, erectile moment, produced by 

concentric work of hip extensors, which generates power [1], [8]. 

An objective of this work is to determine the relationship between different types of footwear and 

ground reaction and its characteristics – varying between sexes and shoe types. The scope of the 

research contained measurement of three components of ground reaction forces, center of pressure 

(COP) deviations due to changing shod type, basic body measurements and preparation of 

questionnaire, which investigated physical activity habits. 

2. Materials and methods 

2.1. Participants 

The study group contained 12 people of both sexes, aged 22-27: 7 women and 5 men. They were asked 

to fill in the questionnaire, provided by the researcher, which scope of questions concerned: the age and 

sex of the subject, the trauma of the musculoskeletal system and its area, the time of undertaking 

physical activity, the type of physical activity most frequently undertaken and the type of footwear most 

frequently worn. Anthropometric measurements consisted of several steps, in which the mobility of the 

motor system was tested globally by the physiotherapist. Only participants, whose results were in range 

of norm (range of motion, faulty posture) were taken a part in measurements. Their anthropometric data 

are presented in Table 1a and b. The study was conducted in the Laboratory of Biomechanics, in the 

Department of Automation, Biomechanics and Mechatronics at the Lodz University of Technology. 

The respondents, whose health status foreclosed proper testing or did not agree with terms of 

participation, were excluded from the study, as well as those, whose measurement results indicated 

faulty postures. Research was organized according to Helsinki Regulations, all volunteers were 

informed in detail about aim and scope of the experiment, all of them sign a form of conscious 

agreement.  

Table 1a. Female volunteers basic anthropometric data. 

Volunteer Body mass [kg] Height [cm] Age [years] 

1 56.5 168 22 

2 82 165 22 

3 58 170 22 

4 57.5 164,5 22 

5 92 172 24 
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6 53 165 24 

7 53 168 25 

EX 64.57 167.50 23.00 

SD 15.72 2.84 1.29 

Table 1b. Male volunteers basic anthropometric data. 

Volunteer Body mass [kg] Height [cm] Age [years] 

1 76 183 26 

2 75.5 171 22 

3 85 180 25 

4 94 187 24 

5 82 182 25 

EX 82.5 180.6 24.4 

SD 7.58 5.94 1.52 

2.2. Materials 

For reaction forces recording, the Steinbichler force platform (SFP Active 3D, Steinbichler GmbH force 

platform) with dedicated software were used. Gait measurements and center of pressure (COP) 

movement were recorded in following variants: for women: barefoot, shoes with flat, profiled sole, 

high-heels and for men: barefoot, suit shoes and sports shoes. Each subject was asked to bring his/her 

own shoes, which were then classified as suitable for the experiment according to the proper range of 

stiffness and heel height. The subject was asked to walk through the dynamometric platform with 

preferred, comfortable speed. Reaction forces of the right limb were recorded. In order to avoid their 

intentional adjustment of footsteps, the force plate was masked on the gait-path. From all trials only 

three correct (with whole foot placed close to the center of the force platform) were chosen for further 

analysis. After the correct series of passes in the given footwear, the subject was asked to stand freely 

with both feet on the platform, so that they did not go beyond its edge and not to move for 30 sec. At 

that time, the COP transitions were recorded for each shoe-type. 

3. Results 

3.1. Ground reaction forces 

Obtained results are presented in form of graphs with average values with standard deviations in case 

of each graph: medio-lateral, anterior-posterior and vertical direction, separately for male and female 

participants and shoe-types. 
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3.1.1. Anterio-posterior reaction 

In the case of female anterior-posterior reaction for barefoot gait (Fig. 1a.a) the first peak is low, 

rounded and corresponding to the moment of the heel striking the ground. After that, a sudden decrease 

of forces to the average value of about -75 N appeared. Then the phase of loading response (LR) is 

visible, with the mid stance (MST) point around 1.35 sec. The force rises to the average value of about 

120 N, then drops down to toe off point around 1.75 sec. The largest deviations from the mean value 

were recorded near the first peak - in some of the studied women it took the shape of a sharp peak. 

Before the start of the LR phase, in some of the examined women, a temporary decrease and increase 

in the value of the acting force was noted, which may result, for example, from imbalance and attempt 

to stabilize the heel during loading. Also, a large difference in value was observed in the area of the 

second peak and just before the toe-off phase — some of the women had values up to 150 N.  

a b c 

Figure 1a. Ground reaction force, female, anterio-posterior direction, a) barefoot b) highheels  

c) sport – shoes; description in text; horizontal axis – support phase, vertical – force [N]. 

 

d e f 

Figure 1b. Ground reaction force, male, anterio-posterior direction, d) barefoot e) suit f) sport – 

shoes; description in text; horizontal axis – support phase, vertical – force [N]. 
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Similarly to the previous characteristics, for the high-heels (Fig. 1a.b),  there is a sharp peak 

associated with the heel strike on the ground, then the curve drops sharply and rises until the beginning 

of the LR phase, which reaches an average value of -100 N. The MST point was reached a little earlier, 

in comparison to remaining shoes - before 1.35 sec. The next visible peak reaches the value of 

approximately 100 N. The values of extreme peaks are lower than for shoes with a flat, profiled sole 

(Fig. 1a.c). The variation in values among the examined group is particularly evident in the LR, heel-

off (up to 150 N) and toe-off (about -40 N) phases. The total support phase is slightly extended to 

approx. 0.8 sec.  

In case of sport-shoes (Fig. 1a.c female), the measurement begins with a sharp force peak during 

heel contact to the ground. The decrease in the force direction is smooth up to the value of -100 N. The 

increase in the force value is almost linear, up to the value of approx. 115 N. In the case of sports 

footwear, the greatest deviations from the average value, are located in the LR phase and between heel-

off and toe-off phases. The highest values exceed -125 N and 150 N. Moreover, the curve appears 

smoothed without additional sways. 

Fig, 1b.d (male, barefoot) shows small, but evident peak at the beginning of stance phase. Then a 

rapid drop in values occurs, until it reaches the approx. -125 N. What is more, a noticeable increase and 

drop in values at the beginning of LR phase is visible. Then values increase rapidly with marked MST 

phase around 1,30 sec - as well as in female group. At heel-off phase, the highest, obtained value of 

force was 150 N. Just like among the examined group of females, beginning of LR and heel-off phase 

showed the highest difference in values. 

Suit type of footwear (Fig. 1b.e), presents some additional fluctuations of force and higher 

deviations from mean values – significant between IC and LR phase as well as heel-off phase. As well 

as in case of other types of footwear, measurement begins with rounded peak (25 N) directed upwards. 

Some of the male subjects present the value above 50 N. At the beginning of the LR phase, force reaches 

the value -125 N and at the end of the phase 150 N. 

The characteristics of gait in sports footwear (Fig. 1b.f) is smooth and begins with sharp, positive 

peak with a value up to 50 N. Additional fluctuations, like in case of suit shoes, are not visible. The 

lowest value (approx. -125 N) is followed by the beginning of LR phase. The highest value stands for 

the end of LR phase - above 150 N. Differences among the group in sports shoes are significant, as in 

the other footwear - especially in the IC, LR and heel-off phases. In some of the examined males, the 

first positive peak reached a value up to 75 N. 

3.1.2. Medio-lateral direction 

For female barefoot (Fig. 2a.a) right after the initial contact (IC) phase (0.9 sec.), a sudden drop in vales 

of acting force is noticeable - reaching the value around -10 N - the lateral side of the heel is loaded. A 
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rapid increase in values indicates the COP movement towards metatarsals and beginning of MST phase. 

However, force hardly exceeds the value of 0 N, which suggests load positioning on the lateral edge of 

the foot – COP approximates to middle foot, but the load is finally directed more laterally. A further 

decrease in the force value to -25 N means the displacement of COP over the head of the 5th  metatarsal 

bone. In the case of a barefoot support phase, this is the most weighted point on the foot. The value of 

the force increases again to positive values, showing the beginning of the heel-off and toe-off phases. 

For COP medial movement (and MST phase), some of the female subjects achieved positive values - 

over 5N. The lowest achieved values, under the load of head of the 5th metatarsal bone were 

approximately -33 N. 

Figure 2a. Ground reaction force, female, medio-lateral direction,  Fy: a) barefoot b) high-heels  

c) sport - shoes; description in text; horizontal axis – support phase, vertical – force [N]. 

 

d e f 

Figure 2b. Ground reaction force, male, medio-lateral direction, d) barefoot e) suit f) sport – shoes; 

 description in text; horizontal axis – support phase, vertical – force [N]. 
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The medio-lateral component for gait in high-heels (Fig. 2a.b) is the most diversified from all 

presented characteristics. The point of maximum lateral heel load is over -10 N and is the lowest of 

measured gaits. The increase in force values during the LP phase was non-uniform and many 

irregularities were registered. The maximum medial load was over 10 N - the graph in this area is 

arranged in the shape of a smooth hump. Loading attached to head of 5th metatarsal bone has reached 

the lowest value from the examined footwear - approx. -15 N. The values representing the heel-off and 

toe-off phases are similar for all examined types of footwear. The greatest variation in the values 

occurred during LP phase and before the start of the heel-off phase. The average values of the obtained 

curve for high-heels suggests more medial foot loading.  

In the case of gait in sports footwear (Fig. 2a.c), the value of the maximum lateral heel load was 

lower than -5 N. While moving the COP towards the metatarsal bones, the highest values were 

registered above 10 N, with characteristic two humps before the COP was moved over the head of 5th 

metatarsal bone (below -15N). The values before the heel-off and toe-off phase were similar to those 

for other footwear. For the sports footwear examination, it can be said that the deflection of COP in the 

medio-lateral direction was evenly distributed. The largest differences in values for individual subjects 

were found in the LR phase. It is important to note, that characteristics of medio-lateral component of 

gait was strongly diversified, as is demonstrated by standard deviation curves. 

For male volunteers, in case of barefoot gait (Fig. 2b.d) right after the IC phase, a sudden drop to 

less than -10 N is visible – the lateral side of the heel is fully loaded. While the LR phase begins, the 

values of force rise to positive value approx. 25 N – it suggest, that COP is moved above the medial 

side of metatarsal. Then a hump-like drop in values is noticed, below -20 N – the head of 5th metatarsal 

is loaded. A renewed increase in values, above 0 N indicates movement of COP towards head of 1st 

metatarsal and beginning of heel-off phase. 

Figure 2b.e, which shows the measurement of the same medio-lateral component for suit shoes 

presents irregularities. The maximal load of the lateral side of heel stand at -5 N, which is the highest 

value of all presented types of footwear. An acting force during COP movement towards metatarsals 

reaches its maximal value around 25 N. Then an extended decrease in force values occurs, to approx. -

15N – higher than for barefoot or flat shoes. For suit shoes, toe-off phase has the highest recorded value, 

up to 5 N. For the suit type footwear, the largest irregularities were recorded over the entire time of the 

support phase. 

A characteristic feature of the medio-lateral component for sports footwear (Fig. 2b.f) is a rapid, 

partially linear decrease in values of acting force, during COP movement towards head of 5th metatarsal 

bone. For remaining types of footwear, the decrease is hump-shape. For the lateral side of the heel, load 

values are approx. -10 N, and for the head of 5th metatarsal bone is -15 N. Before the toe-off phase, the 
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force reaches 5 N. The largest deviations of the measured force values concern the COP movement 

over the metatarsus - the extreme value is about 55 N and 5 N – and before the toe-off phase. 

3.1.3. Vertical reaction force 

Figure 3a.a presents the average values for women barefoot measurement. On the graph a characteristic 

peak at the beginning of single support phase - initial slope (UP) is presented. However, it should be 

mentioned, that not each subject presented such a wave. Two peaks related to LR phase are evident and 

located approx. 600 N and above 650 N. Second peak reached higher value. This suggests, that push-

off phase was launched stronger in comparison with beginning of LR phase. The drop in acting force 

estimated almost 500 N. 

 

Figure 3a. Ground reaction force, female, vertical direction, a) barefoot b) high-heels c) sport - shoes;  

description in text; horizontal axis – support phase, vertical – force [N]. 

 

d e f 

Figure 3b. Ground reaction force, male, vertical direction, d) barefoot e) suit f) sport - shoes;  

description in text; horizontal axis – support phase, vertical – force [N]. 
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High-heels measurement (Fig. 3a.b) was the most non-uniform. On the front edge of graph, a sharp 

and clear-cut UP peak was visible - present in all examined females. This may indicate, that heel 

centering on the ground was difficult for all women. The curve showed also higher values of the first 

peak – 700 N, while the second one reaches the value of approx. 650 N. It suggests strong heel load 

before the LR phase and lighter push-off. A drop in acting force was approx. 500 N as well. 

The graph showing the measurement in sports footwear for women (Fig. 3a.c) showed the 

smoothest line without any irregularities on the first slope. The UP waves and curve was not present. 

The curve seems quite symmetrical - peak values are similar and amount to over 650 N. The second 

peak seemed to be more narrow due to the first one, same as in case of flat shoes, with profiled sole. 

The drop in acting force was close to 500 N as well. However, characteristics of vertical component for 

sports shoes, for both sexes were smooth, the graph for females was more rounded and smoother. 

In comparison to female characteristics, each male measurement (apart from suit shoes) 

demonstrated equal level of registered peaks – average at the level below 900 N. Curves obtained on 

the basis of the average values of the measurements did not show the specific UP waves – by analyzing 

the standard deviation on the graph, it can be seen that these waves appeared among male subjects, 

especially when measuring barefoot and suit type footwear (Fig. 3b.d and Fig. 3b.e). An elevating slope 

(Fig. 3b.d) of barefoot measurement, showed temporary irregularities. Two, peak values, in opposition 

to female group were equal and reached the force value up to 900 N. The drop in values, standing to 

MST phase went to 600 N. 

In case of suit shoes (Fig. 3b.e), second peak has slightly lower value than the first one and some 

irregularities were found on the elevating slope. During MST phase, values approximated 600 N. The 

highest deviations in values were located around second peak (above 1000 N). What is more, 

representation for the suit shoes seemed to be more widen, indicating on extended stance phase. 

As in the women's group, the graph for sports footwear was the smoothest (Fig. 3b.f). For sports 

footwear, the lowest, registered values are in the main part of MST phase – below 600 N. The both 

peaks are equal and reaches the value up to 900 N as well. Also the largest deviations from the mean 

value were recorded when the foot was placed flat on the platform (MST phase).  

3.2. Stabilogram  

The Table 2 shows the average values of amplitude of COP displacements, measured for each subject 

in static state. The values are delivered with standard deviation for both sexes. Minimal and maximal 

values for each footwear and both sexes are also presented. The amplitude was calculated in two 

directions on the basis of stabilogram: medio-lateral (M-L) and anterior-posterior (A-P). 
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Table 2. Average values of COP displacement for different sexes and shoe-types. 
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For medio-lateral movement of COP, among female subjects, the lowest, average value was 

obtained in case of flat shoes with profiled sole – 12.27 ± 4.18 mm. The highest, average value of COP 

displacement in medio-lateral direction concerned high-heels – 16.77 ± 4.33 mm. Average 

displacement in sport footwear were second highest – 13.59 ± 4,46 mm. The minimal, registered value 

of COP deflections in M-L direction, among examined females was 6.99 mm (flat shoes), while the 

maximal – 23.88 mm (high heels). For anterior-posterior movement of COP, among female subjects, 

the lowest average value was obtained for sports shoes – 9.94 ± 2.31 mm. The highest average value of 

COP displacement in anterior-posterior direction concerned also high-heels – 13.17 ± 3.58 mm. 

Average displacement in flat shoes with profiled sole and barefoot were similar. The minimal, 

registered value of COP displacement in A-P direction, among examined females was 7.03 mm for 

barefoot measurement, while the maximal – 19,46 mm – for high-heels. For medio-lateral movement 

of COP, among male subjects, the lowest, average value was obtained in case of suit shoes – 11.44 ± 

2.56 mm. The highest values of COP deflections in medio-lateral direction concerned sports footwear 

– 15.50 ± 3.56 mm. Average displacement in flat shoes were the second highest – 14.68 ± 3.46 mm. 

The minimal, registered value of COP displacement in M-L direction, among examined males was 

11.09 mm – for barefoot measurement, while the maximal – 20,61 mm – for sports footwear.  For 

anterior-posterior movement of COP, among male subjects, the lowest average value was obtained for 

sports footwear – 9.30 ± 1.99 mm. The highest average value of COP displacement in anterior-posterior 

direction concerned flat shoes with profiled sole, however, the difference was not significant – 10.02 ± 

2.47 mm. The minimal, registered value of COP deflections in A-P direction, among examined males 

was 5.76 mm for barefoot measurement, while the maximal was 13.62 mm for flat shoes. 

4. Discussion and conclusions 

The graphs presenting A-P component, for both, women and men started with positive peak, which is 

the smallest for barefoot measurements. This may be explained as a way of contact the heel on the 

ground. However, this phenomenon is common in case of loose or bad fitted shoe [9]. The foot moves 

backwards in relation to shoe. The lowest values were recorded for barefoot measurement. 

The highest values of first peak were recorded for sports and flat shoes, for both sexes. Those types 

of footwear were usually laced-up, so the respondent might not put them on tight enough. What is more, 

most of the responders pointed out those kind of footwear as mainly worn. The footwear used for the 

study, belonged to the subjects. It is likely that it could be deformed as a result of normal, everyday use. 

What's more, all-day use of a given pair of shoes imposes it’s change of shape to maintain comfort.  

Considerations about flat, profiled shoes, focus on irregularities and amplitude values among females 

and males. However, the values of A-P component are not the highest obtained. The proceed of 

suppression and loading response is strongly marked, in comparison with barefoot. What is more, the 
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values of recorded force are close to barefoot, which indicates on lack of amortization. Feminine gait 

is seem characterized by smaller, light steps. The construction of flat, profiled shoes resemble man-like 

style, so it may affect gait pattern. Simultaneously, this type of foot wear was chosen as mostly worn, 

so the gait could be more confident. What is more, this type of footwear obtained the lowest values of 

COP swings in medio-lateral direction among females. It is clearly shown on graphs for M-L force 

component, where outstanding movement of COP are not visible.  In case of males, registered anterior-

posterior COP swings were the highest. Majority of male participants brought shoes with springs at 

both sides, which are responsible for sudden bounce of the foot [10]. Gait in flat, profiled shoes seems 

to be more smooth, in comparison to barefoot, however it does not show any significant amortization 

abilities – the values of suppression and push-off are even higher, than those for barefoot – unlike than 

expected.  In their study, Isabel Sacco et al. [3] presented a strong differences between shod and barefoot 

gait among diabetic neuropathic and healthy patients. Focusing on healthy subjects, Sacco noticed that 

gait in any footwear shows higher values of vertical component of ground reaction force at IC phase 

and higher propulsive force.  She suggests, that smaller values in case of barefoot measurement were 

related to precautious gait. Sacco also admits, that the results are in opposition to the common opinion, 

that any shoes reduces ground shocks. What is more, in the previous study, they observed lower values 

of peaks in case of hard-sole shoes. It was also found the lowest values for barefoot measurement in his 

study of mechanical comparison of barefoot and shod running. They have suggested, that this 

phenomenon is related to neural-mechanical adaptation of body in order to reduce external stress under 

repetitive movements [11]. It can lead to opinion, that gait kinematics, changed in response to different 

footwear conditions can be caused by neurosensory mechanism, which founds wearing shoes as 

interaction between foot and material. In other study researchers examine the effect of footwear motion 

on foot relative motion during walking and running. For the measurement two types of sandals (with 

hard and soft sole) were used. A control, barefoot measurement was registered as well [12]. The 

differences between sole types were not significant. The push-off phase, abduction and adduction of 

the foot, in case of shoes were restricted. Authors considerate if footwear limits natural foot motion. 

They conclude, that too restricted footwear can lead to pain and discomfort.  

In presented study, the most characteristic are the high-heels results. At the beginning of 

measurement in M-L component, a visible irregularity stands for problems with centering lifted heel 

on the ground. Extended second part of the apparent LP phase, toe-off phase and relatively low value 

of heel-off phase are visible on the graph. It might correspond to pronation and plantar flexion, where 

the body weight hinges on forefoot and COG is moved to the front. Registered COP swings for high-

heel shoes showed maximal values in both directions. The M-L force component confirms this 

statement by registered irregularities. Those may originate from single support phase, where - in case 

of high-heel - area of support is reduced.  
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A characteristic, delayed hump (in M-L component), which occurs in MST phase may stand for 

sudden ground positioning the front part of the shoe – medial part of the forefoot is loaded, while the 

swing phase of the opposite lower limb had started. Conversely to other types of shoes, values of push-

off are smaller than for suppression phase in vertical component. In case of high-heels the proper LP 

phase does not occur – the foot is not in a proper position to carry on the load, so the virtual COP 

movement is set between lifted heel and forefoot – no energy from lifting the heel can be recovered 

(vertical component). It should be mentioned, that all females, apart from one, claimed that they are not 

used to high-heels and presented difficulties in walking at the beginning of the measurement. In study 

[13] of long-term and short-term high-heels users found out, that walking in high-heels enlarges vertical 

component of ground reaction force. Author refer to other study, which explains that phenomenon by 

increased muscle work on tendon-aponeurosis complex [4], analyzed the influence of lifted heel on gait 

as well. They took into consideration several heel heights. The results are similar to presented in this 

work. The values of vertical component of ground reaction force presents the smaller second peak – 

the push-off phase was diminished, due to bare foot. 

The anterior-posterior component presented problem of stabilization of heel on the ground and 

increased pressure at the beginning of LR phase. The characteristic of medio-lateral component differed 

from presented in this work, however both showed that loading on the head of 5th metatarsal bone was 

higher in case of barefoot [4]. Melvin in his doctoral thesis analyzed the effect of heel height on several 

variables [9]. The overview of papers, presented in his thesis, shows findings, similar to this work. 

Other authors, mentioned by Melvin, indicate, that lifted heel enlarged values for vertical and anterior-

posterior ground reaction force. What is more, medio-lateral component increased in values due to heel 

height. Also it was mentioned, that greater load was located on medial side of the foot and reduced on 

lateral side. It is important to indicate an interesting fact - UP-peak appeared only in barefoot and high-

heel measurement. It might suggest, that this element is present in case of gait with firm and point heel 

strike. 

Gait in suit shoes seems to be similar, but smoother than in case of barefoot. The values do not 

differ from rest of shoe types. The COP swings among men received the smallest, recorded values in 

medio-lateral direction. However, swings in anterior-posterior direction are low as well. The M-L force 

component show lowest lateral movement and extension of loading response phase. The push-off 

values are lower than suppression. It can result from foot design, which is stiffer and imposes slower 

movement.  It should be mentioned, that suit shoes were not pointed as often worn. 

The general outcome from measuring the sports footwear for males and females is that the gait 

was smooth and uniform. Ground reaction was reduced only partially. Female subjects were the most 

stable in anterior-posterior direction in sports shoes.  Male subjects had the lowest values of COP 

swings for anterior-posterior direction, but the highest in medio-lateral direction. Gait in sports shoes 
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among men was smooth as well and all the disturbances are faded out. The M-L component for both 

sexes, present highest medial COG movements, leading rapidly to head of 5th metatarsal bone. 

However, the push-off phase is not that strong, which also indicates equal peaks from vertical 

component. In next work, authors took into consideration changes in stiffness in heel lifts of sport shoes 

[14]. The study consists of measuring plantar pressure distribution, COG position and ground reaction 

force for three types of heel lifts, characterized by different stiffness – it does not influence anterior-

posterior COP movements – due to barefoot. However, the heel height of 2.5 cm affects COP visibly. 

What is more, peak pressure for sport, lifted shoes in metatarsal area was 1/3 higher than in case of 

barefoot and the highest values were obtained for wedge of medium stiffness. This one decreased values 

of A-P component, kept unchanged first peak and pit of M-L component, but decreased the second peak 

and kept the vertical component unchanged – due to barefoot measurement. 

A review of several papers of walk differences between barefoot and shod gait in general, was 

made by [15]. Some interesting results are distinguished, which are in accordance with those, obtained 

in this work. Analysis of vertical component of force for barefoot measurement showed, that the first 

peak was smaller (due to the second one) in case of subject, who habitually wear shoes. What is more, 

there was a reduced drop force values (MST phase) for bare foot measurement in opposition for shod 

gait. This can lead to the assumption, that for barefoot, forces were more evenly distributed in time. 

Authors also compared results of habitually barefoot subject – their plantar pressure at heel and 

metatarsals were reduced. The same results appeared in case, where the foot was placed flatter on the 

ground in order to increase its friction. From the investigation of stability, it came out, that less space 

for forefoot width (narrow ball of shoe) indicates less support and simultaneously - worse stability, 

which can lead to injury, and worsened stability again. It showed, that shoes can limit the movement 

and functions of the foot.  

It can be stated, that footwear influences gait pattern and ground reaction, despite of sexes. The 

differences were strongly visible in anterior-posterior and medio-lateral component of ground reaction 

force. High-heeled shoes had the greatest influence on gait, which proved to be the most unstable and 

loading for medial and fore part of the foot. The variations were visible in ground reaction as well as 

stability measurements. Any significant deviations were not obtained in case of suit and flat shoes with 

profiled soles, however the values for flat shoes indicate on robust achievement of critical phase points 

(suppression, push-off). The differences could come from shoe design. Sports shoes evened the gait by 

reducing its regularities, caused by external shock. In case of vertical component – sports shoes unify 

suppression and push-of phase, which can come from its design.  Sports shoes evened the gait by 

reducing its regularities, caused by external shock. In case of vertical component – sports shoes unify 

suppression and push-of phase, which can come from its design. According to COP swing amplitude, 

barefoot was not the most stable environment. In the majority of data, any footwear (apart from high-
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heels) obtained better stability results. The difference was in case of sports shoes, where medio-lateral 

swings were higher, but anterior-posterior swings were smaller. Other important factors, which 

influence gait pattern are degree of wear and habituation to given type of footwear. 
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Application of the wheel-flat detection algorithm using advanced 
acoustic signal analysis 

 

 

Paweł Komorski, Grzegorz M. Szymański, Tomasz Nowakowski, 
Małgorzata Orczyk 

Abstract: Urban rail communication is one of the most attractive public modes of 

transport. There are plenty of advantages for the community and environment of using 

this kind of transport. Furthermore, vibroacoustic comfort and noise annoyance 

aspects during urban rail vehicles operations are significant topics for passengers and 

city dwellers. These problems are also important for rail fleet managers and city 

authorities. Therefore, dynamic interaction between wheel and rail during vehicle 

passage should be kept in good technical condition. On the other side, the impact 

noise is the one of the most annoying noise emitted by urban rail vehicles inside the 

cities. The flat spots (wheel-flats) on the wheel or rail surfaces are one of the main 

causes of increasing rolling noise level. The main aim of the article is to present the 

novel approach of the wheel-flat detection algorithm using advanced acoustic signal 

analysis. The measurement equipment was placed in the near field of track in one of 

the tram depots. Several measured cases are distinguished by high impact noise level. 

The wheel-flat detection system is described by implementation of different kind of 

frequency and time processing methods on measured acoustic data. 

1. Introduction 

 Vibroacoustic comfort during public rail transportation is an important issue for passengers as 

well as for city authorities and rail vehicle operators. Low acoustic climate around the rail 

infrastructure is also significant for inhabitants. Several researches have shown the annoying car and 

light rail vehicle noise problem in Poznan city [5, 7, 9, 11]. Considering only the public light rail 

transportation, the rolling noise is the most significant component of the urban rail noise [2, 12]. 

Dynamic interaction between rail and wheel surface is the main cause of it [8, 11, 13]. One of the 

rolling noise examples is the impact noise which is the result of passing through rail joints/crossroads 

or the occurrence of wheel/rail flats on rolling surfaces [6, 14]. It is characterized by sudden and 

short-time vibroacoustic signal increase which can be uncomfortable and annoying for passengers or 

inhabitants. 

The article is a continuation of the previously presented texts [4, 6] with another proposition of 

application the wheel-flat detection algorithm using advanced acoustic signal analysis. Acoustic 

measurements during trams pass-by tests were carried out and few trams were had wheel-flats. Based 

on experimental research, envelope analysis and Hilbert transform, the wheel-flat detection system 

was elaborated. 
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2. Basic theoretical aspects 

The Hilbert transform usage has many advantages in the processing and analysis different kind of 

signals. It allows to determinate the real and imaginary parts of an analytic function [3, 10]. The 

analytic signal is created by implementing the Hilbert transform which enables to elaborate the 

instantaneous magnitude (so-called envelope) of the original time signal. Furthermore, the frequency 

analysis can be done by knowing the instantaneous phase of the analytic signal. The infinite Hilbert 

transform equation (Eq. 1) is described below [1, 3, 10]: 

𝐻[𝑥(𝑡)] = �̃�(𝑡) =
1

𝜋

∗
∫

𝑥(𝜏)

𝑡−𝜏
𝑑𝜏

∞

−∞
 (1) 

where: x(t) is a real measured signal in time domain, τ is a time before the transformation, t is a time 

after the transformation and * denotes the Cauchy's principal value. 

3. Experimental research methodology 

3.1. Measurements assumptions 

The experimental part of the research included the acoustic measurements during so-called pass-

by tests. Exterior measurements were made on the area of Franowo tram depot (Poznan, Poland) 

when all vehicles were returning from service. The tram’s speed was about 20 km/h. The main aim of 

the measurements was to record impact noise caused by wheel-flat and compared it to normal tram 

noise (emitted by vehicles in good technical condition, without wheel-flats) using advanced acoustic 

signal analysis.  

3.2. Measurement points 

Three microphones were used to acoustic measurements, located about 2 m from the track. The 

shame of the measurement position was shown in Fig. 1.  

 

Figure 1.   The scheme of measuring position in the pass-by test; M – Microphones, P – Photocells [4] 
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All electroacoustic transducers were spread along the track at a distance of 2.04 m which is the 

length of each tram wheel circumference [4]. It means one full wheel rotation period during passage 

will be made at this distance. However, after some signals processing and analysis, it was proved that 

using only one measurement microphone will be also enough to elaborate the wheel-flat detection 

system. The photocells were also used during acoustic measurements. Based on signal recorded 

between transmitter-receiver photocells, the speed of tram’s ride was calculated. 

3.3. Measurement devices 

Measurement devices from a Brüel&Kjær Sound and Vibration company were used to record 

synchronously tram noise in the pass-by test. The equipment connection scheme (with all device 

names) was shown in Fig. 2. 

 

Figure 2.   The measuring equipment scheme [4] 

The main data acquisition system was called B&K type 3050-A-060. Tablet was used to control 

and monitor measurement process. All three microphones were calibrated before the sound recording. 

3.4. Parameters of acoustic signals recording 

Acoustic signals recording were conducted constantly in a full measurement spectrum of 25.6 

kHz, with sampling frequency of 65536 samples per second. The signals were recorded 

synchronously in all measurement points and channels. Duration of signals was dependent on the 

speed and length of the tram passing through the measurement cross section, and was about 5-7 s. 
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4. Results 

4.1. Main analysis 

In Figure 3 there are shown two time history samples (measured by microphone M3) which were 

used to further signal processing and analysis. First recorded sample showed tram noise without 

impact noise, where vehicle was in good technical condition. While second measured signal depicted 

tram noise with the instantaneous sound pressure increase (above 2 Pa) caused by wheel-flat. 

 

Figure 3.   Two measured tram noise samples 

Next signal processing step was to calculate the SPL (Sound Pressure Level) spectra using the 

main FFT (Fast Fourier Transformation) and Welch spectral assumptions. The results are shown in 

Fig. 4. The SPLs were higher in the wheel-flat spectrum while the signals frequency content was 

similar. However, after more detailed analysis, the main frequency differences were found between 

500-1000 Hz which is marked as the resonance frequency span. 
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Figure 4.   The SPL spectra of two different tram noise samples 

After finding the resonance frequency span, the time signal filtering process was carried out. 

Then, the envelope time signals were calculated. The results are shown in Fig. 5. Periodic amplitude 

increases caused by impact noise can be observed in second example. That was the main difference 

between good and damage wheels during trams passage. In this case limit sound pressure amplitude 

should be set on approximately 0.5 Pa. This value ought to be elaborated by algorithm users based on 

statistics and observation of the envelope signal parameter. It is a first example of the wheel-flat 

detection algorithm which uses an acoustic time signal and the Hilbert transform. 

Calculation only in frequency domain is another efficient way to detect wheel-flats in rail 

vehicles.  In this case, a specter analysis of time signal envelope using the FFT algorithm was 

conducted [6]. In Figure 6 the envelope spectrum of the SPLs was shown. Corresponding frequency 

bands to possible wheel rotation frequencies (with a 10% boundary resulting from any changes from 

the expected wheel diameter) were found and marked. 
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Figure 5.   Time history envelope signals 

 

Figure 6.   Envelope spectra of two sound pressure levels 

Also the dynamics of changes between two analyzed signals was depicted which is equal to 

about 17 dB. It is a significant difference that indicates a positive result from application of the 

wheel-flat detection algorithm using advanced acoustic signal analysis. 
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4.2. The wheel-flat detection algorithm 

Finally, the wheel-flat detection algorithm using advanced acoustic signal analysis was 

elaborated (Fig. 7). Firstly, the acoustic measurements during pass-by tests have to be carry out. An 

important aspect is the tram speed criterion which ought to be higher than 15 km/h. 

  

Figure 7.   The wheel-flat detection algorithm based on advanced acoustic signal analysis 
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Signal analyses were made to noise samples recorded when trams passed by approximately at a 

speed of 20 km/h. Thus, authors assumed that trams speed cannot be lower than 15 km/h. When the 

velocity criterion is completed, the signal processing and analysis can be started. The resonance 

frequency span has to be founded. Therefore, the acoustic signals have to be filtered according to 

proper frequency band. Then, the user can choose his own algorithm method to wheel-flat detection. 

It is based on envelope signals analysis in time or frequency domains. In both methods, the limit 

value (marked by Sg) should be estimated by previously statistics research and observation. If the 

amplitudes are lower than the limit values, the trams wheels are in good technical condition and there 

is a lack of the wheel-flat. Otherwise, the wheel-flat was detected and the fleet operator is informed 

about it. 

5. Conclusion 

The article is a continuation of the vibroacoustic signals analysis and processing in order to 

vehicle wheel-flats detection using different kind of mathematical methods. Here, the aim was 

accomplished using the Hilbert and fast Fourier transforms applying on acoustic signals. The 

algorithm is similar to the one described in [6] which is based only on vibration signals processing 

and that is the main difference. Significant advantage is the low tram speed criterion which is equal to 

above 15 km/h. While in the [4] the tram speed has to be more than 30 km/h. Also the number of 

measuring points seems to be lower than in the [4]. Probably, only one microphone located at an 

appropriate distance from the track axis could be used in proposed method. 

The elaborated wheel-flat detection system can be applied on various tram or railway depots. The 

system is not expensive to produce and apply. Furthermore, it can significant facilitate the vehicle 

service process, effectively informing an operator about the problem of damaged wheel rolling 

surfaces which cause uncomfortable impact noise and has influence on the higher vehicle and 

infrastructure wear. 
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Complex vibrations of flexible beam NEMS elements, taking into account 
Casimir's forces under additive white noise 

 
 

V.A. Krysko-jr, J. Awrejcewicz, I.V. Papkova 

Abstract: A mathematical model of the vibrations of the sensing element NEMS in the 

form of a flexible size-dependent rigidly clamped beam connected to the electrode at a 

distance h0 is developed. A transverse uniformly distributed alternating load and 

additive white noise act on the beam. Geometric nonlinearity is taken into account 

according to the theory of Kármán. The equations of motion of an element of a 

mechanical system, as well as the corresponding boundary and initial conditions, are 

derived based on both the Hamilton principle a modified couple stress theory taking 

into account the Euler-Bernoulli hypothesis. It was revealed that the size-dependent 

parameter significantly affects the dynamics of the beam under the action of a 

transverse alternating load and additive white noise. The dynamic stability loss is 

investigated. 

1. Formulation of the problem  

In recent years, interest in physical phenomena, known under the general name "Casimir effect" has 

steadily increased. Quantum theory has shown that vacuum is an extremely dynamic, continuously 

changing substance, from virtually born and right there dying elementary particles [1]. The 

combination of these effects and the fact that a mechanical device often integrates directly with 

electronics provides both problems and opportunities for studying the dynamics of NEMS. We note a 

number of works in this direction. 

The static and dynamic behavior of carbon nanotube-based switches using the van der Waals 

interaction is described in [2, 3]. The influence of the Van der Waals forces and the Casimir forces on 

the stability of electrostatic torsion of NEMS accelerometers was studied in [4]. 

A study of the influence of self-affine roughness in terms of the retraction parameters for NEMS 

switches taking into account the Casimir force was carried out in [5]. A theoretical analysis of the 

influence of the Casimir forces on the nonlinear behavior of nanoscale electrostatic accelerometers is 

given in [6]. The study of the forces of Casimir and van der Waltz in cantilever beams is the subject 

of studies of references [7-10]. An analysis of the influence of the Casimir force on the instability of 

retraction in micro-membranes was described in [11] and various forms of plates were studied in [12, 

13]. The electrostatic instability of nanobeams with allowance for the forces of Casimir and Van der 

Wals was investigated in [14]. In paper [15], a numerical algorithm is proposed that can predict the 
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static and dynamic behavior of circular NEMS devices under the influence of electrostatic and 

Casimir forces. Analytical modeling of the retracting instability of a CNT probe with van der Waals 

force was analyzed in [16], whereas Casimir effects are discussed in [17-19]. Zhang et al. [19], 

considered the theoretical details of Casimir effects, as well as experimental observations and 

applications were reported. 

The study of the dynamic instability of a cantilever actuator made of a conductive cylindrical 

nanowire with a circular cross section, at the presence of Casimir power was carried out in [20]. The 

nano-beam is modeled on the basis of the nonlocal gradient theory of deformation and the Euler – 

Bernoulli hypothesis taking into account the Casimir forces in [21]. Jia and Yang [22] investigated the 

retracting instability of microswitches under combined electrostatic and intermolecular forces and 

axial residual stress, taking into account the force nonlinearity and geometric nonlinearity that arises 

from the extension of the middle plane. Theoretical formulations are based on the theory of the 

Bernoulli-Euler beam and geometric non-linearity of the Theodore von Kármán type. These solutions 

were confirmed by direct comparisons with experimental and other existing results. A parametric 

study was carried out taking into account the combined effects of geometric non-linearity, the ratio of 

the gap to the thickness of the structure, the Casimir force, the axial residual stress and the 

composition of the material with retracting instability. 

Nayfeh [23] presented a nonlinear model of electric drive microbeams taking into account the 

electrostatic effect of the air gap condenser, the restoring force of the microbeam, and the axial load 

applied to the microbeam. 

The boundary-value problem that describes the static deflection of a micro-object under the 

influence of electrostatic force due to constant polarizing voltage was solved. The eigenvalue 

problem, which described the vibration of a microsphere around its statically deflected position, was 

solved numerically for eigenfrequencies and modes. A comparison of the results obtained by this 

model with the experimental results showed excellent agreement, thus checking the model. The 

results indicated that the inability to take into account the extension of the midplane in the recovery 

effort of the micropulses leads to an underestimation of the stability limits. It was also demonstrated 

that the ratio of the width of the air gap to the thickness of the beam can be configured to expand the 

region of the linear relationship between the polarization voltage of the direct current and the 

fundamental natural frequency. This fact and the ability of the nonlinear model to accurately predict 

the natural frequencies for any constant polarization voltage allow developers to use a wider range of 

polarized DC voltages in the resonators. A review of the literature showed that the issue of the 

dynamics of beams under Casimir's action, vibration load and additive white noise was not 

considered. 
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In the classical theory of elasticity, the work of deformation and the strain energy depend on the 

stress tensor and do not depend on the rotation vector due to material independence. However, the 

rotation vector gradient can be a significant factor in the equations of state. Based on the modified 

couple stress theory presented by Yang et al. [24], the strain energy density is a function of both the 

stress tensor (conjugate to the strain tensor) and the curvature tensor (conjugate to the moment stress 

tensor). In one or another deformed isotropic linear elastic material located in the region Ω, the strain 

energy Π is expressed by the formula: 

П = ∫ (𝜎𝑖𝑗
𝛺

𝜀𝑖𝑗 + 𝑚𝑖𝑗𝜂𝑖𝑗)𝑑𝛺     (𝑖, 𝑗 = 1,2,3) 
(1) 

where: σij  is a Cauchy stress tensor, εij is a stress tensor, mij  represents the deviator component of the 

moment stress tensor, аnd ηij symmetric curvature tensor. These tensors are determined by the 

formulas:  

𝜎𝑖𝑗 = 𝜆𝑡𝑟(𝜀𝑖𝑗)𝐼 + 2𝜇𝜀𝑖𝑗,                                                               (2) 

𝜀𝑖𝑗 =
1

2
[𝛻𝑢 + (𝛻𝑢)𝑇],                                                                (3) 

𝑚𝑖𝑗 = 2𝑙2𝜇𝜒𝑖𝑗 ,                                                                      (4) 

𝜂𝑖𝑗 =
1

2
[𝛻𝜑 + (𝛻𝜑)

𝑇
],                                                                 (5) 

where: u — vector moving, λ = Еν/(1+ν) (1-2ν) и μ = Е/2 (1+ν) — Lamé constants, Е, ν are 

respectively Young's modulus and Poisson's ratio for the beam material, φ — this is a rotation vector, 

presented as 𝜑𝑖=
1

2
𝑟𝑜𝑡(𝑢𝑖). l — this is a parameter of the length scale of the material, understood as a 

property of the material, characterizing the effect of moment stress [24]. The material length scale 

parameter related to the microstructures of the material is designed to interpret the size effect in a 

non-classical model of Bernoulli-Euler beams. 

From the analysis of equations (3) and (5) it follows that the stress tensor εij and symmetric 

curvature tensor ηij  are symmetric, and therefore it follows from equations (2) and (4) that the stress 

tensor σij and the deviator component of the moment stress tensor mij also symmetrical. Considered 

structure represents a beam located at a distance of ℎ0, a two-dimensional region of space R2 with a 

Cartesian coordinate system, introduced as follows: in the body of the nanobalk, a cast line, called the 

midline, is fixed: 0z  , axis OX is directed from left to right along the midline, axis  OZ – down, 

perpendicular to OX. In the indicated coordinate system, a structure of two beams, as a two-

dimensional region Ω determined by in the following way: 

Ω = {(𝑥, 𝑧)| 𝑥 ∈ [0, 𝑎], −
ℎ

2
≤ 𝑧 ≤

ℎ

2
} (Fig. 1); 0 t  . 
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Fig. 1 Сomputational scheme. 

 

At getting equations size-dependent beams connected to the electrode at a distance ℎ0, the 

following hypotheses are used:  

- single-layer beam, isotropic, Hooke's law holds;  

- the longitudinal size of the beams significantly exceeds their transverse dimensions;  

- the beam axis is a straight line, the Euler-Bernoulli kinematic model is used, the normal stresses  

   at sites parallel to the axis are negligible; 

- the load acts in the direction of the OZ axis and external forces do not change their direction 

   during beam deformation; 

- geometric nonlinearity is taken into account in the form of von Kármán. 

According to the Hamilton principle, we have  

∫ (
𝑡1

𝑡0
𝛿𝐾 − 𝛿П + 𝛿ˊ𝑊)𝑑𝑡 = 0. (5)() 

(7) 

Here K, П  are the kinetic and potential energy, respectively, 𝛿′𝑊 is the work of external forces. 

Using the methods of calculus of variations, a system of differential equations of the theory of 

flexible beams is obtained taking into account the modified couple stress theory of elasticity [24]: 
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We have used the following notation: t - time; w  – deflection, u – function axis movements x; h – 

beam thickness; h0 – the distance between the electrode and nanobalk; q0  – amplitude of load, 𝜈 – 

Poisson's ratio, E – elastic modulus, l – size dependent parameter, 𝜌 – density plate material, a – 

radius, ℏ - Planck constant. 

 The system of nonlinear partial differential equations reduces to the Cauchy problem by the finite 

difference method with approximation of the second order of accuracy. The Cauchy problem is 

solved by methods of the Runge-Kutta type (4th, 6th, 8th order of accuracy) and the Newmark 

method [25], [26]. 

2. Numerical results 

Consider the vibrations of a rigidly clamped at both ends of the nanobeam under the action of the 

Casimir force, an alternating load 𝑞 = 𝑞0sin (𝜔𝑝𝑡)  and white additive noise [27], [28]: 

   0, 1,
(0, ) (1, ) (0, ) (1, ) 0

w t w t
w t w t u t u t

x x

 
     

 
,                     (9) 

with zero initial conditions:  
   

0 0
0 0

( ) 0, ( ) 0, 0, 0t t
t t

w x u x
w x u x

t t
 

 

 
   

 
,

                   

(10)

 

Geometric and physical parameters of nanobeams: length a = 4·10-7m, thickness h = 4·10-9m, 

density  ρ = 19320 kg/m3 and Young's modulus E = 1,224·107 kgF/m2 (gold), Poisson's modulus ν = 

0.44, size-dependent parameter l = 0.5, distance between electrode and beam h0  = 6·10-9 m.  

Microbeam geometric parameters: length a = 4·10-4 m, thickness h = 4·10-6 m, size-dependent 

parameter l = 0, distance between electrode and beam h0  = 6·10-6 m.  

Beam is in a vacuum (𝜀 = 0).   

Case study 1. 

Vibrations of a nanobeam under impact with an account of only the forces of Casimir. In this 

case, the periodic vibrations exhibit natural frequency 𝜔0. Table 1 shows the Fourier power spectra 

for the size-dependent parameter 𝛾 = 0  without white noise (𝑤𝑛 = 0)  and taking into account white 

noise ( 𝑤𝑛 = 5). The presence of white noise leads the system to chaotic vibrations at the natural 

frequency 𝜔0 and independent frequency 𝜔1 = 7.1942.    

Consider the vibrations of microbeams (𝛾 = 0) under the action of the Casimir force and 

transverse uniformly distributed load 𝑞 = 𝑞0sin (𝜔𝑝𝑡) without white noise (𝑤𝑛 = 0). Table 2 presents 

the Fourier power spectra. Under action of the Casimir force and lateral load, the microbeam vibrates 

at a frequency 𝜔𝑝 and independent frequency 𝜔1 and their linear combinations 𝜔2 = 𝜔𝑝 − 𝜔1. 

Taking into account the size-dependent parameter leads to a purification of the power spectrum in the 

region of the frequency of natural vibration. When the additive white noise load is taken into account 
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in the power spectrum of the microbeam, the noise features are observed at low frequencies; for a 

nano-beam with the same loading parameters, an increase of the noise component in the power 

spectrum is observed.  

 

Table 1. Fourier Power Spectra  

𝑤𝑛 = 0, 𝛾 = 0 𝑤𝑛 = 5, 𝛾 = 0  

  

 

 

𝑤𝑛 = 0, 𝛾 = 0, 𝑞0 = 5, 𝜔𝑝 = 𝜔0 = 22.366 𝑤𝑛 = 0, 𝛾 = 0.5, 𝑞0 = 5, 𝜔𝑝 = 𝜔0 = 22.366 

  

𝑤𝑛 = 5, 𝛾 = 0, 𝑞0 = 5, 𝜔𝑝 = 𝜔0 = 22.366 𝑤𝑛 = 0.5, 𝛾 = 0.5, 𝑞0 = 5, 𝜔𝑝 = 𝜔0 = 22.366 
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Table 2. Maximum deflection dependencies of the amplitude versus the driving load 𝑤𝑚𝑎𝑥(𝑞0) and 

scales of vibrations 

𝑤𝑛 = 0, 𝛾 = 0 𝑤𝑛 = 5, 𝛾 = 0 

 
 

𝑤𝑛 = 0, 𝛾 = 0.5 𝑤𝑛 = 5, 𝛾 = 0.5 

  

 periodic vibrations with 𝜔𝑝  subharmonic vibrations 
𝜔𝑝

2𝑛
,  where  𝑛 ∈ 𝑁 

 subharmonic vibrations with 
𝜔𝑝

2
  chaotic vibrations 

 Quasi-periodic vibrations with 2 frequencies  subharmonic vibrations 
𝜔𝑝

3
 

 

A general analysis of the study of vibrations of micro- and nano-beams taking into account the 

additive white noise of a transversely alternating load yields the following results: Table 3 presents 

the dependences of the maximum deflection in the center of the beam on the amplitude of the driving 

load 𝑤𝑚𝑎𝑥(𝑞0)  and character scales vibrations. In the range 𝑞0 ∈ (0; 9.4) beam exhibits vibrations at 

two independent frequencies, i.e. forcing load frequency 𝜔р and frequency 𝜔1. The first Lyapunov 

exponent is zero, and the rest are negative. With increasing load  𝑞0 ∈ [9.4; 9.6) there is a dynamic 

loss of stability, in which the signal exhibits subharmonic 𝜔р/23 with a sharp increase in deflection, 

and a sharp change character of vibration (all Lyapunov exponents are close to zero (Le1 = – 58·10-5, 

Le2 = -61·10-4, Le3 = - 57·10-4, Le4 = - 11·10-3). Spectrum of the Lyapunov exponents was 

calculated Jacobian method [29]. When taking into account the noise load, the nature of vibrations 

under changes: using the range of chaotic vibrations 𝑞0 ∈ (0; 0.1) - hyperchaos (Le1 = 18·10-4, Le2 = 

1.7494·10-5, Le3 = -39·10-2, Le4 = -46·10-2). At the load 𝑞0 ∈ [0.1; 9.7), the microbeam vibrates at 

two independent frequencies. At frequencies 𝑘𝜔р/2𝑛 the periodicity windows appear, where 𝑘, 𝑛 ∈
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𝑁. At load  𝑞0 ∈ [9.7; 9.8) the dynamic loss of stability occurs, sharp increase deflection and 

transition from quasiperiodicity to hyperchaos takes place (Le1 = 48·10-4, Le2 = 11·10-3, Le3 = -

31·10-2, Le4 = -78·10-2). Increase of the size dependent parameter implies changes within the whole 

interval 𝑞0 ∈ (0; 9.4).  

3. Conclusions 

A mathematical model of the nonlinear dynamics of the MEMS / NEMS beam element under the 

action of the Casimir force, under uniformly distributed alternating load and additive white noise is 

developed. The governing PDEs are yielded by the Hamilton principle for the Euler-Bernoulli 

kinematic model and the modified couple stress theory. For the first time, the phenomenon of stability 

loss with a transverse alternating load MEMS / NEMS is detected. As a dynamic criterion for the loss 

of stability, the Lyapunov approach is used by analyzing the spectrum of Lyapunov exponents. For 

microbeams, it was found that with a loss of stability, hyperchaotic oscillations are observed (the two 

highest Lyapunov exponents are positive). When the size-dependent parameter is taken into account 

in the equations, the amplitude of the oscillations and the nature of the vibrations at high loads 

decrease. It was revealed that the additive noise field inversely depends on the ratio of the amplitude 

of the driving load to the intensity of the noise field 𝑞0/𝑤𝑛.      
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Flexural waves propagation in piezoelectric metamaterial beam

Marcela Machado, Adriano Fabro, Braion Barbosa de Moura

Abstract: In this paper, we analysed a piezoelectric metamaterial to focus
on flexural waves in beams modelled by using the spectral element method.
The piezoelectric metamaterial is applied in cases of attenuation and control
of waves, as well as, adopted in the designing process of the piezo-lens used
to trace the waves trajectories in large frequency bands. The configuration
considered of a periodic array of piezoelectric patches incorporated to a beam
undergoing transverse motion. The periodic arrangement of shunted patches
provides the beam with attenuation properties which depend on the resonant
behaviour of the shunts. A numerical model predicts the flexural wave be-
haviour of the beam for different shunting configurations.

1. Introduction

Metamaterials are designed materials developed properties previews required. By assembling

multiple individual elements constructed into repeating patterns a required behaviour could

be projected. Their potential applications include an invisibility cloak, vibration, acoustic

control in structures, and metadevices [24]. Phononic crystal (PC) [5, 10, 19, 11] is a typical

metamaterial that the materials has a periodic distribution of elastic constant or mass den-

sity. Because of the periodic distribution, it is found that when an elastic wave propagates

through PC a stop-band or bandgap is formed in its transmission. The metamaterial in

engineering application has increased in the last few years due to the improvement the man-

ufacturing process. The inclusion of electronic sensors, e.g. piezoelectric sensor (piezo), into

the structure allowed us to monitor and control the vibration in of systems [8, 3, 9, 17, 7]. The

application of the piezoelectric-sensors with shunt circuits in metamaterial with an emphasis

on reducing vibrations or creating bandgaps [2, 1, 25, 23, 20].

An alternative to the Finite element method, that in some application requires a large

number of finite elements, is the Spectral element method (SEM) [4, 12]. In this method,

the element shape functions is obtained from the analytical solution of governing differential

equations and the dynamic system solution written in the frequency domain. This feature

reduces significantly the number of elements required in the structure model and b improves

the accuracy of the dynamic system solution. Therefore, a single element is sufficient to

model any continuous and uniform part of the structure [15]. A few spectral element have
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been developed, like as rod , beam, plates, etc [4, 12, 6, 13, 14, 16], and there are on

going researches proposing new and improved elements. Lee and Kim [21, 22] developed

a spectral element coupling the Euler-Bernoulli beam with a piezoelectric layer, and active

piezoelectric, respectively. Park et al.[18] presented a spectral element formulation for one

and two coupled piezoelectric wafer.

Aiming the metastructure designed using the piezoelectric, this paper proposes a spectral

element beam coupled with a piezo-shunt and presents a study of the vibration response and

flexure wave propagation of the metamaterial. The transfer matrix is estimated from the

dynamic stiffness of a unit cell of the periodic assembly and used to estimate the attenuation

properties of a beam through the dispersion diagram and illustrate the proposed vibration

control strategy for various shunting configurations.

2. Spectral element beam piezoelectric-shunt

The coupled structure composed by the beam and a piezo layer illustrated in fig 1 was based

on the study presented by [21].

(a)

Figure 1. Two node spectral beam-piezoelectric element (a), and beam-piezoelectric-shunt

element (b).

The structural dynamic equations of motion consider a beam coupled with a piezo layer,

both with uniform density and thickness, the shear deformations in both layers neglected, and

the rotational inertia has no influence. The transverse displacement w(x, t) is the same for

both layers, and the applied voltage is uniform along the piezo. There is a perfect continuity

in the coupling interactions, which does not slip in the interface, relying on the understanding

that the linear elasticity and piezoelectricity theories are applicable. For perfect boundary

conditions, the geometry of Fig. 1 provides the kinematics relation as:

up = ub −
hb+hp

2
θ. (1)

where up and ub are the axial displacement of the neutral axes of the base beam and the

piezo layer, respectively; hb and hp are the high cross-section beam and piezoelectric layer,

respectively; and θ = ∂ω/∂x is rotational angle. The electromechanical model of the coupling
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beam and piezoelectric patch is based on the stress-charge form of the constitutive equations

for a piezoelectric material,σE
 =

 CD
11 −h31

−h31 βS
33

 ε

D

 . (2)

where σ is the mechanical stress, ε the mechanical strain, D is the electrical displacement

(charge/area in the beam vertical direction) and E is the electrical field (voltage/length

along the vertical direction). CD
11 is the elastic stiffness, βS

33 is the dielectric constant, and

h31 is the piezoelectric constant. The elementary beam nodal displacements are vertical w

and the rotation of the cross section φ, where the rotation is derived from the transverse

deformation as φ = ∂w/∂x. As the changes in the beam are of shear V and bending moment

M . Fig. 1(a) shows the two-node coupled element with nodal forces and displacements.

By using the constitutive relation and assuming D as a constant, the strain energy of the

two-layer beam is derived after integrating over its base, the potential kinetic energy that

applying into the Hamilton’s principle the axial-bending coupled equation of motion can be

described as

EIw′′′ + ρ Aẅ = −αü′b + β ub′′′+ γẅ′′,

EIub′′ − ρ Aüb = −αẅ′ + β w′′′. (3)

where

ρ A = ρbAb + ρpAp, EA = EbAb + EpAp, EI = EbIb + CD
11Ip +

1

4
EpAph

2

α =
1

2
ρpAph, β =

1

2
EpAph, γ =

1

4
ρpAph

2

h = hb + hp, Ep = CD
11 −

h2
31

βS
33

. (4)

The parameters E, A, I and ρ (for each layer) are the Young’s modulus, the cross-

sectional area, the area moment of inertia about the neutral axis, and the mass density,

respectively; α, β, and γ denotes the axial-bending coupling, which tends to zero if no

coupling is applied. The Hamilton principle also provides the boundary conditions related

to the mechanical and piezo variable, where the nodal forces is given as

N = EAu′b − β w′′ − bd31EpV (t),

M = θ̄ = EIw′′ − β u′b +
1

2
hbd31EpV (t),

V = w̄ = −EIw′′′ − αü′′b − γẅ′. (5)

where d31 is the piezo constant defined by d31 = h31/(Epβ
s
33).
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2.1. Spectral element analysis

The spectral element assumption is that the beam vibration and the applied voltage are

spectral expressed as

w (x, t) =

N∑
n

Ŵ (x, ωn) eiωnt; ub (x, t) =

N∑
n

Û (x, ωn) eiωnt; V (t) =

N∑
n

V̂ (ωn) eiωnt.

(6)

where ωn is the frequency and Ŵ , Û and V̂ are the spectral components of w, ub, and V ,

respectively; and N is the total number of spectral components. By substituting Eq. 4 into

Eq. 6 leads to a coupled two ordinary differential equations for Ŵ and Û ,

EIŴ ′′′′ − ω2ρ AŴ = ω2
(
−γŴ ′′ + αÛ ′

)
+ βÛ ′′′

EAÛ ′′ + ω2ρ AÛ = ω2α W ′ + βŴ ′′′′ (7)

The general solutions for Ŵ and Û can be obtained in the forms of,

Ŵ (x) =

3∑
i=1

(
Aie

kix
L +A2ie

− kix
L

)
= [N (x)] A,

Û(x) =

3∑
i=1

(
Bie

kix
L +B2ie

− kix
L

)
= [N (x)] B. (8)

where,

[N (x)] = [e
k1x
L , e

k2x
L , e

k3x
L , e−

k1x
L , e−

k2x
L , e−

k3x
L ],

{A} = A1, A2, A3, A4, A5, A6 , {B} = B1, B2, B3, B4, B5, B6. (9)

In Eq. 8, ki(i = 1, 2, 3) are the wave numbers of the from,

(
β2 − EAEI

)
k6+ω2L2 (2αβ − ρAEI − γEA) k4+ω2L4 (α2ω4 + ρA

(
EA− γω2)) k2 +ω4L6ρ A2 = 0.

(10)

and in Eq. 10 is the sixth term polynomial representing the dispersion relation that gives the

relation between wave number and frequency. The relations between the coefficients Ai and

Bi of Eq.9 can be obtained as

Bi = (−1)i
{
L4ρAω2 + L2γω2k2i + EIk4i

Lki(L2αω2 − βk2i )

}
Ai = λi (ω)Ai (i = 1, 2, . . . 6) (11)

or

{B} = [diagonal (λi)] A.
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The spectral nodal displacements can be expressed in terms of Ai by using Eq. 8, which

give us the relation {x} = [Q] A. The vector x is the spectral nodal displacements defined

by

{x} =
{
Û1 Ŵ1 Θ̂1 Û2 Ŵ2 Θ̂2

}T

. (12)

The spectral displacement components of Eq. 9 can be represented in terms of the

spectral nodal displacement vector {x}, as

Ŵ (x) = [N (x)] [Q]−1 x,

Û (x) = [N (x) [diagonal (λi)] {Q]−1 x. (13)

By substituting Eq.8 into the spectral representations and relate force-displacement, the

spectral components of the nodal forces and moments can be expressed in terms of Ai as

{f} = [P] {A} =
[
N̂1 − N̂e Q̂1 M̂1 + M̂e N̂2 + N̂e

2 Q̂2 M̂2 − M̂e
]T
. (14)

The forces N̂e and M̂e are the nodal spectral components of piezo-electrical induced

axial force and bending moment defined by

N̂e = bd31EpV̂ , M̂e =
1

2
hbd31EpV̂ . (15)

The relation between spectral nodal displacement and force is given by the coefficients

Ai, that is defined by

{f} = [P] [Q]−1 {x} = [S] {x}. (16)

where S is the frequency-dependent spectral element matrix or dynamic stiffness matrix.

The explicit expressions for P and Q are listed herein as [21]

[P] =
1

L3



p11 p11 p12 p12 p13 p13

p21 −p21 p22 −p22 p23 −p23
p31 p31 p32 p32 p33 p33

−ek1p11 −e−k1p11 −ek2p12 −e−k2p12 −ek3p13 −e−k3p13

−ek1p21 −e−k1p21 −ek2p22 −e−k2p22 −ek3p23 −e−k3p23

−ek1p31 −e−k1p31 −ek2p32 −e−k2p32 −e−k3p33 −ek3p33


(17)
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[Q] =



λ1 −λ1 λ2 −λ2 λ3 −λ3

1 1 1 1 1 1
k1
L

ek1λ1

ek1

ek1k1
L

−k1
L

−e−k1λ1

e−k1

−e−k1k1
L

k2
L

ek2λ2

ek2

ek2k2
L

−k2
L

−e−k2λ2

e−k2

−e−k2k2
L

k3
L

ek3λ3

ek3

ek3k3
L

−k3
L

−e−k3λ3

e−k3

−e−k3k3
L


(18)

where,

p1i = kiL(β ki − EALλi), p2i = L2ω2γ ki + EIk3i − L3ω2αλi − Lβ k2i λi,

p3i = kiL(Lβλi − EIki).

2.2. Single-resonance shunt

Airoldi and Ruzzene [1] present the governing equations of the RL-shunted piezo patch

scheme used in this paper. Fig.2 shows the shunt circuit and its equivalent, in (a) The

RL-shunt circuit of a transducer piezo, and (b) the sketch of resonant electronic components

circuit.

(a) (b)

Figure 2. Shunt circuit. a) Equivalent RL-shunt circuit of a transducer piezo; b) Sketch of

resonant electronic components circuit.

The equivalent circuit of a piezoelectric transducer is, according to its inherent capac-

itance Cε
p at constant strain, shunted through a resistor-inductor in series. The electrical

admittance of the piezo patch is given by:

Yel = Yp + Ysu, (19)

where Yel = 1/Zel is the equivalent admittance of the piezo, and Yel = 1/Zsu is the admit-

tance of the shunting circuit, with Zsu = R + iωL, Ris the resistor, and L the inductance.
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The impedance Zel is defined as,

Zel(ω) =
R+ iωL(

1− ω2LCε
p

)
+ iωR Cε

p

. (20)

The global electromechanical equation of motion that coupling the beam with the piezo

shunt in the spectral domain is expressed by

S(ω)x− Ssh(ω)v(ω) = f (21)

iωSsh(ω)x + iωCε
pv(ω) = i(ω). (22)

where x is the generalized nodal displacement, f the generalized force, i is the current in the

spectral domain,and v the voltage. By condensing Eqs. 21 and 22 we have the generalized

spectral equation expressed by[
S(ω) + ω2S2

sh(ω)

(
1

iω + Z−1
el

)]
x = f . (23)

By considering these elements involved the impedance relations, we can express the

shunted part [Z(ω)] in a matrix form as,

Z(ω) =



Ne1 Ne1 Ne1 Ne1 Ne1 Ne1

0 0 0 0 0 0

Me1

−Ne2

0

Me2

Me1

−Ne2

0

Me2

Me1

−Ne2

0

Me2

Me1

−Ne2

0

Me2

Me1

−Ne2

0

Me2

Me1

−Ne2

0

Me2


. (24)

where

Ne1 = Ne2 =
Z2

t iωZefbd31Ep

1 + iωCε
pZef

, Me1 = Me2 =
Z2

t iωZefhbd31Ep

2 + 2iωCε
pZef

.

3. Numerical analysis

The numerical simulation analyse the dynamic response and flexural wave propagation of a

simple beam, a beam coupled with the piezo, and the beam coupled with the piezo shunt. The

material and geometrical properties for the beam are Young’s modulus 71.0 GPa, density

of 2700 kg/m3, width of 12.7 mm, and thickness of 2.86 mm. The piezo material and

geometrical properties are Young’s modulus of 64.9 GPa, density of 7600 kg/m3, width of

12.7 mm, and thickness of 0.762 mm, piezoelectric constant d31 = −172 m/V × 10−12,

dielectric constant of βS
33 = −5.6788 m/V × 10−12, elastic stiffness of CD

11 = 74.0 GPa.
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Tuning frequency [Hz] Resistor [\Omega] Capacitance [nF]

556 Z1 = 780, Z2 = 680, Z3 = 120, Z5 = 2594 Z4 = 100

1101 Z1 = 2500, Z2 = 680, Z3 = 120, Z5 = 2594 Z4 = 100

1831 Z1 = 4380, Z2 = 1680, Z3 = 500, Z5 = 2594 Z4 = 100

Table 1. Setting of electrical components of the shunted electric circuit.

The total length of both is L = 0.25 m. The circuit shunt, fig. 2(b), design to the resonant

tuning frequencies of 556 Hz, 1101 Hz, and 1831 Hz is displayed in Table 3.

This association of inductors, capacitors, and other influencers can promote an impedance

resonance at a frequency necessary to influence the desired structure. However, high-

amplitude resonances, which are limited to a small frequency range, rely exclusively on high

values of R to increase bandwidth, but reduce the overall efficiency of the electromechanical

energy conversion, and hence the mechanism of attenuation. Fig. 3 shows the impedance

resonance, vibrating at the designed resonant circuit shunt.
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Figure 3. Electrical impedance (Zel) of the resonant circuit tuned to vibrating at a) 556

Hz; b)1101 Hz; and c)1831 Hz.

Fig. 4 (a-c) shows the comparison among the single beam (yellow line), coupled beam-

piezo (blue line), and coupled beam-piezo-shunt (orange line) tuned at 556, 1101, and 1831

Hz. It is assumed a clamped boundary condition. The coupled beam presented a shift in

relation to the simple beam because of the piezo mass and stiffness. In each tunning shunt,

resonance happened a resonance attenuation that demonstrates the efficient of the piezo

shunt to vibration control.

Fig. 5 presents the real part of wavenumber related to the positive going flexural wavenum-

ber. This is obtained from a single SE, assuming it is a periodic unit cell, rewriting the

dynamic stiffness as a transfer matrix under the Bloch-Floquet framework. They clearly

show a locally resonant behaviour around the shunt tuning frequencies 556 Hz, 1101 Hz and
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Figure 4. FRFs comparison among single beam (yellow line), coupled beam-piezo (blue

line), and coupled beam-piezo-shunt (orange line) tuned at a) 556 Hz; b)1101 Hz; and c)1831

Hz.

1831 Hz, similarly to the dispersion curves shown by Airoldi and Ruzzene [1]. The longitu-

dinal modes, not presented here, show a similar behaviour for each respective shunt tuning

frequency.

4. Comments and final remarks

This paper presents a dynamic analysis of a beam system with a piezo coupling and a

shunt configuration. The effects that geometric coupling includes oscillation in the through

FRFs, which show that the resonance peaks have changed with the associated frequencies.

The impact of coupling the beam with piezo shunted demonstrated by FRF comparisons

present an attenuated at 556, 1101, and 1831 Hz, same of the shunt impedance resonance.

The flexural wavenumber follows some attenuation as the FRFs. Thus, the piezoelectric

association with the shunt configuration in the structure can result in vibration attenuation

either at the FRF and wavenumber.
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Figure 5. Real part of the bending wavenumber for the coupled beam-piezo (black line),

coupled beam-piezo-shunt tuned at 556 Hz (blue line), b) 1101 Hz (red line) and c) 1831 Hz

(green line).
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Bond Graph Modeling and Simulation of Left Ventricle of Human
Heart

Mohit Makkar, Saransh Jain

Abstract:

To ensure proper functioning of the left ventricle of Human Heart, it is very
important to know about its functioning in detail and how other muscles of
heart are affecting it. Bond graphs are ideally suited to the modeling of non-
linear, multi-energy systems. Biophysical and physiological systems like left
ventricle belong to this category. The bond graph model for the anatomy of
blood around the left ventricle is studied in detail and using this model, suit-
able results were obtained for different cases like varying afterload conditions.
Various parameter and variables were analzed with respect to the volume of
blood in left ventricle and pressure inside it. The results obtained are clearly
depicting the mechanism of the left ventricle and looked very promising. A
careful study about the constant values has really made the results equivalent
to actual results. The model has therefore cast a significant influence over the
prediction of performance of left ventricle.

1. Introduction

Heart is the most vital organ of the human body. Every part of the human body is connected

to heart for its functioning and energy needs. The function of heart is to supply oxygen and

important nutrients to different parts of the body through blood. The left ventricle is one

of four chambers (two atria and two ventricles) in the human heart. It receives oxygenated

blood from the left atrium via the mitral valve, and pumps it into the aorta via the aortic

valve. Starting from the mechanisms of contraction in the cardiac muscle at the contractile

proteins level from the microscopic level up to the muscular and ventricular level and finally

reach the hemodynamic part of the left ventricle and its arterial load, the left ventricle in-

volves multi physics and multi domains. To ensure proper functioning of the left ventricle,

it is very important to know about its functioning in detail and how other muscles of heart

are affecting it. The idea of presenting a feasible and easy model representing most of the

mechanisms was a challenging task.

Bond Graph modeling has a natural place in these developments. Bond graphs (BGs) are

ideally suited to the modeling of nonlinear, multi-energy systems. Thus, their is huge ex-

pectation to use BGs in this domain as such physiological systems are always nonlinear and
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multi- energy systems[3]. BGs may in many cases provide more intuitive solutions than other

methods of graphical modeling.

Researchers like [12] presented design of a linear passive model of the human systemic arterial

tree. [9] analyzed the time-varying ratio of instantaneous pressure, P(t), to instantaneous

volume, V(t), in the canine left ventricle. [8] presented a study on a supported heart prepa-

ration indicating that the thesis on E(t) is also valid for different physiological conditions.

[10] worked on Pressure-volume relationship of the left ventricle of the dog. They found con-

sistently that as long as the contractile state was stable, the end-diastolic pressure-volume

relationship curve is largely independent of the loading conditions and mode of contraction.

[6] explained mechanisms related to the pattern of vascular impedance in human systemic

arteries. Increasing aortic pressure/volume relationships were expressed as input impedance.

[7] explained the use of the pressure-volume diagram in evaluating cardiac performance.

Most of the work on modeling and simulation of left ventricle relates to accurate measurement

of pressure and volume of blood at anytime during a heartbeat. To take into account the

mechanical, chemical, hydraulic and electrical phenomena, the bond graph approach seems

to be a relevant alternative. Upcoming sections will describe the modeling phenomena taking

care that every single mechanism being discussed in detail.

2. MODEL OF THE LEFT VENTRICLE

The function of left ventricle can broadly divided into four stages. The four stage develop-

ment of the model is as follows:

2.1. Modeling of the Cross Bridges

A sacromere is the basic unit of heart muscle. They appear as dark and light bands.

Sacromeres are composed of two long fibrous proteins myosin and actin. Myosin has a

long, fibrous tail and a globular head, which binds to actin. The actin-myosin attached

together is called a cross bridge [2]. The attached cross bridges act as spring. The stored

energy of these springs is supplied to the muscles and the force produced in the muscle is

called muscle force. This stored energy will be represented by a C-element in the bond

graph. [4]. The bond graph model for this chemical cross bridge cycle is shown in Fig.1.

The general equation for C1 and C2 will be:

Figure 1. Bond graph model of chemical cycle
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(1)e = f(q).

Here, R represents the reaction mechanism. XA is the ratio of attached cross bridges and

XD is the ratio of detached cross bridges. If all the cross bridges are attached the value of

XA will be 1 and value of XD will be 0 or if all the bridges are detached then value of XA

will be 0 and of XD will be 1. The speed of attached and detached cross bridges has rate

constants Xa and Xd respectively. The two C-elements are for XA(q) and XD(q). For C1,

the flow is the rate of change of detached cross bridges dXD
dt

and effort (e) is the chemical

potential of detached cross bridges (µD). For C2, the flow is the rate of change of attached

cross bridges dXA
dt

And effort (e) is the chemical potential of attached cross bridges (µA).).

From Nernst formula [11]:

(2)
dXD
dt

= Kd(t)XA(t)β −Ka(t)XD(t),

(3)µD = AD +BDT ln(XD).

AD and BDre constant with time(t) and BD is a function of temperature (T).

(4)
dXA
dt

= KA(t)XD(t)β −Kd(t)XA(t),

(5)µA = AA +BAT ln(XA).

At any point of time XA+XD=1 and − dXD
dt

= dXA
dt

Aa and Ba are constant with time (t) and

Ba is a function of temperature (T). The states (q) of the two C-elements are XA and XD

respectively for C1 and C2 β in equation 2 is the order of the forward reaction accounting

for the speed of the reaction. For each beat time (t),Ka and Kd are as follows: if t >= 0

and t <= tamax then:

(6)F1 = 1 + α(lm − 1),

Kamax=Kamaxn and

(7)Ka(t) = F1(Kamax ∗ sin(π
t

tamax
))α1 ,

Else: Ka(t)=Kamin. And if t >= tdmax and t <= tcount then:

(8)Kd1(t) = (Kdmax ∗ sin(π
t− tdmax

tcont − tdmax
))α2 .

Else:

(9)Kd1(t) = Kdmin.
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(10)fi =
(Xa − 10−6)3

10−5 + (Xa − 10−6)3
,

Kd = Kd1 ∗ fi.
tamax and tdmax are the attachment and detachment times of the cross bridges. tcont is the

time of contraction and α1,α2 are the partial orders of reaction. All these values are kept

constant. Fi and F1 are the correcting coefficients,lm is the length of muscle.

2.2. Chemo-Mechanical Transaction Model

The muscle fibres in the left ventricle contribute to the muscle force but here it was assumed

that mechanical energy of muscle is coming from an equivalent muscle with an equivalent

length Lm. The transaction here is shown by a new element called 2PC [1], the two port

capacitor which is responsible for the representation of two-port node in bond graphs. For the

ventricle side, the 2PC will provide an elastic potential energy and will behave like a variable

spring (dynamic compliance). On the other side, it will receive and store a concentration of

attached acto-myosin cross bridges from the chemical cycle. The representation of the 2PC

in bond graph is shown in Fig.2:- The direction of half arrows is pointed towards the 2PC

Figure 2. Bond graph model of chemo-mechanical transduction

showing that in this direction of energy, the C-element is storing energy and in opposite

direction it will be giving its energy [4]. The general equation of such element in nonlinear

conditions [7] is:

e1

e2
=
f1(q1, q2)

f2(q1, q2)
.

On chemical side the effort (e1) of the 2PC model will be chemical potential(µA):

(11)µ = (Aa +Bb(T )ln(XA))β(Lm),

and the flow will be dXA
dt

:

(12)
dXA
dt

= Ka(t)XD(t)−Kd(t)XA(t)β .

The state q1 is XA itself. On mechanical side the effort (e2) will be muscle force (Fm):

(13)Fm = Ex(XA)E′a(lm) + (1− Ex(XA)E′r(Lm)).
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The flow is rate of change of length of muscle dLm
dt

, and State (q2) of the element will be

length of muscle (Lm). The general form for the energy of muscle will be:

(14)Em = Em(lm, XA)

Power(P):

(15)

P =
dEm
dt

=
∂Em
∂lm

∂lm
∂t

+
∂Em
∂XA

∂XA
∂t

= fmvm + µAẊA.

From the Maxwell equation, we can get

(16)
∂fm
∂Xa

=
∂µa
∂lm

.

From the above two equations this can be reckoned that

(17)fm =
∂Em
∂lm

,

and

(18)µA =
∂Em
∂XA

.

From the experiments [4], muscle force found to be:

(19)fm = Ex (XA)E′a (lm) + (1− Ex (XA)E′r (lm) ,

where Ex is the active state function of XA, E′a and E′r are the active and passive force-

length curves measured experimentally. Integrating the muscle force with respect to length

of muscle will give the energy equation:

(20)Em = Ex (XA)Ea (lm) + (1− Ex (XA)Er(lm),

(21)E′a (lm) =
dEa(lm)

dlm
,

(22)E′r (lm) =
dEr(lm)

dlm
.

Now we know that:

(23)µA =
∂Em
∂XA

= E′X(Ea (lm)− Er (lm)).
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On comparing the two equations forµA we get:

(24)E′X = Aa +Ba (T ) ln (XA).

On integration:

(25)Ex = AaXA +Ba (T )XA(ln (XA)− 1),

and

(26)β = Ea (lm)− Er (lm) .

The reaction order β is thus length-dependent and expressing the reverse Maxwell coupling

[5]:

(27)β = (ea − er)
[(

lm
5

5
− lm4

)
lo + 2lm

3lo
2 − 2lm

2 ∗ l03 + lml0
4

]
.

From the experimental data [8], the following functions have been chosen for E′a(Lm) and

E′r(Lm):

(28)E′a (lm) = ea (lm − lo)4 and

(29)E′r (lm) = er (lm − lo)4 .

Here ea, erand Lo are constants.

2.3. Mechano-Hydraulic Transduction Model

This model describes how the mechanical energy of left ventricle wall is transformed into

hydraulic energy. Here, ventricular wall is thus acting as a pure transducer i.e. a device

transducing pressure and flow. The transduction of mechanical energy in to hydraulic energy

can be seen in Fig3. The constitutive relations for this TF-element are:

Figure 3. Bond graph of Mechano-Hydraulic stage

(30)
dQlv
dt

= µ
dlm
dt

.

Also,

(31)fm = µPlv/N.
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2.4. Modeling of Hemodynamics

In bond graph, the pulmonary pressure is regarded as a constant pressure and represented

by source of effort(Se) element. Mitral valve and aortic valve are resistance (R) element

with variable resistance. For both valves if ∆P > 0, then R will be very small(Rpass) to

let the fluid pass else R will be that high (Rblo) ) that it will completely chokes the blood

flow. Capacity of left ventricle will be represented by a C element. The bond graph of

the hemodynamic mechanism is show in Fig.4: C afterload (Cal) and R afterload(Ral) are

Figure 4. 5.Bond graph model of hemodynamics

accounting for storage and losses respectively when the blood is pumped to the aorta.

2.5. Bond Graph Model of Complete System

Combining the bond graph models of hemodynamic and the ventricle capacitance, the

causalled and numbered bond graph of the complete system with two information bonds

will be as shown in Fig.5. Bond 19 is to take out some flow from the ventricle in case to

evade the extra volume in high throughput experiments. After derivation of equation from

the BG, the Pressure in left ventricle (Plv) will be:

(32)Plv =
N (lm − lo)4

nAln−1
m

{ea(AaXA +Ba (T )XA(ln (XA)− 1))

+ er(1− (AaXA +Ba (T )XA(ln (XA)− 1)))}

Rate of change of volume ( dQlv
dt

) of left ventricle will be:

(33)
dQlv
dt

=

(
SE − Plv
Rmv

)
−

(
Plv − Cal
Rav

)
− CFP ∗

(
SE − Plv
Rmv

)
.

Rate of change of attached cross bridges ( dXA
dt

) will be:

(34)
dXA
dt

= Ka (t)XD (t)−Kd1 (t)XA(t)β .
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Figure 5. Causalled and numbered bond graph for equation derivation

Rate of change of detached cross bridges ( dXD
dt

) will be:

(35)

(
dXD
dt

)
= Kd1 (t)XA(t)β −Ka(t)XD(t).

Rate of change of aortic volume ( dQaor
dt

) will be:

(36)
dQaor
dt

=

(
Plv − CalQaor

Rav

)
−

(
CalQaor
Ral

)
.

Rate of change of length of muscle ( dLm
dt

) will be:

(37)
dlm
dt

=
1

nAln−1
m

{(
SE − Plv
Rmv

)
−

(
Plv − Cal
Rav

)
− CFP ∗

(
SE − Plv
Rmv

)}
.

3. RESULTS AND DISCUSSION

The differential equations depicting rate of change of Volume, Pressure, Muscle length etc.

were derived from Bond Graph Model and solved using MATLAB.Limited results are shown

here for analysis. At t = 0, the value of pressure depends on the initial conditions of

ventricular volume, length of muscle and other variables. After the completion of one beat

time, it is at the stage of starting of systole. At t = 1 sec, the isovolumic compression

will start, hence very steep rise in the left ventricle pressure as shown in Fig.6. Once the
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Figure 6. Pressure-time loop of left ventricle

Figure 7. Pressure- Volume curve
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Figure 8. Pressure-Attached Cross bridges cycle

Figure 9. Pressure-detached cross bridges curve
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Figure 10. Volume-time curve

mitral valve opens due to pressure difference, the ventricle starts filling physiologically. The

Pressure-Volume curve is depicting this phenomena in Fig.7.

In Fig.8, the pressure starts to build up because the valves are closed at this point of

time. The aortic valve opens but the attachment reaction is continued. Ventricle contracts

to its maximum but does not affect the reduction in pressure.

As reckoned, the pressure-detached cross bridges curve must be the mirror image of the

pressure-attached cross bridges curve. Fig.9 and

Length of muscle is directly proportional to volume of ventricle. The length of muscle

keeps on increasing in corresponding time of every beat and this is also the same case in

volume, So this phenomena is shown in volume-time curve in Fig10. As length of muscle

and volume of ventricle are directly proportional to each other hence Fig 11 should be no

more than overlapping lines for every beat.

When the attached cross bridges are at 0 after the initial beat, the volume rise in systole

and also attached cross bridges raise to 1, just in the case of length of muscle and attached

cross bridges. Then detaching starts but this process should be isovolumic hence the curve

should be horizontal until the opening of mitral valve till Xaagain reaches to 0 but this is

slightly tilted upwards due to the impact of non consumption of the full flow and impact of

previous beats leads to slight rise in the volume as shown in Fig. 12.
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Figure 11. Volume-length of muscle curve.

Figure 12. Volume-attached cross bridges curve
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3.1. CASE 2- When after load conditions are being altered

In this section the aortic pressure in being altered by altering the values of C and R. If

afterload is increased by increasing aortic pressure, and if the preload and entropy are held

constant, this will result in a smaller stroke volume and an increase in end-systolic volume.

If afterload is reduced by decreasing aortic pressure, the opposite occurs - stroke volume and

ejection fraction increase, and endsystolic volume decreases. The value of Cafterload and

Rafterload are both raised and lowered from the given standard value. The higher values

of afterload conditions gave the same pattern but magnitude of pressure and volume are

changing. The reason for this is that both C and R elements are used for storing and

consuming the flow respectively. The similar results were obtained for different afterload

conditions. Even the volume of ventricle is also not influenced by the afterload conditions

because once the flow is passed to the aorta, it should not come back in to the ventricle and

should have been consumed in the given time till next ejection.

4. Conclusion

The required goal was to be able to adapt approaches of lumped parameter and to avoid the

use of the partial models with derivative or finite elements. This model illustrates well the

advantage of the bond graphs with respect to other modeling techniques. Bond graph allows

a simpler comprehension of the studied system and it can develop the coherency among

several structural levels. the most important points emerging from the work are: 1. The

natural representation of the results of the interactions between the geometrical shapes of

the ventricle muscle with other factors. 2. The point of maximum pressure rise is isovolumic

as is clear from the simulation that maximum ones of pressure are always reached at the

same moment of each cycle for any initial condition.

The structure of this model is coherent with the observations. The model presented in this

paper is able to reproduce the effects of apparent resistance and deactivation during the

experiments of high flow.

References

[1] Drzewiecki, G. M., Li, J. K., and Li, J. K. Analysis and assessment of cardiovas-

cular function: with 106 figures. Springer Science & Business Media, 1998.

[2] Huxley, A. F. Muscle structure and theories of contraction. Prog. Biophys. Biophys.

Chem 7 (1957), 255–318.
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transitions in shape memory alloys via nonlocal 

thermomechanical coupling 
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Abstract: The work deals with presentation of the properties and applications of the 

developed nonlocal model of shape memory alloys (SMA), which is dedicated for 

simulations of dynamic processes of mechanically induced solid phase transitions. To 

date, many various phenomenological, macroscopic, microscopic and the free energy 

based constitutive models have been proposed for SMA, however, none of them is 

able to reliable capture the complexity of SMA physical behavior in a comprehensive 

manner. The authors of the present work employ peridynamics to alternatively 

nonlocally formulate thermomechanical coupling in the modeled SMA, considering, 

therefore, its advantageous characteristics. Particularly, the phenomenon of 

superelasticity is investigated and the related phase transitions in SMA are studied. 

The elaborated peridynamic model of SMA is validated using the experimental data 

gathered with a fatigue testing machine and a high-speed infrared camera. With 

reference to the authors’ recently published work, the newly proposed solution 

extends the functionalities of the former nonlocal SMA model, taking into account the 

influence of the temperature. As confirmed with the numerical results provided, the 

new capability allows for studying dynamic problems more conveniently, not being 

limited by the necessity of satisfying the condition of isothermal phase transition. 

1. Introduction 

Growing demands regarding functionality and effectiveness of various engineering solutions require 

applications of materials and structures which exhibit extraordinary properties. Shape memory alloys 

(SMA) stand for a such group of materials (known as smart materials or intelligent materials) [1]. 

The usable properties of SMA directly reflect the thermomechanical phenomena which can be 

experimentally observed when applying mechanical and thermal excitations. Reversible solid phase 

transitions in SMA enable their unique behavior. Specifically, the characteristics of SMA result from 

the martensitic transition, which indicates the two-way martensite–austenite phase transition. 

Consequently, the following effects occur in SMA: one-way and two-way memory effects as well as 

superelasticity (also referred to as pseudoelasticity). The above mentioned effects are of high practical 

importance, since SMA can both memorize one or two arbitrarily set geometric shapes and withstand 

extraordinary strains not allowed for other metallic materials, i.e., up to the level of 8% [2-5]. 
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Complexity of the SMA behavior is a challenge when developing new computational tools, 

which are dedicated for description the properties of this type of smart materials. To date, many 

various phenomenological, macroscopic, microscopic and the free energy based constitutive models 

have been proposed for SMA, however, none of them is able to reliable capture the physic of SMA in 

a holistic manner [2,3,6,7]. 

Taking into account the promising capabilities of SMA, the authors of the present work continue 

their previous efforts made towards more physical modeling of SMA [3,8,9]. In particular, the work 

deals with presentation of the properties and applications of the developed nonlocal model, which is 

dedicated for simulations of dynamic processes of mechanically induced solid phase transitions. The 

newly proposed solution extends the functionalities of the former nonlocal SMA model, taking into 

account temperature and the respective thermomechanical coupling observed for the phenomena of 

superelasticity. 

The overall motivation of the work is investigation on the application of SMA based components 

for passive control of dynamic properties of gas foil bearings (GFB) [10-12]. The inherent hysteretic 

properties of SMA allows for mechanical energy dissipation and, therefore, assures efficient reduction 

of mechanical vibrations. Consequently, to properly address the modelled issue, it is necessary for a 

model to handle both mechanical and thermal material properties, including the respective couplings 

between the operational parameters defined for the two mentioned above physical domains. It should 

be emphasized that thermal management is critical for correct operation of GFB. Hence, a reliable 

computational framework, which is intended for the studies on the GFB’s properties, requires 

thermomechanical analysis to be taken into consideration. In particular, the authors take an advantage 

of the introduction of a nonlocal approach [13]. The peridynamics (PD) is proposed to model the 

phenomenon of superelasticity and the relevant martensite-austenite phase transitions in SMA [14]. 

By doing so, the introduced integral based formulation of PD allows for convenient handling various 

types of model nonlinearities including: material properties, geometry and boundary conditions. 

Nonlocal interactions, i.e., long-range interactions, which are considered in a numerical model, lead 

to its more physical responses, being less influenced by the structure of the model itself. Moreover, 

lack of spatial partial derivatives in the governing equation, amongst others, reduces numerical errors 

and aids to avoid ambiguities at the boundaries of various model domains. 

The following sections of the work cover: presentation of the fundamental mathematical 

formulas describing the properties of SMA and PD (Sections 2 and 3, respectively), introduction to 

the proposed theory of nonlocal thermomechanical coupling dedicated for investigation of 

mechanically induced solid phase transitions in SMA (Section 4) as well as presentation of an 

exemplary outcome from the numerical simulation and experimental validation (Section 5). Final 

Section 6 summarizes the work and provides the authors’ main conclusions. 
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2. Phase transitions in SMA – analytical description 

Although the characteristic solid phase transitions in SMA primarily apply to nanoscale – where the 

geometric changes regarding crystal structure of the material occur – the respective projection of this 

physical nature of SMA is directly observed at macroscale, e.g., via the already mentioned ability to 

memorize geometric shapes. Fortunately, the behavior of SMA components can be modelled making 

use of macroscopic and phenomenological models. 

Fig. 1 illustrates the phenomenon of superelasticity in SMA. This mechanically induced effect is 

addressed by the authors of the present work to introduce a nonlocal model of the thermomechanical 

coupling present in SMA. The reversible solid phase transitions, i.e., the change from austenite to the 

deformed version of martensite while the stress growth, and adequate reverse transition observed for 

the mechanical relaxation, can be achieved at a constant temperature. The kinetics of phase transition 

depends on the characteristics temperatures: ��, ��,	��,	��. These material properties respectively 

denote the temperatures at which the austenite (�∎) and martensite (�∎) phases start (∎�) and finish 

(∎�) developing. Change of the ambient temperature results in the shifts of the stresses at which 

respective forward or backward martensitic phase transitions occur (please see the four skewed solid 

lines in Fig. 1). Fig. 2 presents a hysteretic stress-strain relationship for an SMA material. 

 

Figure 1.   Effect of superelasticity in SMA – change of the characteristic temperatures [3]. 

 

Figure 2.   Effect of superelasticity in SMA – hysteretic stress-strain relationship [3]. 
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The description of macroscopic behavior of an SMA component can be handled via analytical 

formulas [1,2,6]. The phenomenological approaches which are based on the Gibbs free energy 

concept are of particular concern due to their convenient description of both the material properties of 

an SMA specimen and its current state present under given mechanical and thermal load. 

To model the kinetics of the martensitic phase transition in SMA, we may introduce after 

Lagoudas the following definition of the total specific Gibbs free energy � [15] 

��	
, �, , ��
� = − 1
2������	��	�� −

1
�	�������� − ��� + �

�
! + 

+" #�� − ��� − �ln &''()* − +�� + ,� +
-
. /�� (1) 

where: 

− 	
 (	��, 	��) – second order Cauchy stress tensor (following the Einstein summation notation), 

− �, �� – temperature and reference (ambient) temperature, 

− ϵ10,13 – martensitic volume fraction, 

− ��
  – second-order transformation strain tensor, 

− � – mass density, 

− ����� – fourth-order elastic compliance tensor, 

− ��� – second-order thermal expansion coefficient tensor, 

− " – specific heat, 

− +� – specific entropy at the reference state, 

− ,� – specific internal energy at the reference state, 

− /�� – the transformation hardening function – declares elastic strain energy originating from 

the interactions between various variants of the martensitic phase, including the interactions 

with the surrounding phases. 

Eq. 1 evolves to the following expression for a one-dimensional (1-D) thermomechanical case 

considered in the present study 

��4, �, , 56� = − 1
2�74

8 − 1� 419�� − ��� + 5
63 + 

+" #�� − ��� − �ln &''()* − +�� + ,� +
-
. /�� (2) 

where the parameters: 7, +� and ,� are declared as functions of the martensitic volume fraction , i.e., 

7 = 7: + �7; − 7:� = 7: + ΔC = -
>? +  &

-
>@ −

-
>?), +� = +�: + �+�; − +�:� = +�: + Δ+�, 

,� = ,�: + �,�; − ,�:� = ,�: + Δ,�. A: and A; are respectively the Young’s moduli. 
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The total strain for the model of an SMA component equals 

5 = 74 + 56 + 9�� − ���. (3) 

considering 

5C6 = ΛC, for C ≠ 0 (4) 

Λ = IJ
8 K. (5) 

K is the maximum uniaxial transformation strain. Under varying external mechanical load the 

entropy of the model is a non-decreasing parameter, which is assured by the Clausius–Planck 

inequality 

45C6 − � LM
LN C ≥ 0. (6) 

Considering Eq. 4 and the partial derivative  
LM
LN  

LM
LN = − -

8. ΔC48 − -
. Λ4 − �Δ+� + Δ,� + -

.
L

LN �/��� (7) 

in Eq. 6 leads to the expression 

P�4, �, , C�C ≥ 0 (8) 

where 

P = -
8 ΔC48 + �Δ+�� + Q

√6K4 + �Δ+���� − ��� − -
T �Δ+��3�� + �� + �� − ���, C > 0 

√6K4 + �Δ+���� − ��� − -
T �Δ+���� + 3�� − �� + ���, C < 0

 (9) 

Kinetics of the phase transition in SMA is determined based on the conditionally defined value 

of the transformation function X 

X = Y P − Z, C > 0
−P − Z, C < 0 (10) 

with 

Z = -
T �Δ+���� + �� − �� − ���. (11) 

The contribution of martensite is growing (i.e.,  increases) if the stress 4 grows and the 

condition X�C > 0 � > 0 is satisfied. Conversely, the parameter  is gradually reduced when the 

stress 4 decreases and  X�C < 0 � > 0. 
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3. Fundamentals of PD 

Below, the theory of PD is briefly presented. Fig. 3 visualizes the nonlocal interactions present 

between the parts of the modelled solid body (referred to as particles) [14]. The space around an 

actual central particle localized at the position [ and considered for the above mentioned interactions 

is the horizon, usually marked as K. All parts of the neighboring particles lying at the positions [\ 

within the horizon K and of given volume ][\ interact with the central particle. 

 

Figure 3.   Definition of horizon and long-range force interactions in bond-based variant of PD [3]. 

Due to long-range interactions the governing equation takes the integral based form 

� _̂ �[, `� � a b�^�[\, `� � ^�[, `�, [\ � [�c][\d  e�[, `� (12) 

^�[\, `� and ^�[, `� respectively denote the particle displacements. e�[, `� is the external force 

volumetric density. The elastic properties of the modeled body are defined with the function b, which 

in general, depends on both the relative particle displacement and their relative position. 

Having considered in the present study a simplified 1-D numerical PD model of a prismatic rod 

made of SMA the following equation of motion for the f-th degree of freedom may be first 

formulated for a metallic material 

gh,_ h6 � 2∑ jh,klh >:m
nopqr snor
|k|uv

u
kwsu
kx�

 yh (13) 

The fraction 
>:
m  constitutes the resultant stiffness coefficient z. { denotes each of 2| neighboring 

particles. The auxiliary parameters lh and jh,k  assure correct fractions of the considered volumes of 

the central and neighboring particles respectively at the rod’s edges and boundaries of the horizon. 

For more detailed description the reader is kindly asked to study the work [3]. Based on the above 

introduced PD model, in the following section an adequate model for SMA is derived. 
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4. PD based nonlocal formulation for thermomechanical coupling for modeling phase 

transitions in SMA 

To derive a nonlocal model of SMA intended for simulations of mechanically induced solid phase 

transitions, the theory of thermoelasticity has been considered 

� _̂ = }∇8^ + �� + }�∇∇ ∙ ^ + b − l∇�
-
� �C = ∇8� − �∇ ∙ Ĉ + �

�
 (14) 

where �, } – the Lame constants, l, � and � are thermal and thermomechanical properties. Making 

the substitution � = � − ��, where � is the relative temperature, the parameter � can be found via the 

thermal diffusion equation, which contributes to Eq. 14 

�h
6�- = Δ`��∇8�h

6 − ��∇ ∙ ,C h6 + �h
6� + �h

6 . (15) 

The wave equation (the former formula in Eq. 14) takes the following analytical form for a 1-D 

case with the thermomechanical interactions involved 

� Lvn
L6v = A Lvn

L�v + � − l∇� (16) 

Considering the wave equation (Eq. 16) and the definition of the total strain in SMA given by 

Eq. 3, the PD model defined via Eq. 13 takes the final form 

gh,_ h6 = 2 ∑ jh,klh
�?

��No�-
nopq

r sno
r

|k|uv
u
kwsu

kx�
+ �@

∗ No��>?:
��No�- � + yh (17) 

where: z: = >?:
m , 9> = >?

>@ − 1, y;
∗ = I8

J KA:�. Below, exemplary numerical results are briefly 

reported to show capabilities of the elaborated PD model of an SMA material. 

5. Numerical simulation and experimental validation 

A straightforward 4-degree-of-freedom numerical model of an SMA rod of the total length 4mm has 

been used to study the properties of the presented approach. The elaborated PD SMA model has been 

validated with the experimental data gathered during tests carried out using a fatigue testing machine. 

The numerically and experimentally registered hysteretic stress-strain and the simulated force-

elongation relationships are shown in Fig. 4 and Fig. 5. The temporal courses for the above mentioned 

parameters found for the entire period of the experimental test are presented in Fig. 6. 

The curve, which is obtained from the experiments exhibits fluctuations. The process of solid 

phase transitions is spontaneous. Similarly, the transitions between identified subsequent phases of 

the material behavior – with reference to the subsequent pieces of the hysteretic stress-strain 

relationship – are smooth. Thermomechanical coupling has been effectively handled by the model. 
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Figure 4.   Hysteretic stress-strain relationship for the experimentally validated model of SMA. 

 

Figure 5.   Force vs. total elongation curve for the experimentally validated model of SMA. 

 

Figure 6.   Temporal courses of stress and strain in modeled SMA. 
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6. Summary and final conclusions 

In the paper the authors present the preliminary results provided by the elaborated model of SMA 

undergoing mechanically induced solid phase transitions. Specific demanded properties of SMA have 

been effectively handled via nonlocal modeling, To derive a nonlocal model of SMA the theory of 

both PD and thermoelasticity have been considered and briefly discussed. 

As confirmed with the numerical results, the available capability of the PD SMA model allows 

for studying dynamic problems more conveniently, not being limited by the necessity of satisfying the 

condition of isothermal phase transition. The authors of the present work advantageously employ PD 

to alternatively nonlocally formulate thermomechanical coupling in the modeled SMA. Particularly, 

the phenomenon of superelasticity has been investigated and the related phase transitions in SMA 

have been studied. As confirmed with the experiments the phenomena of phase transitions in SMA 

are reversible and exhibit hysteretic nature. 
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Investigation of piezoelectric and multiple electromagnetic hybrid

vibration energy harvester

Rajarathinam Murugesan, Vinoth Krishnan, Aravindan Muralidharan Shaikh Faruque Ali

Abstract: This study presents a hybrid transduction based vibration energy
harvester for achieving sufficient power across a wide band of frequencies. In
the energy harvesting device, a cantilever beam with an unimorphed macro
fiber composite patch is used to harvest piezoelectric energy and a spring-
magnet mass system moving within a solenoid hung in different places of the
cantilever is used to harvest electromagnetic energy out of motion in a magnetic
field. The present study analyzes the implications of the number of electro-
magnetic subsystems on the total harvested power of the hybrid system and
the saturation trends for various steel mass and hanging magnet mass under
constant input energy have been reported. The results show that the maxi-
mum total power harvested by the hybrid harvester saturates after a particular
number of electromagnetic subsystems. Also, it is observed that the optimal
number of electromagnetic subsystems is found to be inversely proportional to
the mass of the electromagnetic subsystem and percentage of tuned steel mass.

1. Introduction

Micro powered sensors are used in several applications like health monitoring of civil, me-

chanical, automobile and aerospace structures, environmental monitoring, medical remote

sensing, military field and so on. Most of the sensors are deployed in remote locations.

Powering these sensors using batteries is a costly affair for both technological as well as the

environmental aspect. Moreover, manual access to remote locations for battery replacement

is costly, time-consuming and unsafe [7]. The above stated reasons motivated to seek an

alternative and reliable power source for wireless nodes from the ambient energy resources.

Generating micro scale electrical power from ambient energy resources is known as energy

harvesting. In this study, vibration is taken to be the ambient energy source. The aim

of this research field is to power small electronic components by converting the vibration

energy available in the environment into useful electrical energy. The energy in mechanical

vibrations can be tapped mostly using piezoelectric (PE) and electromagnetic (EM) trans-

ductions based harvesting devices. In piezoelectric transduction, the piezoelectric element is

stressed through external vibrations to generate electrical power [8] and in the electromag-

netic transduction, mechanical system imparts motion to the magnets through the solenoid

to generate electrical power [4].
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In general, the vibration based energy harvester is broadly classified into two types

based on their harvested power’s frequency bandwidth namely narrow band and broadband

harvesters. Narrow band, single frequency based resonance harvesting devices generate max-

imum power only at the resonance and the efficiency of energy conversion drops drastically

as the excitation frequency moves away from resonance [2]. In reality, ambient vibration

sources are random. Hence, from the point of view of practical applications, narrow band

linear systems are inefficient. To overcome this drawback, the researchers focused on differ-

ent approaches for harvesting broadband energy such as multi-modal [12], resonance tuning

[3], nonlinear [5] and hybrid [10] harvesting techniques.

This manuscript proposes a novel design of modified multi-frequency based hybrid har-

vester that can generate power at a broad band of frequencies. The proposed harvesting

device consists of a cantilever beam having MFC patch in unimorph configuration and mul-

tiple spring-magnetic masses suspended at different places of cantilever beam along with

solenoid arrangements. In addition, lumped masses (steel masses) are also attached on the

beam at the respective positions of hanging magnetic masses. This harvester will gener-

ate the power from both piezoelectric and electromagnetic tranductions simultaneously and

hence it shall be termed as a hybrid harvester.

Most of the research, the beam based energy harvester are modeled as a simplified

lumped mass model by using maximum kinetic energy principle and first mode assumption

[9, 10]. But modeling the proposed harvester using a single mode will not be a correct

approximation of the physical reality since the effect of multiple electromagnetic harvesters

cannot be built into the system with the first mode assumption. Hence the finite element

model of the harvester is developed in this analysis to obtain the power response of the

proposed harvester system.

In this paper, an electromechanically coupled finite element beam model along with

electromagnetic harvester model is presented for predicting the electrical power output of

the piezoelectric and electromagnetic parts of the hybrid energy harvester. The present

work reports the saturation characteristics of the total harvested power with the number

of electromagnetic subsystems at various values of hanging mass and tuning percentages of

lumped mass. The remainder of the article is organized as follows: Section 2 deals with

the finite element modeling of the proposed harvester. Results of numerical simulations are

reported in Section 3. Finally, the concluding remarks of current work have been explained

in Section 4.

326



2. Design and Modeling of the Hybrid Harvester

Figure 1 illustrates the schematic diagram of proposed hybrid energy harvester (MHH). It

is composed of a cantilever beam with a Macro Fiber Composite (MFC) patch, springs,

permanent magnets, solenoid and extra steel masses. The MFC patch is attached on the

upper surface of the cantilever beam near its fixed end. Permanent magnets are suspended

at different places of the cantilever beam with a linear elastic spring. The solenoids are

placed along the axis of motion of the each permanent magnet. Additionally, lumped mass

are also attached on the beam, which are exactly positioned along the axis of each spring

as shown in Fig. 1. Here, the piezoelectric harvesting part of the hybrid harvester (PHH)

comprises the cantilever beam with MFC and the electromagnetic harvesting part of the

hybrid harvester (EHH) consists of spring-magnetic mass with solenoid arrangement. In

this study, EHH attached at the free end of the cantilever beam is kept undisturbed and

the number of intermediate EHHs are increased from 1 to m−1 harvesters such that total

number of harvesters is m. It has been noted that in each increment the distance between

the EHH is equal and also there is no EHH at the fixed end.

 
Piezo

Composite

Steel

Mass

Spring

yg

Rp Vp

Passive

Substrate

Permanent

Magnet  

  

 

 

Vem

Rem

 
Rigid Link

(Used to attach Solenoids)

 
Solenoid

 

Figure 1. Schematic of the proposed hybrid energy harvester.

When a host structure undergoes vibrations, the system generates power from both

piezoelectric and electromagnetic mechanisms due to direct piezoelectric effect and electro-

magnetic induction respectively. The PE and each of the EM harvesters are connected

to separate external resistances, Rp and Rem respectively. In Fig. 1, Vp and Vem denote

voltages generated by the PHH and EHH respectively. yg denotes the support motion.
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2.1. Formulation of finite element model

In this analysis, the beam is divided into two parts where the part with MFC is modelled

as a composite beam and the part without MFC is modelled as a homogeneous beam. Each

electromagnetic harvester is modelled as a single degree of freedom system. The Euler

Bernoulli’s beam theory is assumed for the modelling of the cantilever beam. where, the

co-ordinate directions X, Y and Z are considered along the length, thickness and width of

the beam respectively.

The degrees of freedom considered for the beam are deflection (w), slope (θ) and voltage

(V ). The displacements and voltages corresponding to the EHH subsystem are also taken

to be the degrees of freedom of the system. Finite element method has been implemented

in this study to discretize the domain of the cantilever beam. The deflection and slope of

each element in the beam are expressed using Hermite cubic interpolation shape functions

as given below

w(x) = w1N1 + θ1N2 + w2N3 + θ2N4 (1)

where, w1, θ1 are deflection and slope at node 1 and w2, θ2 are deflection and slope at node

2. The shape functions N1, N2, N3 and N4 are given as

N1 = 1− 3
( x

Le

)2

+ 2
( x

Le

)3

; N2 = −x
(

1−
x

Le

)2

;

N3 = 3
( x

Le

)2

− 2
( x

Le

)3

; N4 = −x
[( x

Le

)2

−
x

Le

]

(2)

where, Le is the length of element and x is the axial location in element. For the region of

the beam with MFC, the electric potential is treated as an electrical degree of freedom in

addition to the displacement degrees of freedom. The interpolating shape function for the

electric potential varying along the length and thickness of the beam element is taken as

follows [6]

V (x, z) = N5V1 +N6V2; N5 =
(1

2
+

z

h

)(

1−
x

Le

)

; N6 =
(1

2
−

z

h

)(

x

Le

)

(3)

where, V1 and V2 are voltages at the two nodes of element and N5, N6 are shape functions.

h is the thickness of MFC in the element, and z is the location in thickness direction of the

element. The element stiffness matrix with respect to deflection and slope is expressed as [1]

Kij = −

∫

v

D11

d2Ni

dx2

d2Nj

dx2
dxdydz; i, j = 1, 2, 3, 4 (4)

where, D11 is material parameter, and equal to Young’s Modulus for isotropic beam. The

element mass matrix is expressed as [1]

Mij = −

∫

v

ρNiNjdxdydz; i, j = 1, 2, 3, 4 (5)
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where, ρ is the density of element. The elements of coupling matrix is given as [1]

θij = −

∫

v

e13z
dNi

dz

d2Nj

dx2
dxdydz; i = 5, 6, j = 1, 2, 3, 4 (6)

where, e13 is the piezoelectric constant. The element permittivity matrix is given as [1]

εij = −

∫

v

ε
s
33

dNi

dz

dNj

dz
dxdydz; i, j = 5, 6 (7)

where, εs33 is the permittivity of piezoelectric material. As mentioned above, the mechanical

and electrical degrees of freedom for the beam element are

d0 = {w1 θ1 w2 θ2}
T ; V0 = {V1 V2}

T (8)

The element stiffness and matrices matrix for beam with MFC is obtained by expanding

Eqs. (4), (5) and rewriting them in a compact form as follows

Ke =
EI

L3
e















16 6Le −12 6Le

6Le 4L2

e −6Le 2L2

e

−12 −6Le 12 −6Le

6Le 2L2

e −6Le 4L2

e















Me =
ρALe

420















156 22Le 54 −13Le

22Le 4L2

e 13Le −3L2

e

54 13Le 156 −22Le

−13Le −3L2

e −22Le 4L2

e















(9)

where, E is the Young’s modulus, A is the area, and I is the moment of inertia of beam

element. The section modulus of the beam with MFC region is calculated by equivalent area

method to locate the neutral axis of the transformed section. Also, for the beam with MFC

patch, the mass per unit length (ρA) will be taken as the weighted average of the mass per

unit length of both MFC and beam material.

Similarly, the stiffness (KEH) and mass (MEH) matrix for the electromagnetic harvesters

are given below

KEH =





kEH −kEH

−kEH kEH



 ; MEH =





ms 0

0 mm



 (10)

where, kEH , mm and ms are the stiffness of spring element, mass of the permanent magnet

and the steel mass placed on the beam respectively. By expanding Eq. (6) and Eq. (7), the
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element coupling matrix (θe) and permittivity matrix (εe) are given by

θe =











e31btp

4Le

e31btp

4Le

−
e31btp

4Le

0

−
e31btp

2Le

0
e31btp

4Le

0











T

; εe =













−
εs33bLe

3tp
−
εs33bLe

6tp

−
εs33bLe

6tp
−
εs33bLe

3tp













(11)

where, b is width of the MFC element, tp is thickness of the MFC element.

The whole beam is discretized into n beam elements. The global stiffness matrix (KG)

and mass matrix (MG) of the system are obtained by the assembly of individual element

stiffness and mass matrices considering the structural and electrical degrees of freedom.

The assembled global stiffness and mass matrices will be of size (2n + 2) × (2n + 2). m

additional degrees of freedom corresponding to the electromagnetic harvesters are added in

the assembled global mass and stiffness matrices which makes the final size of the matrices

to (2n + 2 + m) × (2n + 2 + m). The index mm corresponds to the position of added

electromagnetic harvester.

KG =











































ke1 . . . . . . . . . .

. ke1 + ke2 . . . . . . . . .

. . . . . . . . . . .

. . . kemm + kEH . . −kEH . . . .

. . . . . . . . . . .

. . . . . ken + kEH . . . . −kEH

. . . −kEH . . kEH . . . .

...
...

...
...

...
...

...
...

...

. . . . . −kEH . . kEH











































(12)

MG =











































me1 . . . . . . . . . .

. me1 +me2 . . . . . . . . .

. . . . . . . . . . .

. . . memm +ms . . . . . . .

. . . . . . . . . . .

. . . . . men +ms . . . . .

. . . . . . mm . . . .

...
...

...
...

...
...

...
...

...

. . . . . . . . mm











































(13)

The assembled global coupling matrix (θG) is of the size (2n+ 2+m)× (n+ 1+m). It has

to be noted that the diagonal zero terms of coupling matrix correspond to region where the
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MFC patch is not present. The assembled permittivity matrix will have non zero terms only

at the positions where MFC layer is present and rest of elements of the matrix will all be

zero. The assembled coupling (θG) and permittivity (εG) matrices look like

θG =

































θe1 . . . 0 . . . 0

. θe1 + θe2 . . 0 . . . 0

. . . . 0 . . . 0

. . . θej 0 . . . 0

0 0 0 0 0 . . . 0

...
...

...
...

...
... 0

0 0 0 0 0 0 0

































; εG =

































εe1 . . . 0 . . . 0

. εe1 + εe2 . . 0 . . . 0

. . . . 0 . . . 0

. . . εej 0 . . . 0

0 0 0 0 0 . . . 0

...
...

...
...

...
... 0

0 0 0 0 0 0 0

































(14)

where, j represents the last node of MFC patch from the fixed end of the beam. The potential

degree of freedom defined at each node makes the adjacent piezoelectric elements insulated

from each other and as a result, single potential does not exist between the elements. In

actual scenario, a single continuous electrode is pasted over the MFC which gives a single

potential Vs. The coupling matrix should hence be converted to a vector so that a single

voltage value is obtained. This is done by adopting the potential constrained from [11],

which is given as follows

θGV = θG

[

1 1 1 1 1 1
]T

n+1,1
Vs = θ̂Vs (15)

θ̂ is the coupling matrix which gives a single potential. Similarly the permittivity matrix εG

also changes accordingly as follows

εGV =
[

1 1 1 1 1
]

1,n+1

[

1 1 1 1 1
]T

n+1,1
Vs = nCpeVs = CpVs (16)

The assembled vector of mechanical degrees of freedom are given as

d =
{

w1 θ1 w2 θ2 . . . w2n+2 θ2n+2yEHm

}T

2n+2+m,1
(17)

The boundary condition at the fixed end are taken to be w1=0 and θ1=0.

2.2. Harmonic analysis

The electromechanical coupling dynamics of the system given below is then solved by har-

monic analysis.

MG{d̈}+ C{ḋ}+KG{d} − θ̂GVs = {F}

θ̂
T
G{d̈}+ CpV̇s +

Vs

Rp

= 0
(18)
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Assuming the amplitude of excitation force, F=Foe
iωt and responses d=d0e

iωt, Vs=Vfe
iωt

the Eq. (18) becomes

[−ω
2
MG +KG + iωC]{d0} − [θ̂G]Vf = {F0}

[

iωθ̂T
]

{d0}+

[

iωCp +
1

Rp

]

Vf = 0
(19)

where, F0=ω

√

2Ein

M

[

MG · I(2n+2+m)×(2n+2+m)

]

; Ein is the input energy amplitude, which

is considered to be constant in this analysis; M=mb +
∑m

i=1

(

msi +mmi

)

. mb, ms and mm

are mass of the beam, steel and hanging magnet mass respectively. The solution of the above

set equations gives the steady state amplitudes of displacements and voltage generated by

the PHH as a function of excitation frequency. The steady state power of PHH is given by

PPHH =
|Vf |

2

2Rp

(20)

For the electromagnetic harvester, the voltage shall be obtained as

Vemm = −

m
∑

j=1

θemiωd0remj
; j = 1, 2, 3, . . . , m (21)

where, d0rem is the relative displacement between the magnet and solenoid. The steady state

amplitudes of power corresponding to EHH subsystems are given as follows

PEHHm =

∣

∣

∣

∣

Vemm

Rem +Rc

∣

∣

∣

∣

2
Rem

2
(22)

Finally, the total power of the system is obtained by the sum of individual power magnitudes

generated by each subsystem.

3. Results and discussion

In this section, the simulated results of multiple electromagnetic hybrid energy harvester

are presented for an energy input of 10mJ. The energy level is chosen such that the beam

deformation is well within its elastic limit. Studies in the present work are simulated within

frequency range of 1Hz to 10Hz. The optimal load resistance of the piezoelectric circuit

(Rp) is approximated to be
1

ω1Cp

[13] and that of the electromagnetic circuit (Rem) is

approximately equal to the internal resistance (Rc) of the solenoid [14]. The important

parameters used for the analysis are given in Table 1.

In this analysis, the lumped masses are tuned to various percentages of ms=40gm such

that it linearly increases along with increase in the number of EHH subsystems but bounded

within mm+(η%)mm; η is varied from 0% to 50%. The hanging mass, mm is varied from 5gm
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Table 1. Description of parameters and their values

Symbol Description Value

L Length of the beam 1000 mm

b Width of the beam 32 mm

tb Thickness of the beam 5 mm

E Young’s modulus of the beam 70 GPa

tp Thickness of the MFC 0.3 mm

cE Young’s modulus of the MFC 15.857 GPa

Cp Electrical capacitance of the MFC 177.07 nF

Br Residual magnetic flux density 1.1 T

Rem Load resistance of the EM circuits 60 Ω
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Figure 2. Variation of normalized power of the hybrid harvester with frequency and number

of electromagnetic harvesters for 10% tuning of lumped mass and (a) 10gm of hanging mass,

(b) 20gm of hanging mass.

1 5 10 15 20 25
No. of EHH

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 P
ow

er
 A

re
a

m
m

=10gm

m
s
=+0%T

m
s
=+20%T

m
s
=+40%T

m
s
=+50%T

X: 12
Y: 1

(a)
1 5 10 15 20 25

No. of EHH

0.85

0.9

0.95

1

N
or

m
al

iz
ed

 P
ow

er
 A

re
a

m
m

=20gm

m
s
=0%T

m
s
=20%T

m
s
=40%T

m
s
=50%T

X: 9
Y: 1

(b)

Figure 3. Variation of normalized power area of the hybrid harvester with number of

electromagnetic harvesters for various percentages of tuning of lumped mass and (a) hanging

mass, mm=10g (b) mm=20g.

to 40gm. Numerical simulations have been carried out to probe the feasibility of determining

the optimal number of EHH subsystems to be introduced into the system such that sufficient
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power is obtained in the considered frequency band for a given energy level.

Figure 2 shows the normalized power of HH as a function of excitation frequency and

the number of electromagnetic subsystems for an input energy amplitude of 10mJ given

at the base. It is implied from the figure that with the increase in the values of mm, the

bandwidth of the total harvested power reduces significantly. The reason for the above

stated observation shall be attributed to the dominant role of mm in shifting the resonant

frequencies of the system towards each other as opposed to the effect of percentage tuning of

ms. Also, the resonant peaks in a given frequency range tend to diverge with the increase in

the number of EHH subsystems. Hence, with mm being a parameter, the hybrid harvester

can be designed to generate broadband power which is unachievable in single resonance based

harvesters.

To quantify the power harnessing potential of the harvester with increase in the number

of EHH in the considered frequency, the metric of normalized power area has been considered

in this analysis. The area under the power curve is a representation of the energy that can

be harvested within the frequency zone [15]. Figures 3(a) and (b) show the variation of the

normalized power area with various % of tuned lumped mass with respect to hanging mass of

values of 10gm and 20gm respectively. Figure indicates that with the increase in the number

of electromagnetic harvesters, the area under the power curve increases to a maximum and

then decreases. The number of EHH subsystems at which normalized power area reaches

the maximum shall be taken to be the optimal number for given set of parameters. The

optimal number of EHH subsystems decreases with increase in the values of mm for various

tuning percentages of ms.

For a given tuning percentage of ms, the normalized power area of the hybrid harvester
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Figure 4. Variation of normalized power area of the hybrid harvester with number of

electromagnetic harvesters for various values of hanging mass and (a) 10% tuning of lumped

mass (b) 50% tuning of lumped mass.
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becomes maximum at an optimum number of EHH subsystems similar to the case of varying

mm. From Fig. 4, it can be observed that the number of EHH subsystems for obtaining

maximum power area also decreases with the increase in % of tuned lumped mass. It has

been noted from Figs. 4(a) and (b) that at very small values of mm, the optimal value occurs

at much larger number of EHH subsystems and hence becomes physically infeasible. From

all the cases considered in the study, it can be inferred that the variation in mm prominently

affects the bandwidth of the system while the variation in the tuning percentage of ms

influences the optimal number of EHH subsystems of the system for a given energy level.

4. Conclusions

This article analyses the evolution of broadband characteristics of coupled piezoelectric and

multiple electromagnetic hybrid energy harvester with change in the values of selective pa-

rameters. Effects of the number of electromagnetic subsystems on the total harvested power

of the hybrid harvester are assessed numerically for a constant input energy amplitude. The

results show that the normalized power area of the hybrid harvester attains a maximum value

at an optimum number of the electromagnetic subsystems. The routes to reaching an opti-

mum number is discussed with respect to the variation in tuning percentage of tuned lumped

mass and hanging magnetic mass. The present study shows that the harvesting system can

be designed to achieve broadband power at a minimum possible number of electromagnetic

subsystems with the proper selection of the parameter values.
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Optimization of the actuator/sensor placement for active vibration
control of a funnel shaped piezoelectric structure

Tamara Nestorović, Kevin Hassw, Atta Oveisi

Abstract: Placement of piezoelectric actuators and sensors implemented in the
form of thin piezoelectric films plays an important role in active vibration
control of structures, since after applying they remain permanently integrated
with a structure. In this work a funnel shaped structure inlet of the magnetic
resonance imaging (MRI) tomopraph is analysed and a balanced optimization
of the actuator/sensor placement is performed based on H2 and H∞ norms.
The applied procedure is a global one, seeking for optima across the entire
domain of the structure. A thorough study of the mesh refinement influence
with respect to the eigenfrequency analysis was performed in order to obtain a
reliable numeric finite element (FE) model for the optimization purposes. The
material parameter optimization was performed as well. Based on placement
indices optimal placement study was performed under consideration of several
eigenmodes of interest. The optimization was performed for individual modes
as well as for simultaneous consideration of multiple modes. A software in
the loop approach with recurrent communication in each iteration of the opti-
mization between the numerical simulation FE software and optimization tool
designed in Python was implemented through the evaluation of the placement
indices for candidate locations over the entire curved surface of the structure.
Depending on support conditions the optimal locations of piezoelectric are pro-
posed.

1. Introduction

Active vibration control gains more and more importance both in research and engineering

applications. Especially related to smart structures and systems, active control becomes

an indispensable part of a smart system. Magnetic resonance imaging tompograph is an

example of a system with high potential for implementation of active vibration and noise

control using multifunctional materials – piezoelectric films integrated with the structure in

the form of actuators and sensors for the vibration suppression. The main problem during

diagnostic treatment of patients in MRI is a high noise level the patients have to undergo

[5]. Beside the noise coming from the cylindrical body of an MRI tomograph, the secondary

source of noise is the funnel shaped inlet. This noise is the consequence of the transmitted

vibrations from the tomograph body, which in turn induce additional secondary noise. Thus

the reduction of the secondary vibration of the funnel shaped MRI inlet can contribute to
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an overall noise reduction. In addition to negative influence on patients (anxious condition

due to noise, hearing deterioration or temporary hearing lost [6, 1]), the resolution and the

quality of the scanning images can be influenced by vibration as well [8]. For an efficient

vibration suppression the placement of piezoelectric actuators and sensors plays a decisive

role. Since the piezoelectric transducers glued in form of thin films remain permanently on

the surface of the structure, their proper placement is particularly important.

2. Methodology

Considerable savings can be achieved by model-based optimization of the piezoelectric actu-

ator/sensor positions. For a funnel shaped geometry, the form of the MRI tomograph inlet,

the optimization procedure represents a special challenge, since opposite to plane plate-like

structures, the optimization procedure requires not only iterative change of the pure geo-

metric parameter(s) defining the location of the actuators/sensors having fixed geometry,

but it also requires at the same time iterative change of the actuator/sensor geometry it-

self, i.e. its adaptation to the shape of the curved surface of the funnel in contact with an

actuator or a sensor. Model-based optimization of the actuator/sensor placement in this

research is a global one and it is performed based on finite element (FE) models of the

funnel shaped MRI tomograph inlet in Abaqus CAE. The optimality criteria are based on

placement indices, which are defined later in this paper. The values of the placement indices

are evaluated over the entire considered geometry, so the method is global and thus enables

finding global optima in contrast to gradient methods (which, depending on initial guess,

may be trapped in the neighborhood of a local optimum) or other optima search methods

(which narrow the search region). Each time when a user sends a command to Abaqus

CAE from GUI (graphical user interface), a Python script is generated and updated. This

Python script is passed through the interpreter to the kernel. These procedures are saved

in Abaqus in terms of an .rpy-file. In addition, a sequence of commands which are run from

GUI of the Abaqus CAE are saved in a .jln-file. The .jnl-file serves as a main modulus for

programming in Python [4, 3]. The parameters which define the position and the geometry

of the actuators/sensors and which are altered iteratively, are defined within a Matlab script

(.m-file), they are saved in Python files and finally imported by the Abaqus model. All

parameters relevant for the Python files are clearly arranged within the Matlab script, and

they are updated after each iteration without having to invoke GUI from Abaqus CAE. In

addition, the calculation and graphical representation of the placement indices are performed

in Matlab in order to specify optimal positions. After performing modal analysis in Abaqus

for a specified actuator/sensor placement Matlab reads in iteratively in the loop the next

set of parameters. Previous parameters are overwritten in the Python by the current ones,
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which are then sent to Abaqus for calculation. After having performed the modal analysis

for a specified actuator/sensor position, Abaqus generates text files (.txt) with produced

results. The .txt-files are updated after each calculation of a new position and they contain

the results for each selected placement within the loop. After passing through all candidate

placement locations, the generated text files are read in Matlab and used there for further

calculation of the placement indices matrix, in order to specify optimal placement [4, 3].

3. Development of a state space model in modal coordinates

Starting point for obtaining the state space representation of the model is a system of

equations of motion in matrix form (1), which can be obtained from FE modelling or through

system identification.

Mq̈ + Ddq̇ + Kq = F (1)

Vector q contains all degrees of freedom (dofs) of the system: mechanical dofs – generalized

displacements and electric dofs – electrical charges or potentials. The total force force vector

F = FE + FC = Ēf̄(t) + B̄ū(t) = B0u (2)

consists of the part FE which represents the vector of external forces and FC control forces.

Matrix Ē defines the position of generalized external forces f̄(t) and B̄ is related to the

control parameters, i.e. it defines the positions of the control inputs ū(t) (actuators). These

information are contained within the unified input matrix B0 and the total vector of inputs

u consisting both of external and control inputs. The output equation (3)

y = C0qq + C0vq̇ (3)

relates the system outputs (measurements) y with the vector of generalized displacements q

through the corresponding output matrix C0q and with the vector of generalized velocities q̇

through the output matrix C0v. These matrices are obtained through the FE modelling and

their elements are sensor placement dependent [2]. The solution of the eigenvalue problem

for the system of equations (1) results in eigenfrequencies ωi and eigenvectors (eigenmodes)

ϕi, which form the spectral matrix Ω and the modal matrix Φ, respectively:

Ω= diag(ω1, ω2, ..., ωn); Φ =
[
ϕ1 ϕ2 . . . ϕn

]
. (4)

Applying transformation q = Φqm to system (1) and the output equation (3) and the

orthogonality property of the mass Mm = ΦTMΦ = diag(mi) and the stiffness Km =

ΦTKΦ = diag(miω
2
i ) matrices with respect to modal matrix, as well as the assumption of
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the proportional (Rayleigh) damping, results in decoupled system of equations of motion

and the output equation in modal coordinates qm, respectively:

q̈m + 2ZΩq̇m + Ω2qm = Bmu; y = Cmqqm + Cmvq̇m (5)

with: Ω2 = M−1
m Km, Z = diag(ζi), Bm = ΦTB0, Cmq = C0qΦ, Cmv = C0vΦ, where

ζi represents the damping ratio of the corresponding eigenform. The damping ratio can be

obtained from experimental modal analysis. In this work it is assumed to be 0.01.

Further transformation of the system (5) yields a state space model:

ẋ = Ax + Bu, y = Cx (6)

A =

 0 Ω

−Ω −ZΩ

 , Bm =

 0

Bm

 , C =
[
Cmq Cmv

]
, x =

Ωqm

q̇m

 (7)

The modal state space representation can be applied to mode shape i in a similar way.

Ami =

 0 ωi

−ωi −2ζiωi

 , Bmi =

 0

bmi

 , Cmi =
[
cmqi

ωi
cmvi

]
, xi =

ωiqmi

q̇mi

 (8)

Matrices Ami, Bmi and Cmi are calculated for each position of the actuator/sensor pair and

for each einenform i. These matrices are used to form the transfer functions according to

the H2 and H∞ norms, in order to determine the optimal actuator/sensor placement [7, 2].

Here Bmi contains electric potential of the actuator and Cmi electric potential of the sensor:

Bmi =

 0

ϕ
(a)
i

 , Cmi =
[
0 ϕ

(s)
i

]
(9)

where ϕ
(a)
i represents the sum of all electric potentials of the nodes at the upper side of the

actuator surface and ϕ
(s)
i the sum of all electric potentials of the nodes at the upper side of

the sensor surface in FE model for each modeshape i.

4. Placement index and objective function

Based on the modal reduced-order state space model of the funnel-shaped inlet of the MRI

tomograph, optimal positions of actuators and sensors are determined for first three eigen-

forms based on H2 and H∞ norms. Exact evaluation of these norms would require a high

computational effort, especially when applied to full order FE models. Therefore a reduced

order state space model is used. This approach can also be used for large structures of higher

model orders [7]. In this work for determination of the optimal actuator/sensor placement

4
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on a curved surface of the funnel both norms are evaluated both for the actuator and sen-

sor positions as well as for all corresponding eigenforms considered both separately (mode

shapes 1, 2, 3) and simultaneously (modes 1-2 and 1-3).

The transfer function based on the state space model (8) for each mode shape i is calculated

in the following way:

Gi(ω) = Cmi(jωI−Ami)
−1Bmi (10)

Approximate calculation of the H2 norm results in:

‖Gi‖2 ≈
‖Bmi‖2‖Cmi‖2

2
√
ζiωi

=
‖Bmi‖2‖Cmi‖2√

2∆ωi

≈ σi

√
2∆ωi (11)

Here Bmi represents the input matrix and Cmi the output matrix of the reduced state

space model. ζi is the damping ratio of the corresponding mode shape i and ∆ωi = 2ζiωi

represents a frequency segment around the resonant frequency. σi is the Hankel singular

value for the corresponding mode shape i [2]. The H∞ norm of the transfer function for a

single mode shape i is calculated in the following way:

‖Gi‖∞ ≈
‖Bmi‖2‖Cmi‖2

2ζiωi
=
‖bmi‖2‖cmi‖2

2ζiωi
(12)

The H2 norm of the structure in the state space form is calculated as:

‖G‖2 ≈

√√√√ n∑
i=1

‖Gi‖22 (13)

with n being the number of mode shapes, i = 1, ..., n. The H∞ norm of the structure

represented in the state space fomr is calculated as:

‖G‖∞ ≈ max‖Gi‖∞ (14)

For iteratively changing positions of the actuators and sensors the norms of the transfer

functions and therefore the norm of their sum can be calculated:

‖Gi‖2,∞ ≈

√√√√pa,s∑
j=1

‖Gij‖2(2,∞)
, for a single eigenform i out of n, i = 1, ..., n (15)

‖G‖2,∞ ≈

√√√√pa,s∑
j=1

‖Gj‖2(2,∞)
, for entire structure (16)

where pa represents the number of possible actuator candidate locations and ps of the sensor

candidate locations. Generally the number of actuators and sensors is not necessarily equal.
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In this work colocated actuator/sensor pairs pa = ps are considered [7, 2]. With j = 1, ..., pa

and k = 1, ..., ps the input and output matrices have the following form.

Bmi =
[
B1

mi B2
mi . . . Bj

mi . . . Bpa
mi

]
, Cmi =



C1
mi

C2
mi

. . .

Ck
mi

. . .

Cps
mi


(17)

For each eigenform, Bj
mi represents a (2 × 1)-block for a corresponding actuator position

j and Ck
mi represents a (1 × 2)-block for each corresponding sensor position k, see (9). In

this way the H2 and H∞ norms can be calculated for each corresponding actuator and each

corresponding sensor related to each corresponding eigenform.

‖Gi‖
2

2,∞ ≈
pa∑
j=1

‖Gj
i‖

2

(2,∞)
, for an actuator (18)

‖Gi‖
2

2,∞ ≈
ps∑
k=1

‖Gk
i ‖

2

(2,∞)
, for a sensor (19)

Here i is the corresponding eigenform and j are the actuator positions, where j = 1, ..., pa

(pa is the number of selected actuator positions) and k = 1, ..., ps (ps is the number of

selected sensor positions). For each eigenform the corresponding norms for corresponding

actuator/sensor positions have to be calculated first. For the H2 norm of the eigenform i for

the corresponding actuator position j and the corresponding sensor position k applies:

‖Gj
i‖2 ≈

‖Bj
mi‖2‖Cmi‖2
2
√
ζiωi

, ‖Gk
i ‖2 ≈

‖Bmi‖2‖Ck
mi‖2

2
√
ζiωi

(20)

The H∞ norm is calculated in a similar way:

‖Gj
i‖∞ ≈

‖Bj
mi‖2‖Cmi‖2

2ζiωi
, ‖Gk

i ‖∞ ≈
‖Bmi‖2‖Ck

mi‖2
2ζiωi

(21)

Using previously calculated norms the placement indices can be evaluated. The placement

indices are defined for the H2 and H∞ norms for each eigenform i and for each actuator

candidate location j and the sensor candidate location k where j = 1, ..., pa and k = 1, ..., ps:

ηji(2,∞) =
‖Gj

i‖(2,∞)

‖G‖
(2,∞)

, ηki(2,∞) =
‖Gk

i ‖(2,∞)

‖G‖
(2,∞)

(22)

Gj
i und Gk

i are the transfer functions for all possible actuator/sensor candidate locations.

The placement indices can be organized in the form of a placement matrix for actuator/sensor
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positions, where p = pa for the actuator positions and p = ps for the sensor positions:

N(2,∞) =



η11(2,∞) η21(2,∞) . . . ηj,k1(2,∞) . . . ηp1(2,∞)

η12(2,∞) η22(2,∞) . . . ηj,k2(2,∞) . . . ηp2(2,∞)

...
...

...
...

...
...

η1i(2,∞) η2i(2,∞) . . . ηj,ki(2,∞) . . . ηpi(2,∞)

...
...

...
...

...
...

η1n(2,∞) η2n(2,∞) . . . ηj,kn(2,∞) . . . ηpn(2,∞)


(23)

The row elements correspond to eigenforms i = 1, ..., n (n is the number of the eigenforms).

The column elements correspond to each candidate location j and k. For actuators j = 1, ..., p

with p = pa (pa is the number of possible actuator candidate locations) and for sensors

k = 1, ..., p with p = ps (ps is the number of possible sensor candidate locations). For the

objective function based on H2 norm the placement indices are calculated as:

ηj,k =

√√√√ n∑
i=1

(ηj,ki )2 (24)

Index i denotes corresponding mode shapes, with i = 1, ..., n. For an actuator at position

j = 1, ..., pa and for a sensor at position k = 1, ..., ps, placement indices are calculated

according to the H∞ norm in the following way:

ηj,k = max(ηj,ki ) (25)

For placement indices ηj,k calculated based on both the H2 and the H∞ norm, the placement

of the actuators and sensors is considered individually. For the simultaneous placement of

actuators and sensors the placement indices for actuator of sensor are determined as:

ηjki =
‖Gjk

i ‖
‖Gi

m‖
(26)

Index i again corresponds to an eigenform, i = 1, ..., n. Gjk
i represents the transfer function

for the eigenform i under simultaneous consideration of the actuator at position j and of the

sensor at position k [7, 2].

5. Analyses and results

The model of the funnel shaped inlet of an MRI tomograph (represented in Fig. 1) is used

as a starting point for various analyses preceding the optimization procedure for the actua-

tor/sensor placement. The CAD geometry of the funnel (Fig. 1, right) represents the real
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funnel (Fig. 1, left). The funnel geometry is complex (consisting of a flat and a curved

part) and cannot be completely described analytically, which would be required for the

parametrization of the actuator/sensor location and geometry. Nevertheless, for the optimal

placement in this work only the curved surface of the funnel is relevant, and the analyti-

cal description of the curved surface as well as the parametrization of the actuator/sensor

geometry and position was possible. In addition, the material properties of the funnel had

to be adjusted in accordance with the mesh refinement and convergence of the material

parameters through the FE simulations in order to obtain the model which will accurately

describe structural behaviour and electro-mechanical properties of the piezoelectric patches

implemented as actuators and sensors.

Figure 1. The funnel shaped inlet of an MRI tompograph (left) and its CAD model with

exemplary positions of piezo patches at different heights (right).

The optimization procedure strongly depends on selected properties of the FE model

used to obtain the reduced state space model. Therefore a thorough mesh convergence

study and material parameter analyses were conducted. A starting point for this investi-

gation is the aforementioned CAD model, with radius of the larger base of the funnel of

596mm. For the mesh convergence study an initial model with isotropic material properties

is adopted. The funnel consists of PVC (Polyvinylchlorid) and ABS (Acrylnitril-Butadien-

Styrol). The model analyses are initiated with following material properties of a typical hard

PVC with density ρ
PVC

= 1465 kg
m3 , elasticity modulus E

PVC
= 3500 MPa and Poisson’s

ratio ν
PVC

= 0.4. Geometry of the piezo-patches used for actuators and sensors varies with

position on a curved surface in the height direction of the funnel (z-direction). All the trans-

ducers have constant curvature of 6◦ in xy- and xz-plane.

For the mesh convergence study 19 models of the funnel were considered, while determin-

ing first 10 eigenfrequencies for each of the models. The FE mesh was refined in regular steps,

mesh size reduction of 10 A.G.S. (Approximate Global Size) per model, till no significant dif-

ference between the calculated eigenfrequencies of the two subsequent models was observed.
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In that case the mesh was further refined in smaller steps (5 A.G.S. per model). In order to

determine optimal meshing, the eigenfrequency error was observed. Subsequently only first

three eigenfrequencies were considered for the mesh optimization purpose, since they could

be compared with experimentally determined once, used as reference. The optimal meshing

was adopted by computing the error between the eigenfrequencies of different models and

their comparison. The mesh was adopted as optimal when the difference between the con-

verging eigenfrequencies of the subsequent models lies under 5%. Similar convergence study

was performed with respect to frequency response functions (FRFs) as well as the material

parameters. The analyses resulted in a model with following material parameters adopted

based on the similar criterion that the difference between the converging eigenfrequencies

of the subsequent models lies under 5%: ρop = 1230 kg
m3 , Eop = 4000 MPa, ν = 0.4.

According to procedure for determining placement indices and optimal placement de-

scribed in Section 4 the optimization of actuator/sensor placement was performed on the

curved surface of the MRI funnel. In the global procedure a total number of 600 candidate

locations were considered and the placement indices were determined. The parametrization

of the position for actuators and sensors was performed using two parameters: the height

of a transducer in z-direction and the angle in radial direction in planes parallel to xy-plane

at corresponding height. For each of the considered first three eigenforms of the funnel

the placement indices were determined in following cases: for an actuator and for a sensor

according to the H2 and the H∞ norms for individually considered mode shapes and for si-

multaneously considered mode shapes 1–2 and 1–3 both for an actuator and for a sensor and

both according to the H2 and the H∞ norms. Due to a limited space in the following only

selected results of the optimization are represented by plots showing the placement indices

in a colour scale. Positions with highest values of the placement indices represent favourable

placement for a given criterion. Fig. 2 represents the placement indices for individually

considered mode shape 2 for the actuator (left) and the sensor placement (right).

The influence of the boundary conditions was also investigated. Different boundary con-

ditions result in different mode shapes (Fig. 3) and influence in turn also the results of the

optimal placement. In Fig. 4 the placement indices based on H∞ norm are represented for

individual consideration of the second eigenmode for a sensor in the case of clamped (left)

and free boundary condition (right). Besides the boundary conditions which influence the

mode shapes, the optimal placement depends also on selection of the eigenmodes of interest,

i.e. if individual eigenmodes are considered, or multiple modes simultaneously. Selected

results for simultaneous consideration of several modes are represented in Fig. 5.
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Figure 2. Placement indices at candidate locations for optimal placement of an actuator

(left) and a sensor (right) based on the H2 norm under consideration of the 2nd mode shape.

Figure 3. Comparison of the first three mode shapes for different boundary conditions:

upper - clamped, lower - free; a) first mode, b) second mode, c) third mode.

6. Conclusions

In this work the optimization of the actuator/sensor placement on a funnel shaped inlet

of the MRI tomograph was performed based approximate calculation of the H2 and H∞

norms. Applying the procedure described in Section 4, under consideration of single modes

and simultaneous consideration of the first three eingenmodes of the funnel, the following
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Figure 4. Placement indices at candidate locations for optimal placement of a sensor

based on the H∞ norm under consideration of the 2nd eigenform; boundary conditions: left

- clamped, right - free.

Figure 5. Placement indices for simultaneous consideration of eigenmodes using H∞ norm

for an actuator: left – modes 1–3 (clamped); right – modes 1,2,4 (free).

results for the optimal placement of actuators/sensors placed side by side are obtained.

hop1,2f = 337, 4 mm (27)

φop1f = −107, 5◦ for the actuator, φop1f = −101, 5◦ for the sensor (28)

φop2f = 101, 5◦ for the actuator, φop2f = 95, 5◦ for the sensor (29)

hop3,4f = 15, 4 mm (30)

φop3f = −52, 5◦ for the actuator, φop3f = −46, 5◦ for the sensor (31)

φop4f = 46, 5◦ for the actuator, φop4f = 40, 5◦ for the sensor (32)
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Optimal placement results depend on the number of considered eigenmodes of interest,

boundary conditions, but in preliminary consideration also the meshing has to be carefully

performed.
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On the use of transmissibility to estimate vibro-acoustic 

responses in operational conditions 

 

 

Miguel Neves, Dmitri Tcherniak, Hugo Policarpo, Nuno Maia 

Abstract: This work briefly reviews the concepts of displacement transmissibility, 

acoustic transmissibility as well as vibro-acoustic transmissibility used to relate 

responses from some parts with their counterpart. One application where the concept 

appears naturally is the Operational Transfer Path Analysis (OTPA). It is based solely 

on operational measurements, not requiring any Frequency Response Functions 

(FRFs), thus significantly reducing the complexity of the measurement campaign and 

reducing the measurement time. The OTPA method has advantages depending on the 

conditions of the problem. Here, the authors are concerned with the influence of the 

stiffness values of the vibration source (excitation) mounts on the response inside the 

structurally connected acoustic cavity. In this article, the authors conclude that if the 

stiffness of the mounts approaches zero, the OTPA contributions coincide with the 

baseline ones independently of having cross talk or not. If the mount stiffness 

approaches infinity, the contributions coincide with the OTPA contributions obtained 

when the indicator signals are measured on the passive side of the mount. Therefore, 

placing the indicator accelerometers on the active side of the mounts are advantageous 

as this will produce a lesser error than when they are placed on the passive side of the 

mounts. Placing the indicator accelerometers on the both sides of the mount produces 

no cross-talk error. These results illustrate in which conditions the contributions from 

conventional TPA and OTPA compare. 

1. Introduction 

The use of transmissibility in structural dynamics may be regarded from several points of view and 

have different and useful applications. Pioneer attempts to extend the vibration transmissibility, from 

Single Degree-of-Freedom (SDOF) systems to Multiple Degree-of-Freedom (MDOF), are described 

e.g. in [1-4]. The generalization to MDOF is found e.g. in [5] relating two sets of response positions 

in  matrix form.  

 In acoustics and vibro-acoustics, a multipoint transmissibility can be set as in [6] using a discrete 

acoustic transmissibility to measure a wall pressure spectrum, and as in [7], where scalar 

transmissibility is considered of high potential for operational modal analysis, model updating [8] and 

structural health monitoring [9].  
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 When technical difficulties arise in measuring operational responses at some co-ordinates of the 

structure (e.g. at inaccessible co-ordinates), the transmissibility matrix evaluated beforehand, by 

measuring a few responses, can help in overcoming those difficulties [10]. 

Vibration excitation forces can be estimated from measured responses [11-15]. The same can be 

achieved through the use of force transmissibility [16]. As mentioned in [17], expression relating 

force transmissibility and displacement transmissibility are not identical for MDOF systems [18]. 

Several applications of the transmissibility approach have been developed, e.g. the dynamic 

response estimation [19], damage detection [20, 21], operational modal analysis [22], evaluation of 

unmeasured FRFs [23], and force identification [24,25]. As in transfer path analysis (TPA) the 

measurement of transfer functions may often be time consuming and error-prone,  several authors 

sought for easier and more reliable ways through the use of the transmissibility matrix extracted from 

operational measurements (see Tcherniak [26,27] and Tcherniak et al. [28, 29]). 

In acoustics, few publications are fully dedicated to transmissibility, but many cover its 

applications, like e.g. OTPA. Among the ones dedicated to transmissibility, let us mention the works 

of Devrient et al. [30], Kletschkowski [31], Weber et al. [32], Guedes and Neves [33], and Guedes 

[34]. In [35], the acoustic multipoint transmissibility is developed for noise source identification and 

reconstruction.  

Recently, a renewed interest for faster TPA methods [36] has driven to the use of operational 

data with the transmissibility concept. Several related methods have been named as Operational TPA 

[37], blocked-force TPA, Operational Path Analysis with eXogenous inputs (OPAX), Gear Noise 

Propagation, in situ Source Path Characterization and Virtual Acoustic Prototyping. Meanwhile, 

literature has also been produced on the limitations and drawbacks of these methods, see e.g. [38], 

including issues in the estimation of transmissibility, or errors due to coupling between path inputs, 

etc. 

In this paper, the generalized concepts for vibration and acoustic transmissibility are described in 

section 2. The extension to vibro-acoustic transmissibility between MDOFs is described in the section 

3. In section 4, the authors elaborate on the operational conditions and signal processing with the 

objective of reducing errors. Finally, in section 5, the authors present the main conclusions. 

2. Fundamentals 

The concept of vibration transmissibility and acoustic transmissibility between MDOFs is briefly 

reviewed in this section. For a detailed description, the authors recommend reading [18, 23, 35]. 

2.1. Vibration transmissibility in MDOF dynamic systems  

For a linear viscoelastic solid, the structural (subscript ‘s’) response may be given by 
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 [𝑀𝑠]{𝑦 ̈(𝑡)} + [𝐶𝑠]{𝑦 (̇𝑡)} + [𝐾𝑠]{𝑦(𝑡)} = {𝑓𝑠(𝑡)} (1) 

where [Ms], [Cs] and [Ks] are the mass, damping and stiffness matrices, respectively; {y} is the nodal 

displacement vector; the dots are for its time derivatives; t is time and { fs } is the applied excitation 

load vector. 

For a harmonic excitation load the steady-state response can be obtained from 

[[𝐾𝑠] + 𝐢ω[𝐶𝑠] − ω2[𝑀𝑠]]{Y(ω)} = {𝐹𝑠(ω)}    ⇔     [𝑍𝑠(ω)]{Y(ω)} = {𝐹𝑠(ω)} (2) 

where [𝑍𝑠(ω)] is the dynamic stiffness matrix and ω is the excitation frequency. The receptance 

matrix [𝐻𝑠(ω)] may be obtained as  

{Y(ω)} = [𝑍𝑠(ω)]−1{𝐹𝑠(ω)} = [𝐻𝑠(ω)]{𝐹𝑠(ω)} (3) 

The generalization to MDOF requires the definition of some sets of DOFs. The sets U and K are 

composed by coordinates where the responses are measured and the set A by coordinates where loads 

can be applied (may include DOFs from other sets). These sets can be unions spatially separated 

subsets. 

 From Eq. (3) the amplitudes {YU} and {YK} are described by 

{

 {𝑌𝑈} = [𝐻𝑠 𝑈𝐴]{𝐹𝑠𝐴}

{𝑌𝐾} = [𝐻𝑠 𝐾𝐴]{𝐹𝑠𝐴}
 (4) 

where [𝐻𝑠𝑈𝐴] is the truncated FRF matrix to the sets of DOFs U and A (representing the respective 

co-ordinates). To obtain the respective transmissibility matrix, from Eq. (4) ,one can use the pseudo-

inverse of [𝐻𝑠𝐾𝐴], i.e. 

{𝑌𝑈} = [𝐻𝑠𝑈𝐴] ∙ ([𝐻𝑠𝐾𝐴]+){𝑌𝐾} = [𝑇𝑈𝐾
𝐴 (s)

] {𝑌𝐾} (5) 

 Note that the pseudo-inversion requires the set K to be larger or equal than the set A.  

2.2. Acoustic pressure transmissibility  

In a similar way, an acoustic system of linear dynamic inviscid and non-flowing fluid (subscript ‘f’) 

may be modelled in the frequency-domain (i.e. steady-state case) using the following equation 

[[𝐾𝑓] + iω[𝐶𝑓] − ω2[𝑀𝑓]] {𝑃(ω)} = {𝐹𝑓(ω)}  𝑜𝑟  [𝑍𝑓(ω)]{𝑃(ω)} = {𝐹𝑓(ω)} (6) 

where [𝐾𝑓], [𝐶𝑓] and [𝑀𝑓] are the acoustic stiffness, acoustic damping and acoustic mass matrices, 

respectively; {𝑃(ω)} is the sound pressure amplitude vector in steady-state; and {𝐹𝑓(ω)} is the force 

vector associated with the internal sound sources and/or imposed velocities. As [𝑍𝑓(ω)]{𝑃(ω)} =

{𝐹𝑓(ω)}, the steady-state pressure {𝑃(ω)} is given by 
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{P(ω)} = [𝑍𝑓(ω)]
−1

{𝐹𝑓(ω)} = [𝐻𝑓]{𝐹𝑓(ω)} (7) 

where [𝐻𝑓] is the frequency-response matrix in the acoustic system.  

 The domain is divided in the four sets of coordinates: 1) the set of known coordinates K (where 

pressure can be measured); 2) the set of known coordinates U (where the pressure amplitudes are 

unknown or to be estimated); 3) the unknown set of coordinates S (where sources are located); and 4) 

the set C representing the remaining coordinates. Note that the sets can be unions of subsets spatially 

separated. 

 Assuming that no sources exist other than the ones in set S, i.e. {𝐹𝑓𝐾(ω)}, {𝐹𝑓𝑈(ω)} and 

{𝐹𝑓𝐶(ω)} are zero, then Eq. (7) can be written as 

{

𝑃𝐾

𝑃𝑈

𝑃𝑆

𝑃𝐶

} =

[
 
 
 
 
𝐻𝑓𝐾𝑆

𝐻𝑓𝑈𝑆

𝐻𝑓𝑆𝑆

𝐻𝑓𝐶𝑆]
 
 
 
 

{𝐹𝑓𝑆} (8) 

From Eq. (8), one can obtain an expression relating {𝑃𝑈(𝜔)} with {𝑃𝐾(𝜔)}. The acoustic 

pressure transmissibility matrix between sets U and K, assuming the sources acting only in set S, is 

given by 

{𝑃𝑈(𝜔)} = [𝐻𝑓𝑈𝑆] ∙ [𝐻𝑓𝐾𝑆]
+
{𝑃𝐾(ω)} = [𝑇UK

𝑆 (𝑓)
] {𝑃𝐾(𝜔)} (9) 

where [𝑇UK
𝑆 (𝑓)

] has dimensions nU x nK , respectively the number of coordinates in sets U and K. It 

requires that nK be greater or equal than nS. This matrix may have ill-conditioning problems that shall 

be taken into account. 

A disadvantage of existing Operational Acoustic Modal Analysis (OAMA) [29] is that non-

measured acoustic sources must be pure white noise. But, in operation one advantage of the 

transmissibility functions is that they can be measured without the knowledge of the excitation forces.  

3. Vibro-acoustic transmissibility  

In the coupled model the pressures at solid-fluid interface are considered as in the last term of the 

following equation for the structural part 

[[𝐾𝑠] + iω[𝐶𝑠] − ω2[𝑀𝑠]]{Y(ω)} = {𝐹𝑠(ω)} − [A]{P(ω)} (10) 

where matrix [A] is the coupling matrix that in this case transfers the pressure from the acoustic fluid 

to the structure (for a detailed description on the formulation aspects, see [39]).  

 The following fluid-structure interface condition is used  
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𝜕𝑝

𝜕𝑛
= −𝜌�̈�𝑛 (11) 

which is expressed in the acoustic fluid part by adding the influence of the displacement at the 

boundary (last term in Eq. (12)) 

[[𝐾𝑓] + iω[𝐶𝑓] − ω2[𝑀𝑓]] {𝑃(ω)} = {𝐹𝑓(ω)} − ω2𝜌[A]𝑡{𝑌(ω)} (12) 

Combining the modified structural Finite Element (FE) model of Eq. (10) with the modified 

acoustic FE model of Eq. (12), one obtains the following Eulerian FE/FE model for an interior 

coupled vibro-acoustic system [39]  

([
𝐾𝑠 𝐴
0 𝐾𝑓

] + 𝐢ω [
𝐶𝑠 0
0 𝐶𝑓

] − ω2 [
𝑀𝑠 0

−𝜌𝐴𝑡 𝑀𝑓
]) {

Y(ω)

P(ω)
} = {

𝐹𝑠(ω)

𝐹𝑓(ω)
} (13) 

This coupled system model the Fluid-Structure Interaction (FSI) and may be expressed as 

([𝐾𝐹𝑆𝐼] + 𝐢ω[𝐶𝐹𝑆𝐼] − ω2[𝑀𝐹𝑆𝐼]){X(ω)} = {𝐹𝐹𝑆𝐼} ⇔ {X(ω)} = [𝐻𝐹𝑆𝐼]{𝐹𝐹𝑆𝐼} (14) 

From Eq. (14), it is possible to relate some displacement responses on a new set A (that defines 

coordinates where displacements are of interest), as well as some pressures responses on a new set B 

(that defines coordinates where pressures are of interest), i.e. 

{𝑌𝐴(ω)} = [𝐻𝐴𝐴
𝐹𝑆𝐼]{𝐹𝐴(ω)} (15a) 

{𝑃𝐵(ω)} = [𝐻𝐵𝐴
𝐹𝑆𝐼]{𝐹𝐴(ω)} (15b) 

Finally, pressure responses can be related to displacement responses as 

{𝑃𝐵(ω)} = [𝐻𝐵𝐴
𝐹𝑆𝐼][𝐻𝐴𝐴

𝐹𝑆𝐼]
−1

{𝑌𝐴(ω)} = [𝑇𝐵𝐴
𝐹𝑆𝐼]{𝑌𝐴(ω)}, (16) 

which defines the corresponding vibro-acoustic transmissibility [𝑇𝐵𝐴
𝐹𝑆𝐼].  

4. On the noise source contributions from conventional TPA and Operational TPA  

Identifying and understanding noise sources and noise propagation paths is an important aspect in 

industries like in automotive Noise, Vibration, and Harshness (NVH). A typical problem in NVH 

source-path-receiver involves the noise and vibration at sensitive locations (driver’s ears, steering 

wheel, etc.), which are instrumented by receivers (microphones and accelerometers). 

 The noise sources, e.g. the engine and the ventilation fan, can be considered two uncorrelated 

sources. In this work, the considered noise propagation paths from the engine to the cabin are 

essentially two structure borne paths (through two engine mounts) and one air-borne path (the fan 
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takes the air-borne path to reach the receivers). The TPA estimates contributions from each source 

and propagation paths. 

4.1. Conventional TPA and Operational TPA 

Although this study can be generalized to multiples receivers, we consider the simple case where only 

one receiver exist. In the conventional TPA approach, one has un (n=1,…,N) noise or vibration 

sources (or paths) to be characterized. The Cn contributions of n-th source to the total noise Y (at the 

receiver position) is  

𝑌 = ∑ 𝐶𝑛
𝑁
𝑛=1  (17) 

where each contribution Cn is estimated as  

 𝐶𝑛 = 𝐻𝑌𝑛𝑈𝑛 (18) 

Here, the capital letters denote the complex Fourier spectra of the corresponding physical 

quantities in time domain that are denoted by small letters.  

The contribution Cn is a product of 𝐻𝑌𝑛, the FRF, and 𝑈𝑛, the operational source strength. The 

FRFs can be measured in the lab (when the machine is not under operation), but it is not possible or at 

least difficult to measure the source strength 𝑈𝑛 in operation. This lead to the use of indirect methods.  

The most usual indirect method is the matrix inversion method. In this method, indicator sensors 

(indicated by v) are placed near the sources (indicated by u), and the FRFs between the sources and 

the indicators are measured to form the indicator-to-source matrix [𝐻𝑉𝑈].  

When the machine is under operation, the signals from the indicator sensors {�̃�} =

{�̃�1, �̃�2, … , �̃�𝑁𝑉
}
𝑇
 are measured (where ̃  stands for measured). Based on the relation 

{�̃�} = [𝐻𝑉𝑈]{𝑈} (19) 

where {𝑈} = {𝑈1, 𝑈2, … , 𝑈𝑁𝑈
}
𝑇

, the operational source strength is estimated as  

{𝑈} = [𝐻𝑉𝑈]−1{�̃�} (20) 

This inversion requires that the number of the indicator sensors 𝑁𝑉 be greater or equal to the 

number of sources 𝑁𝑈. 

The conventional TPA method involves a set of FRFs to be measured, which is a time 

consuming process. This, a faster technique is of major interest. One answer to this problem is the so-

called Operational TPA. 

OTPA is based solely on operational measurements (conducted when the machine is in 

operation) and does not require any FRFs. On the one hand, it significantly reduces the complexity of 
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the measurement task as well as its measurement time. On the other hand, OTPA has been criticized 

as it may provide incorrect results in some situations.  

OTPA is based on the concept of transmissibility and it can be directly derived from the 

conventional TPA. In what follows, one analyses its basis in order to identify some of its drawbacks 

and possibly find how to circumvent them.  

Rewriting (19) in matrix notation 

𝑌 = {𝐻𝑌1   𝐻𝑌2   …  𝐻𝑌𝑁}{𝑈1, 𝑈2, …𝑈𝑁}𝑇 = {𝐻𝑌𝑈}𝑇{𝑈} (21) 

and substituting Eq. (20) into Eq. (21) yields  

𝑌 = {𝐻𝑌𝑈}𝑇[𝐻𝑉𝑈]−1{�̃�} = {𝑇𝑌𝑉
(𝑈)

}
𝑇
{�̃�} (22) 

Thus, the estimated response 𝑌 can be expressed as a linear combination of the indicator 

responses {�̃�}.  

The OTPA method postulates that if the indicator sensors are placed in a vicinity of noise sources 

the conventional TPA contributions Cn can be approximated by 

𝐶𝑛 ≈ 𝑆𝑛 = 𝑇𝑌𝑛
(𝑈)

�̃�𝑛 (23) 

where 𝑆𝑛 is the OTPA contribution from the n-th source/path, and 𝑇𝑌𝑛 is the corresponding element 

of the transmissibility matrix. This vicinity requirement is based on empirical evidence, but the 

problem can be more complex as it will be discussed in the next section. 

4.2. On reducing OTPA error in the structural path  

Here, let us consider, as in Fig. 1a, a structural path where the forces acting across the mounts (energy 

source) are {𝑈} = {𝐹1, 𝐹2}
𝑇. The indicator accelerometers are placed on the passive side of the 

mounts, close to the mount connection interfaces, and so {�̃�} ≡ {𝑋𝑝}, where  {𝑋𝑝} denotes the 

displacement at the passive side of the mounts. 

The FRF matrices are 

[𝐻𝑉𝑈] ≡ [𝐻𝑋𝑝𝐹] = [
𝐻11 𝐻12 
𝐻21 𝐻22

]  (24) 

{𝐻𝑌𝑈} ≡ {𝐻𝑌𝐹} = {𝐻𝑌𝐹1
     𝐻𝑌𝐹2

}
𝑇

 (25) 

 In order to discuss the influence of the cross terms, 𝐻12 and 𝐻21, on the OTPA contributions 𝑆n, 

one replaces in Eq. (24) the original matrix [𝐻𝑋𝑝𝐹]  by the new one [
𝐻11 𝜀𝐻12 
𝜀𝐻21 𝐻22

]. The factor ε 

reflects the level of cross-talk between the sources and indicator sensors, i.e. 𝜀 = 0 means no cross-
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talk and  𝜀 = 1 means full cross-talk. Substituting Eq.s (24) and (25) in  Eq. (22) and considering Eq. 

(23), one obtains the expressions for 𝑆1and 𝑆2, which after expanding in Taylor series around 𝜀 = 0, 

yields the following OTPA contributions: 

𝑆1 = 𝐶1 + (−
𝐻21𝐻𝑌𝐹2 𝐹1

𝐻22
+

𝐻12𝐻𝑌𝐹1  𝐹2

𝐻11
) 𝜀 + 𝑂(𝜀2) (26) 

𝑆2 = 𝐶2 + (
𝐻21𝐻𝑌𝐹2𝐹1

𝐻22
−

𝐻12𝐻𝑌𝐹1𝐹2

𝐻11
) 𝜀 + 𝑂(𝜀2) (27) 

 The OTPA contributions will have an error of order ε, which in structure borne case will 

depend on the frequency and can be quite significant. However, it is clear from Eq. (26) and Eq. 

(27) that the sum of the OTPA contributions differs from the baseline by a term of order 𝜀2. 

 

a) b) c) 

Figure 1.   Setup illustrations on measuring operational mount deformation with accelerometers 

placed: a) on the passive side of the mounts and close to the mount connection interfaces; b) 

on both sides of the mount; and c) on the active sides of the mounts. 

 The following question arises from the above results: can we devise a measurement setup that 

eliminates or reduces the OTPA error due to the cross-talk? 

 As observed, OTPA produces correct results if there is no cross-talk, i.e. if [𝐻𝑉𝑈] is diagonal. 

Also, the operational forces acting through the mounts are expressed by 𝐹𝑖 = 𝐾𝑖Δ𝑋𝑖, where 𝐾𝑖 is the 

stiffness and Δ𝑋𝑖 is the operational deformation of the i-th mount. In matrix notation, 

{𝐹} = [
𝐾1 0
0 𝐾2

] {
Δ𝑋1

Δ𝑋2
} = [𝐾]{Δ𝑋} (28) 

Solving for {ΔX} one obtains 

{Δ𝑋} = [𝐾]−1{𝐹} = [
1/𝐾1 0

0 1/𝐾2
] {𝐹} (29) 

 One can notice that if the vector {Δ𝑋} is declared as the vector of indicator signals, {�̃�} ≡ {Δ𝑋}, 

matrix [𝐾]−1 becomes the [𝐻𝑉𝑈] matrix, and it is diagonal. So, if one can devise a sensor that 

measures Δ𝑋𝑖, and use such sensors for measuring the indicator signals, the [𝐻𝑉𝑈] will be diagonal, 

and the OTPA method will provide exact contributions.  
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In principle, one can suggest that it is rather easy to implement such a sensor by placing 

accelerometers on both sides of the mount (see Fig. 1b), and subtracting one’s readings from another. 

In this case, the OTPA contributions of each mount will be correct.  

In automotive industry, many mounts connecting substructures are soft; for these mounts the 

vibration magnitude of the active side Xa can be much higher than of its passive counterpart Xp.  

 One can expect that, in the case of such soft mounts, placing the indicator accelerometers on the 

active sides of the mounts (see Fig. 1c), will produce almost correct OTPA contributions. Let us 

quantify them as {�̃�} ≡ {𝑋𝑎}. Constructing {�̃�} from the already introduced components, 

{�̃�} ≡ {𝑋𝑎} = {𝑋𝑝} + {Δ𝑋} = ([𝐻𝑋𝑝𝐹] + [𝐾]−1) {𝐹} (30) 

For the sake of simplicity, the indices of [𝑇𝑌𝑉
(𝑈)

] will be omitted in the following text, and the 

transmissibility matrix will be simply denoted as [𝑇]. One can readily derive the respective 

transmissibility matrix [T] (in this case a vector) as: 

{𝑇} =
1

𝑑𝑒𝑡
{
𝐻𝑌𝐹1

𝐾1 + 𝐻𝑌𝐹1
𝐻22𝐾1𝐾2 − 𝜀 𝐻𝑌𝐹2

𝐻21𝐾1𝐾2

𝐻𝑌𝐹2
𝐾2 + 𝐻𝑌𝐹2

𝐻11𝐾1𝐾2 − 𝜀𝐻𝑌𝐹1
𝐻12𝐾1𝐾2

}
𝑇

 (31) 

where 𝑑𝑒𝑡 = 1 + 𝐻11𝐾1 + 𝐻22𝐾2 + 𝐻11𝐻22𝐾1𝐾2 − 𝜀2 𝐾1𝐾2. Then the corresponding OTPA 

contributions S are 

𝑆1
′ = 𝐶1  +

(𝐹2𝐻𝑌𝐹1𝐾1+ 𝐹2 𝐻𝑌𝐹1𝐻22𝐾1 𝐾2)𝐻12−(𝐹1𝐻𝑌𝐹2𝐾2+𝐹1𝐻𝑌𝐹2𝐻11𝐾1𝐾2)𝐻21

1+𝐻11𝐾1+𝐻22𝐾2+𝐻11𝐻22𝐾1𝐾2
𝜀 + 𝑂(𝜀2)   

𝑆2
′ = 𝐶2 + 

−(𝐹2𝐻𝑌𝐹1+𝐹2𝐻𝑌𝐹1𝐻22𝐾1𝐾2)𝐻12+(𝐹1𝐻𝑌𝐹2𝐾2+𝐹1𝐻11𝐻𝑌𝐹2𝐾1𝐾2)𝐻21

1+𝐻11𝐾1+𝐻22𝐾2+𝐻11𝐻22𝐾1𝐾2
𝜀 + 𝑂(𝜀2) (32) 

It is difficult to interpret expressions in Eq. (32), but one can observe that they are similar in the 

sense that, if there is no cross-talk then 𝑆1
′ = 𝐶1 and 𝑆2

′ = 𝐶2. Also, if the contributions summed up, 

the terms of the order of ε cancel out, and 

𝑆1
′ + 𝑆2

′ = 𝐶1 + 𝐶2 + 𝑂(𝜀2) (33) 

Another interesting property of 𝑆′1 and 𝑆2
′  is that: 

- if the stiffness of these mounts approaches zero, the OTPA contributions coincide with the baseline 

ones, even for 𝜀 ≠ 0: 

lim
𝑘1→ 0
𝑘2→ 0

𝑆1
′ = 𝐶1  and   lim

𝑘1→ 0
𝑘2→ 0

𝑆2
′ = 𝐶2 (34) 

- if the stiffness of these mounts approaches infinity, the contributions coincide with the OTPA 

contributions obtained when the indicator signals are measured on the passive side of the mount: 
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lim
𝑘1→ ∞
𝑘2→ ∞

𝑆1
′ = 𝑆1     and    lim

𝑘1→ ∞
𝑘2→ ∞

𝑆2
′ = 𝑆2 (35) 

5. Conclusions 

The formulations for vibration, acoustic as well as their extension to the vibro-acoustic 

transmissibility problem were presented. Some considerations have been done to the application of 

these concepts with respect to OAMA, TPA and OTPA.  

A real advantage of OTPA is the use of transmissibility matrices that can be estimated without 

measuring FRFs. In this work, the authors analysed the conditions where the sum of the OTPA 

contributions may differ from the baseline (conventional TPA) in the presence of a cross-talk factor ε 

and conclude that for small values of ε they differ by a term of order 𝜀2.  

Answering to a question on how to devise a measurement setup that eliminates or reduces the 

OTPA error due to cross-talk, it is clear for the given examples that placing the indicator sensors on 

the active side of the mounts is advantageous. Indeed, this configuration will produce a smaller error 

than when they are placed on the passive side of the mounts. The best option is to place the indicator 

sensors on both sides of the mounts, as it produces no cross-talk.  
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On the influence of external stochastic excitation on linear 

oscillators with subcritical self-excitation applied to brake squeal  

 
 

Minh-Tuan Nguyen-Thai, Paul Wulff, Nils Gräbner, Utz von Wagner 

Abstract: A characteristic of linear systems with self-excitation is the occurrence of 
non-normal modes. Because of this non-normality, there may be a significant growth 
in the vibration amplitude at the beginning of the transient process even in the case of 
solely negative real parts of the eigenvalues, i.e. asymptotic stability of the trivial 
solution. If such a system is excited additionally with white noise, this process is 
continually restarted and a stationary vibration with dominating frequencies and 
comparably large amplitudes can be observed. Similar observations can be made during 
brake squeal, a high-frequency noise resulting from self-excitation due to the frictional 
disk-pad contact. Although commonly brake squeal is considered as a stable limit cycle 
with the necessity of corresponding nonlinearities, comparable noise phenomena can in 
the described model even observed in a pure linear case when the trivial solution is 
asymptotically stable. 

1. Introduction 

In a lot of applications, including but not limited to cutting machines, bridges under wind, and disk 

brakes, self-excited vibrations may appear as an unwanted phenomenon that reduces the effectiveness 

of the machines, causes inconvenience or even leads to destruction. In linear analysis, a self-excited 

system is usually modeled as a system of homogeneous linear ordinary differential equations (ODE) 

which may be obtained for a general continuous system by discretization and linearization. As a 

consequence, a trivial solution exists. The most popular criterion to determine, whether harmful 

vibrations happen or not is based in that type of mathematical models on the stability of the trivial 

solution. If the trivial solution is asymptotically stable, any difference between the initial state and the 

trivial solution is reduced to a negligible amount after a period of time called the transient process. The 

common disinterest in the transient process is supported by the fact that it is usually so short that it is 

far less representative for the behavior of the system than the steady state. However, the importance of 

the transient process is remarkable when there is an appearance of transient growth: vibration 

amplitudes may increase at the beginning of the transient process even when the largest Lyapunov 

exponent is negative. Transient growth is of more interest in fluid dynamics to study turbulence [1, 2]. 

In the field of mechanics, some studies led by Hoffmann show that transient growth may cause beating 
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[3] or initiate stick-slip [4] in friction-induced vibration problems. So far, this phenomenon is known 

from literature although probably not aware to many engineers in this field. 

In reality, there may be sources for additional external forces in the self-excited systems so that 

their governed ODE are not homogeneous. Instead, white noise excitation, for example, can be added 

to the mathematical models. In this case, stability analysis of the trivial solution alone is not enough to 

characterize the behavior of the system. The asymptotic stability of the respective homogeneous system 

only means that the stochastic process in case of Gaussian white noise excitation is not drifting away. 

The result is a Gaussian probability density distribution around zero. But asymptotic stability together 

with the maximum Lyapunov exponent does not say anything about how likely large deviations from 

zero are.  

These deviations may be important, noting the fact that harmful phenomena may occur even with 

small vibration amplitudes: the amplitudes of mechanical parts during brake squeal [5, 6] – a type of 

uncomfortable noise with kHz-frequency that may happen when an automotive mechanical brake 

system is activated – lie in the micrometer range. Therefore, the effect of stochastic excitation on linear 

systems, especially systems with the above-mentioned transient growth, should be studied. 

By comparing a normal and a non-normal system with same maximum real part of the eigenvalues, 

the reason for transient growth is introduced, and then the effect of stochastic excitation on such 

equations examined. 

2. Non-normality and transient growth in linear systems with self-excitation 

2.1. Properties of an EDKN system 

Consider a system of two linear ordinary differential equations for self-excited vibrations, which is in 

its basic structure similar to those, which are obtained from minimum models for brake squeal [4, 7]. 

These equations are written in the form 

( )  x K N x 0 , (1) 

where x is a 2-by-1 vector representing in mechanical systems displacements or angles, K is a 2-by-2 

symmetric positive definite matrix (stiffness matrix) and N is a 2-by-2 skew-symmetric matrix 

representing the self-excitation (circulatory matrix). If linear damping is added to the model, its 

equations read [4] 

( )   x Dx K N x 0  , (2) 

where D is a 2-by-2 symmetric positive definite matrix (damping matrix). In general, minimal brake 

squeal models may have equations of motions, where the mass matrix is not an identity matrix (e.g. in 

[8]), i.e. they read as 
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( )   Mx Dx K N x 0  , (3) 

where M is the 2-by-2 symmetric positive definite mass matrix. 

A system governed by Eq. (3) is called an MDKN system [9], implying that its equations include 

four matrices denoted by these four letters. The special case Eq. (2) of this with mass matrix being 

identity matrix E can be called an EDKN system. Any MDKN system whose matrix M is a diagonal 

matrix with all diagonal elements equal to each other can be easily written in the form of an EDKN 

system by multiplying to the left of its equations the inverse matrix of M. The positive definite 

assumptions for M, D and K can be reduced to positive semi-definite for generalization, but it is not 

the case considered in this paper. The appearance of N originates from non-conservative circulatory 

forces and may result in instability of the trivial solution, which is in linear brake squeal models 

considered to be the mechanism of squeal. Even in the case of asymptotically stable trivial solution, a 

system with non-vanishing N is a system with self-excitation in which it can be called more specifically 

a system with subcritical self-excitation. Without N, we have the well-known MDK system which has 

always an asymptotically stable trivial solution provided that M, D and K are all symmetric positive 

definite. 

2.2. Non-normality and transient growth 

 The basic effect of transient growth for non-normal systems is known from literature also with 

application to friction induced vibrations [3, 4]. Nevertheless it shall be repeated here as an introduction 

of the considered systems and the effects resulting from additional stochastic excitation to be described 

in section 3. 

To visualize the concept of non-normality and transient growth, consider an EDKN system whose 

matrices are chosen as 

0.1 0.01

0.01 0.1

 
   

D ,   
1 0.5

0.5 1

 
   

K ,   
0

0

n

n

 
  
 

N , (4) 

where n is a real parameter, and a corresponding EDK system 

  x Dx Kx 0  , (5) 

where α is chosen so that both systems have the same maximum real part of the eigenvalues. For 

simplicity purposes, all the parameters including the time are considered as dimensionless in the 

following. 

As long as the trivial solution is asymptotically stable (subcritical self-excitation) and its 

characteristic polynomial has no repeated roots, the general real solution of it has the form 
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1 2 1 2
1 1 1 2 2 2 3 3 1 4 4 2( ) cos( ) cos( ) sin( ) sin( )t t t tt C e t C e t C e t C e t            x u u u u , (6) 

where λ1, λ2, ω1 and ω2 are positive values. The Euclidean norms of modal vectors ui (i = 1, 2, 3, 4) are 

chosen as 1. C1, C2, C3 and C4 are coefficients to be determined from the initial condition. 

If we consider the initial condition 

 0 10 20(0)
T

x x x x ,   (0) x 0 , (7) 

with 

2 2
10 202

1x x  x , (8) 

both C3 and C4 are equal to zero while C1 and C2 can be found by solving the linear algebraic equations 

0Uc x  (9) 

where 

 1 2 ,U u u     1 2

T
C Cc . (10) 

Varying n, one gets different pairs of u1, u2 and different angles between them. When the angle is 

close to π/2, the Euclidean norm of c always stay near 1. In contrast, when the angle close to 0 or π and 

with appropriate initial conditions, either C1 or C2 or both can take a value much higher than 1, i.e. the 

initial modal vectors can be much larger than the vector of initial conditions. We can say that the latter 

case shows a strong non-normality and a system with this characteristic is called a non-normal system. 

The explanation of the concept of non-normality can also be found in [10]. As a result of the large initial 

vectors, a non-normal system may have a transient growth: even when the system is exponentially 

stable, its vibration amplitude initially increases before decaying to zero (Fig. 1a). This behavior cannot 

be seen in a typical MDK system (Fig. 1b). The maximum real part of the eigenvalues for both systems 

is approximately –0.0324 and the initial conditions are as described in Eq. (7), with x10 = 0 and x20 = 1. 

It should be noted that whether transient growth occurs or not also depends on the choice of the initial 

conditions as described in [3]. 
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a)                                                                      b) 

Figure 1.   a) Transient growth and subsequent decaying vibration of an EDKN system (2)  

with n = 0.48. 

b) Decaying vibration without transient growth of an EDK system (5) when n = 0, α = 0.72. 

3. Comparison of vibrational behavior EDK and EDKN systems subjected to 

external stochastic excitation  

In the operation of real systems, may they contain self-excitation or not, it can be expected, that small 

external disturbances are present, which are in the following modeled by Gaussian white noise. As we 

consider linear systems with Gaussian white noise most of the following steps can be performed 

analytically with well-known relations.  

The governing ODEs in this case become inhomogeneous by adding white noise to the right-hand 

side of equation (2) and (5) 

( )t t t t   X DX K N X σ  , (11) 

t t t t   X DX KX σ  . (12) 

Herein t is a scalar Gaussian white noise with zero mean and the 2-by-1 vector σ contains their 

intensity coefficients. The considered equations now form a system of linear stochastic differential 

equations (SDE). In the following we use stationary probability density functions p (PDF) for 

comparing the two systems under consideration. The probability density function can either be 

calculated using numerical integration (Monte-Carlo simulation) or by solving the corresponding 

Fokker-Planck equation. In both cases, (11) and (12) are rewritten as a first-order system 

d dt t tW Q AQ g , (13) 

d dt t tW Q A Q g  (14) 

respectively, where Qt is the vector of the random state processes  
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t

t

t

 
  
 

X
Q

X
. (15) 

tW is the Wiener process corresponding to t , and the other matrices are determined as follows 

( )

 
     

0 E
A

K N D
,   


      

0 E
A

K D
, (16) 

0

0

 
   
  

g

σ

. (17) 

The diffusion matrix is defined as 

TB gg . (18) 

To save space, the equations from now on are only written for A, but they also hold for A′. In order 

to find a PDF p(q) of the stationary process Qt, the stationary Fokker-Planck equation associated with 

Eq. (13) and (14)  

24 4 4 4

1 1 1 1

1
( ) ( ) 0

2ij j ij
i j i ji i j

p a q p b
q q q   

           
  q q   (19) 

has to be solved, where aij and bij are the elements in row i and column j of matrix A and matrix B, 

respectively. 

Since we have a linear system with Gaussian excitation, the corresponding solution is also 

Gaussian. Following [11], the solution has the form 

1
2

1

2

1 1
( ) ( , ) exp ( )

2(2 )

Tp


     
 

q μ 0 Λ q Λ q
Λ

N  (20) 

with mean value vector μ 0  due to missing asymmetry and covariance matrix Λ . Hence, Eq. (19) 

yields to the following algebraic equation [12] 

[( ) ( )]vec( ) vec( ) 0    E A A E Λ B , (21) 

where ⊗ denotes the Kronecker product and vec(∙) denotes vectorization operator. For the results 

discussed later on, it is chosen that 

0

1

 
  
 

σ . (22) 
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Solving (21) for Λ and computing (20), one obtains p(q). Marginal PDF
1Xp and

2Xp can then 

calculated by 

1 11 1 2 3 4( ) ( ) ( ) d d dX Qp x p q p q q q
  

  

     q , (23) 

2 22 2 1 3 4( ) ( ) ( ) d d dX Qp x p q p q q q
  

  

     q . (24) 

In the following, corresponding results are discussed. Figure 2 shows time responses X1t and X2t 

obtained by Monte-Carlo simulation performed by using the Euler-Maruyama method. It can be 

observed, that the vibration amplitudes of X2t of both cases are in a similar range, while for X1t the 

EDKN system produces much higher amplitudes. 

 

a)                                                                      b) 

Figure 2.   Time responses X1t and X2t for a) EDKN system and b) EDK system with same white noise 

excitation according to Eq. (22). 

A similar behavior can be observed when considering the PDF. Figures 3 and 4 show the marginal 

PDF
1Xp and

2Xp for both EDKN and EDK system as analytical solution of the Fokker-Planck equation 

according to Eqs. (20) – (24) compared with Monte-Carlo simulation results. Again 
1Xp is spreading 

much more for the EDKN system compared to the EDK system while
2Xp is comparable in both cases.  
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Figure 3.   Marginal PDFs
1Xp of stochastically excited EDKN and EDK system respectively obtained 

from solving the Fokker-Planck equation (lines) and from Monte-Carlo simulation (dots). 

 

 

Figure 4.   Marginal PDFs
2Xp of stochastically excited EDKN and EDK system respectively obtained 

from solving the Fokker-Planck equation (lines) and from Monte-Carlo simulation (dots). 
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Finally the frequency characteristic of the responses X1t and X2t for the EDKN system shall be 

considered by the absolute values of corresponding transfer functions 1( )H   and 2( )H   in the case 

of single excitation of the second equation in Eq. (2) which is in accordance with excitation Eq. (22). It 

can be seen, that for X1t distinct vibrations can be expected with (as the two eigenfrequencies are close 

together) almost one single dominating frequency which is very close to the behavior observed in brake 

squeal (Fig. 5).  

         

Figure 5.   Transfer functions 1( )H   and 2 ( )H   for excitation according to (21). 

4. Conclusions and outlook 

In this paper a non-normal EDKN system with corresponding suitable system and initial condition 

parameters producing a negative maximum real part of the eigenvalues, i.e. a system with transient 

growth and sub-critical self-excitation, has been considered in comparison with an EDK system 

showing similar stability behavior. Stochastic excitation has been added to both systems to compare its 

effect in both cases. In a system without self-excitation and stable trivial solution this will result in 

vibrations according to the excitation level around the zero solution. In contrast to this, in a system with 

similar maximum real part of the eigenvalues but self-excitation, much larger vibrations may result as 

the transient growth behavior is continually restarted by the stochastic excitation. The resulting 

vibrations remember to what can be observed during brake squeal. This surprisingly happens for a linear 

system, with stable trivial solution only needing some external noise excitation to get comparably large 

responses, while general explanation of brake squeal is that of a stable limit cycle in a nonlinear system.  

In future work, we intend to consider full MDGKN systems resulting from minimal models of 

brakes. 
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Lyapunov function-based control of a DC/DC buck converter using
Hybrid Systems formalism

Luz-Adriana Ocampo, Fabiola Angulo, David Angulo-Garcia

Abstract: In this paper we propose a switched control strategy for the buck
converter based on Lyapunov functions and the Hybrid system framework.
First, we introduce the differential inclusion describing the dynamics of the
buck converter in the Hybrid systems formalism using the Krasovskii regular-
ization. Then, a Lyapunov function is derived for the hybrid system, which
naturally defines switching control surfaces that guarantee global stability of
the system. With the aim of extending the degree of tuning of the Lyapunov-
based switched control, we include a nonlinear term to the functions describing
the switching manifolds, which preserves the stability features of the system
allowing to further control transient behavior of the system. Finally, we show
by means of numerical simulations that the proposed controller is robust to the
switch position and can flexibly adjust the transient dynamics via a suitable
selection of gains in the added nonlinear terms.

1. Introduction

Over the past years, DC/DC power converters have gained a lot of attention due to the

increasing use in different technological applications [7, 2, 4]. The aim of a DC/DC converter

is to take an unregulated DC input voltage and deliver a desired DC output voltage [6, 8].

To achieve this, power converters include different commuting elements (diodes, transistors,

Mosfets), together with passive elements for signal filtering. The presence of commuting

mechanisms, introduce topological changes in the dynamical equations driving the system’s

behavior. Hence, a suitable law governing the transitions between the dynamical regimes,

generates the desired output signal.

Previous analysis performed in the buck converter have shown that the hybrid system’s

formalism can be applied for the design of switched control techniques achieving robust

and global control [9]. However, this approach only guaranteed stabilization of the desired

output signal with no control over the transient dynamics. The purpose of this paper is to

extend that design to a more general type of control in which transient behavior can be also

controlled.

To do so, we make use of the ideas presented in [13], where the dynamics and control of

the boost converter is presented in the theoretical framework of hybrid systems, (see [5, 11]).
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Figure 1. Schematic representation of the buck converter

This paper is organized as follows: In section 2, we present the model of the buck converter

as a Hybrid system. Then in section 3 we demonstrate that a suitable choice of a Lyapunov

function gives rise to a switched control action that guarantees global stability. Next we

propose a modification of the resulting switched control via a nonlinear term in section 4,

which allows to modify transient features of the system. Finally we show numerically that

our proposed control successfully manages to drive to system to a desired operation point

and that it is able to largely modify transient behavior.

2. Hybrid model of the buck converter

A schematic representation of the buck converter is shown in Figure 1. It consists of a

capacitor (C), an inductor (L), a diode (D), a resistive load (R), a DC voltage source vin

and a MOSFET (switch, S). The voltage across the capacitor and the current through the

inductor are denoted as vC and iL, respectively. The presence of commuting elements makes

the system non-smooth and therefore we can study it from the Hybrid Systems framework.

Both the diode and the switch can take the discrete values D,S ∈ {0, 1} depending whether

the diode/switch is ON (1) or OFF (0). With this in mind, three different topologies may

arise, namely:

when S = 1 and D = 0→ ξ1 :

 dvC
dt

= − vC
RC

+ iL
C

diL
dt

= − vC
L

+ vin
L

with iL ≥ 0

when S = 0 and D = 1→ ξ2 :

 dvC
dt

= − vC
RC

+ iL
C

diL
dt

= − vC
L

with iL > 0

when S = 0 and D = 0→ ξ3 :

 dvC
dt

= − vC
RC

diL
dt

= 0
with iL = 0

(1)

It is worth noticing that a state corresponding to S = 1 and D = 1 has no physical

meaning. Let x = [ vC , iL]T represent the state space and Ξ1 =
{
x ∈ R2 : iL ≥ 0

}
, Ξ2 ={

x ∈ R2 : iL > 0
}

and Ξ3 =
{
x ∈ R2 : iL = 0

}
the algebraic restrictions for each topology

of the system. The discontinuous nature of the vector fields defining the dynamics when
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S = 0 requires a Krasovskii regularization operation [12, 5, 10]. After this operation the

system takes the form of the differential inclusion ẋ ∈ FS(x) ∀x ∈ Ξ̃S , where FS is the

regularized field on each switch position and Ξ̃S is the regularization of the sets containing

the algebraic restrictions to be applied depending on the switch position S. For S = 0,

Ξ̃0 = Ξ2 ∪ Ξ3; while for S = 1, Ξ̃1 = Ξ1. Here the overline denotes the closure of the set.

The regularization of the vector fields follows the ideas in [10] and results in:

For S = 0 the regularization is defined as

F0 =


{ξ2} if x ∈ Ξ2\Ξ3

C


 − vC

RC

− vC
L

 ,
 − vC

RC

0

 if x ∈ Ξ3

=



 − vC

RC
+ iL

C

− vC
L

 if x ∈ Ξ2\Ξ3

{− vc
RC
} ×

[
− vc
LC

: 0
]

if x ∈ Ξ3

(2)

where C denotes the closed convex hull of the set and is composed by the elements

resulting from the Carteasian product of − vc
RC

and all the elements of the interval
[
− vC

L
: 0
]
.

Similarly, for S = 1 regularization reads as

F1 = {ξ1} =


 − vC

RC
+ iL

C

− vC
RC

+ vin
L

 if x ∈ Ξ1 (3)

3. Control law based on Lyapunov function

As suggested in [13] for the Boost converter, one can propose a switched control which leads

the dynamics governed by Eqs. (2) and (3) to a desired operation point x∗ = [v∗C , i
∗
L], with

v∗C > 0 and i∗L > 0. For this we consider the Lyapunov Function Candidate:

V (x) = (x− x∗)TP (x− x∗) with P =

 P11 0

0 P22

 (4)

If we demonstrate that there is a choice of S ∈ {0, 1} that guarantees that 〈∇V (x), FS〉 <
0, then we can make use of the Lyapunov function to generate a switching control law. We

proceed to calculate the largest possible value of 〈∇V (x), FS〉 in each set:

• For S = 0 and x ∈ Ξ2\Ξ3, we have:

〈∇V (x), ξ2(x)〉 = 2P11 (vC − v∗C)

(
− vC
RC

+
iL
C

)
+ 2P22 (iL − i∗L)

(
−vC
L

)
(5)
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• For S = 0 and x ∈ Ξ3, F0(x) is set-valued so we compute the largest possible value

of the gradient in Ξ3. For simplicity in the notation we will define f := {− vc
RC
} ×[

− vc
LC

: 0
]
, with this:

max
f
〈∇V (x), f〉 = (6)

=

 2P11(vC − v∗C)
(
− vC
RC

)
if iL ≥ i∗L

2P11(vC − v∗C)
(
− vC
RC

)
+ 2P22(iL − i∗L)

(
− vC

L

)
if iL < i∗L

Given that i∗L > 0, and each x ∈ Ξ3 is of the form iL = 0, then the inequality iL ≥ i∗L
never holds in Ξ3. Therefore, for S = 0 and x ∈ Ξ3 we finally have:

max
f
〈∇V (x), f〉 = 2P11(vC − v∗C)

(
− vC
RC

)
+ 2P22(iL − i∗L)

(
−vC
L

)
(7)

Also, it is worth noticing that since Eq. (7) was calculated for iL = 0, Eq. (5) holds

the information of both Eqs. (7) and (5).

• For S = 1 and x ∈ Ξ̃1, we have:

〈∇V (x), F1(x)〉 = 〈∇V (x), ξ1(x)〉 (8)

= 2P11(vC − v∗C)

(
−vC
R

+
iL
C

)
+ 2P22(iL − i∗L)

(
−vC
L

+
vin
L

)
Given the previous analysis, we can define the following functions

γ1(x) := 2P11(vC − v∗C)

(
− vC
RC

+
iL
C

)
+ 2P22(iL − i∗L)

(
−vC
L

+
vin
L

)
(9)

γ0(x) := 2P11(vC − v∗C)

(
− vC
RC

+
iL
C

)
+ 2P22(iL − i∗L)

(
−vC
L

)
(10)

and the (largest) Lyapunov function derivative along the trajectory in the regularized set

x ∈ Ξ̃S can be expressed in the simplified form

max
ξ∈FS(x)

〈∇V (x), ξ〉 =

 γ1(x) if S = 1

γ0(x) if S = 0
(11)

The changes in the sign of the functions γ1 and γ0 are used to defined the MOSFET

state S. The following Lemma establishes the properties of γ1 y γ0 that demonstrates that

V (x) is a Lyapunov Control Function.

Lemma 1. Let R, vin, P11 and P22 > 0, P11
C

= P22
L

, v∗C < vin, i∗L =
v∗C
R

and Ax = {x ∈
R2 : γS(x) = 0}. Then, for each x ∈ R2\Ax, exists an S such that γS(x) < 0.
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Proof of Lemma 1. We start by defining the sets τS =
{
x ∈ R2 : γS(x) < 0

}
, delimited by

ωS =
{
x ∈ R2 : γS(x) = 0

}
. With this, we proceed as follows:

i. We obtain the explicit expressions for τS . The set τ1 is formed by the points in x such

that γ1(x) < 0. Using the fact that P11
C

= P22
L

and solving for iL in (9):

iL <
L

P22(vin − v∗C)

(
P22

LR
v2C −

P22

L

(
v∗C
R

+ i∗L

)
vC +

P22vini
∗
L

L

)
. (12)

Simplifying:

τ1 =

{
iL <

1

vin − v∗C

(
v2C
R
−
(
v∗C
R

+ i∗L

)
vC + i∗Lvin

)}
(13)

Similarly, for τ0 we solve γ0(x) < 0. Using P11
C

= P22
L

and solving for iL in (10):

iL >
L

P22v∗C

(
−P22

LR
v2C +

P22

L

(
v∗C
R

+ i∗L

)
vC

)
(14)

τ0 =

{
iL > −

v2C
Rv∗C

+

(
1

R
+
i∗L
v∗C

)
vC

}
(15)

ii. Then we demonstrate that τ1 ∪ τ0 = {x : x ∈ R2\Ax} when v∗C < vin. From (13) we

have 1
vin−v∗C

> 0, meaning that ω1 is an upward parabola in the (vC , iL) plane and

τ1 is the region below it. The opposite is true for ω0, i.e, it is a downward parabola

and τ0 is the region above it. These two regions will span the desired set if and only

if there is a unique intersection at Ax namely, ω1 ∩ ω0 = Ax. Equating (13) and (15)

we find the unique solution (vC , iL) = (v∗C , i
∗
L), which turns out to be the operation

point.

Lemma 1 and its proof can be used to obtain the position of the MOSFET as:

S = arg min
S∈{0,1}

max
ξ∈FS(x)

〈∇V (x), ξ〉 < 0 ∀ x ∈ R2\Ax (16)

which is equivalent to:

S =

 1 if γ1(x) < 0

0 if γ0(x) < 0
. (17)
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4. Extended Control

In the previous section, we found a Lyapunov function which allows us to define a suitable

switching control law defined by the behavior of the functions γ0 and γ1. This control law is

robust both upon selection of the switch state S and initial conditions. Nonetheless, since

the switching surfaces are fixed, the transient state of the system cannot be controlled. To

solve this problem, we make use of a modified CLF with an additional nonlinear term. To

do so we define the functions γ̃1 and γ̃0 designed in such a way that the commutation from

q to 1 − q occurs only when γ̃q = 0. The functions γ̃q are chosen according to Lemma 2 as

proposed in [13]:

Lemma 2. Let R, vin, P11, and P22 > 0; P11 and P22 > 0, P11
C

= P22
L

, v∗C < vin, Defining

the functions γ̃q with q ∈ {0, 1}, for each x ∈ R2 as:

γ̃1(x) = γ1(x) +K1(vC − v∗C)2 (18)

γ̃0(x) = γ0(x) +K0(vC − v∗C)2. (19)

If K1 and K0 ∈
[
0, 2P11

RC

]
, then the following properties hold:

a) For each q ∈ {0, 1} and x /∈ Ax, when γ̃q ≥ 0, then γ̃1−q < 0.

b) For each q ∈ {0, 1} and x /∈ Ax, when γ̃q ≤ 0, then γ̃q < 0.

Proof Lemma 2. a) Analogously to the Proof of Lemma 1, from Eqs. (18) and (19) we can

define the sets τ̃q =
{
x ∈ R2 : γ̃q(x) < 0

}
, with limits ω̃q = {x ∈ R2 : γ̃q(x) = 0} for each

q ∈ {0, 1}. In order to obtain the explicit expressions of τ̃q, we include the nonlinear terms

in Eqs. (18) and (19) into Eqs. (12) and (14), respectively:

iL <
L

2P22 (E − v∗C)

 − (−2P22
RL

+K1

)
v2C −

[
2P22
L

(
1
R

+ i∗L
)
− 2K1v

∗
C

]
vC

− 2P22i
∗
LE

L
+K1v

∗
C

2

 (20)

iL >
−L

2P22v
∗
C

 − (−2P22
RL

+K0

)
v2C −

[
2P22
L

(
v∗C
R

+ i∗L

)
− 2K0v

∗
C

]
vC

−K0v
∗
C

 (21)

Simplifying the inequalities (20) and (21), the sets τ̃q take the form:

τ̃1 =

iL < L

(E − v∗C)

 (
1
R
− 2P22K1

L

)
v2C −

[(
1
R
− i∗L

)
− P22K1v

∗
C

L

]
vC

−i∗LE +
2P22K1v

∗
C

2

L

 (22)
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τ̃0 =

iL > 1

v∗C

 (
− 1
R

+ 2P22K0
L

)
v2C +

[(
v∗C
R

+ i∗L

)
− P22K0v

∗
C

L

]
vC

+
2P22K0v

∗
C

L

 (23)

Considering that 1
vin−v∗C

> 0 y K1,K0 > 0, from Eqs. (22) and (23) it is easy to see

that ω̃1 and ω̃0 are upward parabolas if K1 < C
2P11R

and K0 > C
2P11R

respectively, and

downward parabolas otherwise. It shall be noticed though, that the region τ̃1 is always the

region below the parabola ω̃1 and τ̃0 is the region above the ω̃0. Finally, if we can demon-

strate that ω̃1 ∩ ω̃0 = Ax, then it implies that τ̃1 ∪ τ̃0 = x ∈ R2\Ax. Some straightforward

algebra leads to ω̃1 ∩ ω̃2 = {(v∗C , i∗L)} meaning that the only intersection point between the

two parabolas is the desired operation point of the controller. With this, literal a) of the

Lemma is demonstrated.

b) We start rearranging Eqs. (18) and (19) as:

γ1(x) = γ̃1(x)−K1(vC − v∗C)2 and γ0(x) = γ̃0(x)−K0(vC − v∗C)2 (24)

Since K1,K0 > 0, γ̃q(x) ≤ 0; it follows that γq(x) < 0 if vC 6= v∗C . Then, if vC = v∗C

and iL 6= i∗L, we have γq(x) = γ̃q(x). Therefore, as γq(x) = γ̃q(x) cannot be true beacause it

would imply that vC = v∗C and iL = i∗L, then also in this case γ̃q(x) = γq(x) < 0. With this,

the proof of con literal b is complete.

As a result of property a), if x /∈ Ax, it follows that γ̃1−q < 0. Also, due to property b)

while x /∈ Ax, we have γ̃q < 0. These two properties, imply a control law that guarantees

that γ̃q ≤ 0 for the any value of q and x, therefore the commutations are well defined. With

this, we have defined a suitable control law for the robust stabilization from the properties

derived in Lemma 2.

From the modified control curves (19) and (18) it can be seen that asK0 andK1 approach

to zero, the switching surfaces approach the original functions γ0(x) and γ1(x) respectively.

Moreover, when K0 and K1 approach to the limit value of 2P11
RC

, the switching surfaces γ̃q(x)

tend to the straight line 2 (iL − i∗L) = 0. Therefore, the constants K0 and K1 can control

the position of the commutation limits, adding an additional degree of freedom to the control.

Finally, we can write down the closed-loop Hybrid system in the following form:
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H =



 ẋ

q̇

∈
 Fq(x)

0

 (x, q) ∈ C

 x+

q+

∈
 x

Gq(x)

 (x, q) ∈ D

(25)

Where F0 and F1 are given by the regularization in Eqs. (2) and (3), respectively.

Moreover, the component of the jump map Gq is written as:

Gq =

 1 if q = 0, γ̃0 ≥ 0

0 if q = 1, γ̃1 ≥ 0
, (26)

and the flow set and jump set are respectively:

C = {(x, q) : x ∈ {iL ≥ 0}, γ̃0 < 0, q = 0} ∪ {(x, q) : x ∈ {iL ≥ 0} , γ̃1 < 0, q = 1} (27)

D = {(x, q) : x ∈ {iL ≥ 0} , γ̃0 ≥ 0, q = 0} ∪ {(x, q) : x ∈ {iL ≥ 0} , γ̃1 ≥ 0, q = 1} (28)

5. Numerical Simulations

In this section we present simulation results of the proposed control, showing robustness to

initial conditions and the position of the switch as well as control of the transient state.

This performance is obtained thanks to constants K0 and K1 which control the form and

position of the commutation limits. The parameters used for the simulations are vin = 20V,

C = 47µF, L = 20mH, R = 22Ω, P11 = C/2, P22 = L/2, v∗C = 11.03V in correspondence to

widely used values for the buck converter [3].

In Fig. 2 we show the evolution of the state variables for different initial conditions cor-

responding to two different initial switch positions. It can be seen from the time traces (Figs.

2(a)-(b)) that the solutions converge to the operation point x∗ = [11.03 0.505]T . Moreover,

we show in Fig. 2(c) the phase diagram together with the switching surfaces γ̃1 and γ̃0.

Finally, in Figs. 3 and 4, we illustrate the response of the system to changes in the

operation point and input DC voltage, respectively. As observed from these figures, the

switching surfaces adapt so that the desired output is reached, despite the changes in these

two conditions.
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Figure 2. Time series of the state variables (vC(t), iL(t)) of the closed-loop hybrid system

H with (a) x0 = [0, 0.3]T , q0 = 1 and (b) x0 = [15, 0.6]T , q0 = 0. (c) Phase diagram depicting

the trajectories in (a) and (b), together with the switching surfaces γ̃1 y γ̃0. For this figure

we used K0 = 0.03, K1 = 0.05 and x∗ = [11.03 0.505]T
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Figure 3. (a) Time series of the state variables (vC(t), iL(t)), of the closed-loop hybrid

system H with x0 = [0 0]T , q0 = 1 and x∗ = [13. 03 0. 59]T . (b) Trajectory in the phase plane

for the solution in panel (a), together with the switching surfaces. For this figure K0 = 0.06,

K1 = 0.02
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Figure 4. (a) Time series of the state variables (vC(t), iL(t)) of the closed-loop system H

with initial condition x0 = [0 0]T , q0 = 0 and x∗ = [11.03, 0.505]T . (b) Trajectory in the phase

plane of the solution in panel (a), together with the switching surfaces γ̃1 and γ̃0. For this

figure K0 = 0. 02, K1 = 0. 03 and vin = 35

6. Conclusions and future work

Here we have designed a switched control law based on Lyapunov functions, using the hybrid

systems formalism for the DC/DC buck converter. To achieve this, we performed a differen-

tial inclusion on the system that captured all the dynamical regimes of the buck converter.

Then, we proceeded to demonstrate that the proposed hybrid system can be controlled via

a state dependent switching mechanism which guarantees globalstability. In order to control

the form of switching surfaces, we proposed a modified switching mechanism that preserved

the stability properties of the system. Finally, we showed by means of numerical simulations

that indeed the controlled system is not only globally stable, but also robust to the switch

position and reference and input voltages.

This technique shows a potential flexibility that can be exploited through the selection

of the free parameters K0 and K1. This could allow to tune particular desired transient

behavior, conferring a powerful benefit to our proposed design.

The numerical simulations presented were performed using parameter values reported in

the literature. We propose as a next step to make the controller robust to changes in param-

eter values, apply it to more realistic buck power converters and compare its performance

with other globally stable design techniques (see for instance [1] for a recent application).
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Analysis of dynamical response of a Stewart platform operating 

in six degrees of freedom 

 
 

Paweł Olejnik, Jan Awrejcewicz 

Abstract: Stewart platforms belong to a wide range of forcing devices and form the 
basis for positions testing properties and dynamic responses of various objects (e.g., 
vehicles, machine parts, combat machines, moving components of production lines and 
others). Mechanical enforcement in the form of various functions of position, velocity 
or acceleration must be precise, because it serves as a reference point (dynamic 
reference) in the assessment of the response of objects placed on the platform table and 
subjected to excitation. This work describes several performance tests of the tested 
platform, as well as the reaction rate for selected forms of excitation is recorded. In 
LabVIEW environment, on the basis of the readings from the motion sensors, the time 
delays of the open control system were determined, the system was qualitatively 
evaluated and the time response characteristics of the dynamic response were presented. 

1. Introduction 

The main task of the original system prepared for the measurements and analysis of data is to check the 

capabilities of the vision system and 6-axis Stewart platform control system designed for generation of 

a dynamical reference signals for other objects placed on or attached to it. The results of the work allow 

to plan the applications to determine the capabilities of equipment. The work contains a description of 

the performed tests, i.e., methodology, the impact of the system parameters on the results and on the 

performance of the platform’s positioning system. The detailed results are summarized at the end. 

All tests were carried out in the context of estimating the system's performance in terms of the 

possibility of further development of algorithms, implementing a closed-loop control of the Stewart 

platform, the so-called hexapod. The task will be based on a visual observation of dynamical responding 

objects located on the platform subjected to excitation from six electromechanical actuators. 

1.1. The experimental stand 

The experimental laboratory stand consists of the following components: 

a. six degrees of freedom Stewart platform [1-3]; 

b. PXI 1071 implementing the Stewart platform control via Parker TPDM 020202DLE5g controllers; 

c. dedicated laptop with software enabling control of the platform; 

d. 4 Basler acA2040-180km cameras; 
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e. PXIe 1085 with PXIe-8880 Xeon 8-Core controller, Win 7 (64-bit); 

f. 4 PXIe-1435 Camera Link Frame Grabber cards for connecting cameras. 

 
Figure 1.   The laboratory test stand in the Department of Automation, Biomechanics and Mechatronics of Lodz 

University of Technology. 

 

Figure 2.   Block diagram of the mechatronic system installed on the laboratory stand. 

Picture of laboratory stand and its mechatronic system with connections between the platform, NI 

components, sensors and software communicating over UDP protocol are presented in Fig. 1 and 2. 

The scope of the work included conducting separate tests to check the technical capabilities of the 

investigated platform, while the following ones have been carried out: 

a. delay of all cameras acquisition; 

b. speed of all cameras acquisition; 
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c. platform response delay to control signals; 

d. CPU load for image acquisition; 

e. system performance while saving to the disk images from cameras; 

f. CPU load while processing video algorithm. 

1.2. LabVIEW programs 

The tests enumerated in Sec. 1.1 are created with the use if virtual instruments in LabVIEW 

environment. They are consolidated in a project “Benchmark” the window of which is shown in Fig. 3. 

a.  b.  

Figure 3.   The LabVIEW project “Benchmarks” (a) including particular codes testing the platform (b). Launching 

the project a window containing shortcuts to run all the tests a-f is open. 

2. Tests of the entire system 

2.1. Delay of image acquisition from all cameras 

The purpose of the test is to measure the delay in the image acquisition from all cameras, i.e., the 

difference between the actual time of change of the object observed by the cameras, and the time when 

the camera data representing the change will be available for processing in the controller program. The 

observed object is a LED diode, whose state is changed by a signal given from the myDAQ card. 

 Configuration No. 1: 

a. the PXIe 8880 controller runs Windows 7 Professional SP1; 

b. 4 Basler acA2040-180km cameras connected in full mode to PXIe 1435 frame grabbers (one 

camera to one PXIe 1435); 

c. camera acquisition mode set as triggered automatically (all triggers from the Frame Grabber 

section: Acquisition Control set to OFF); 

d. exposure time control mode (Exposure Control = "Free Run", Exposure Mode = "Manual"); 
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e. exposure time no more than 5 ms; 

f. each camera acquires the image with the maximum number of frames per second; 

g. bit depth is 8 bits; 

h. card with digital lines (myDAQ) connected to the PXIe 8880 controller via USB; 

i. LED is connected to the digital output card; 

j. configuration parameters can be changed using the NI MAX program. 

The "Delay of all cameras acquisition" test starts from the main project "Benchmarks". The limit 

detection value of the LED status is set. We set the path for saving the results in the "Result Path" field 

and the number of test repetitions in the fields "WarmUp Repetitions" and "Test Repetitions". "Warm 

up repetitions" is the number of run test repetitions carried out before the actual test during which no 

results are collected, "Test repetitions" are test repetitions from which the results are recorded. 

Recommended values are "WarmUp Repetitions" = 5 and "Test Repetitions" = 50. After starting the 

program with the "Run" button, the screen area in which the brightness of the LED image is expected 

to change is confirmed with the ENTER button. The operation is repeated for all 4 cameras. The test 

stops automatically after the assumed number of repetitions. 

The first tests were carried out on a simulated diode displayed on the monitor screen in the 

LabVIEW program. In this way, the time after which the cameras detected changes in the status of the 

indicator on the front panel of the application was measured. However, the results obtained were 

unreliable due to the long delays associated with updating the user panel in LabVIEW. Therefore, it 

was decided to eliminate the factor introducing additional delays and used 3 physical LEDs. A digital 

signal is generated in the running program. The binary state changes every 500 ms. Along with the 

signal, the program saves a moment of time when the on-off signal was sent to the diode. 

Cameras were directed at diodes. At the time of detection of a change in the status of the LED, the 

program saves a moment of time at which the change was recorded by the camera. The program is 

designed in such a way that the time needed for performing the image processing algorithm required to 

detect a change in the diode's state does not affect the measured delay. The time difference between the 

real signal of the diode status change and its detection on the camera image is the delay in the acquisition 

of camera images. Tests were carried out at nominal camera parameters, i.e., image resolution – 

2040x2040, color depth – 8 bits, maximum acquisition speed – 187 fps. The image was recorded 

simultaneously from 4 cameras. Front panel of the benchmark is shown in Fig. 4. 

The test allowed to estimate an image acquisition delay. The average delay was 12 ms for each 

camera. Camera images were taken and processed in parallel, so camera delays do not add up – 12 ms 

is the average time to observe a change in status on all cameras. 
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Figure 4.   Front panel of the “Delay of all cameras acquisition” benchmark. 

It should be noted that in the hardware configuration at the station, the camera clocks are not 

synchronized, i.e., the detection delays of the occurrence of the diode’s change in state on each camera 

may differ from each other by the maximum time of acquisition of one image frame, i.e., by 5.35 ms. 

2.2. Speed of image acquisition from all cameras 

Measurement of image acquisition speed from cameras is based on the estimation of the number of 

frames processed in one second. The goal was to check if the resolution and bit depth of the acquired 

(processed) image affect the acquisition rate. 

 In the Configuration No. 2, a-f are repeated as in the Configuration 1, bit depth is 8, 10, 12 bits. 

The "Speed of all cameras acquisition" test starts from the main project "Benchmarks". First, in 

the "Resolution" field,  the desired image resolution recorded by cameras is selected. The display of 

camera images and the display of debug data using the "Live Data" and "Debug Data" switches are 

further disabled. One sets the path for saving the results in the "Result Path" field and the number of 

test repetitions in the fields "WarmUp Repetitions" and "Test Repetitions". "Warm up repetitions" is 

the number of run test repetitions carried out before the actual test during which no results are collected, 

"Test repetitions" are test repetitions from which the results are recorded. Recommended values are 

"WarmUp Repetitions" = 500 and "Test Repetitions" = 3000. After starting the program with the "Run" 

button the test stops automatically after the assumed number of repetitions. 

Cameras carry out acquisitions with the maximum frame rate set by the manufacturer. The images 

from the cameras are sent to the PXIe controller and read in the test application. The number of frames 

per second is computed. The tests are conducted for three resolutions of the image taken from cameras: 

2040x2040, 510x510 and 60x60 pixels and for three bit depths: 8 bit, 10 bit and 12 bit. The average 

number of frames acquired during 1 second of acquisition is written in Table 1. 
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Table 1. The average number of frames acquired during one second of acquisition. 

 Frames per second (fps) 

Bit depth (bit) 2040x2040 510x510 60x60 

8 

10 

12 

187.06 

75.20 

37.70 

187.04 

75.20 

37.70 

187.04 

75.20 

37.70 

 

Figure 5.   Front panel of the “Speed of all cameras acquisition” benchmark. 

The obtained results show that changing the resolution has no effect on the speed of image 

acquisition. Increasing the bit depth causes the acquisition to slow down. 

2.3. Delay of the Stewart platform response to control signals 

The purpose of the test is to estimate the dynamic response delay of the investigated platform relatively 

to the given sinusoidal control signal. The measurement is performed using a rotary potentiometer 

energized from a battery. 

Configuration No. 3 includes a computer with Vzero software controlling the platform, PXIe 8880 

controller cooperating with Windows 7 Professional SP, benchmark project (c), enabling the task of 

external control signals using the UDP protocol and an analog sensor – a potentiometer connected to 

the analog input card (e.g., myDAQ) powered by a 1.8 V battery. 

The “Platform response delay to control signals" test starts from the main project "Benchmarks". 

Next, the UDP communication parameters between the computer sending the control function and the 

platform controller are set, as well as the frequency and amplitude of the sinusoidal control signal, the 
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parameters of acquisition of angular rotation read from the myDAQ card, processing the voltage values 

read from the rotary potentiometer and the number of test repetitions are assumed. The test stand 

showing placement of the sensor is shown in Fig. 6. 

 

Figure 6.   Front panel of the “Speed of all cameras acquisition” benchmark (1 – the table of the platform, 2 – 

rotary potentiometer measuring vertical displacement of the platform). 

The test program generates a sinusoidal signal with a given amplitude and frequency, which is then 

sent as a signal controlling the position of the selected platform axis to the platform controller via the 

UDP protocol. At the same time, the program collects the signal measured with the rotary 

potentiometer. After the test, the program calculates the phase shift of both signals, displaying the time 

delay of the platform response to the control signal. 

After 50 test iterations, an average platform delay of 12.04 ms is obtained. The total delay consists 

of the delay associated with UDP communication and the delay caused by dynamic limitations of the 

platform. 

2.4. CPU load for image acquisition 

This test is performed to check the load on the microprocessor unit during image acquisition from all 

cameras with the maximum frame rate set by the manufacturer. 

In the Configuration No. 4, points a-g are repeated as in the Configuration No. 1. 

The “CPU load for image acquisition" test starts from the main project "Benchmarks". First, in the 

"Resolution" field, the desired image resolution recorded by cameras is selected. The display of camera 

images and the display of debug data using the "Live Data" and "Debug Data" switches are further 

disabled. One sets the path for saving the results in the "Result Path" field and the number of test 

repetitions in the fields "WarmUp Repetitions" and "Test Repetitions". "Warm up repetitions" is the 

number of run test repetitions carried out before the actual test during which no results are collected, 

"Test repetitions" are test repetitions from which the results are recorded. Recommended values are 
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"WarmUp Repetitions" = 500 and "Test Repetitions" = 3000. After starting the program with the "Run" 

button the test stops automatically after the assumed number of repetitions. 

 

Figure 7.   Front panel of the “CPU load for image acquisition” benchmark. 

Cameras record images in a continuous mode with the maximum frame rate set by the 

manufacturer (the image is not saved to the hard disk). The images from the cameras are sent to the 

PXIe 8880 controller and read in the test application. The number of frames per second is read and the 

processor load is checked during the tests. 

As a result, the CPU load during image acquisition is insignificant and amounts to about 10% of 

the available resources for the images at 2040x2040 resolution and about 5% for the images at 60x60 

pixels resolution. These results coincide with expectations. Due to the way the system performs image 

acquisition, the acquired data is transferred from Frame Grabber directly to the controller's RAM 

memory without the participation of the processor in data transfer. 

The performance tests of the investigated system described above tend to build a more complex 

closed-loop position control system. The system will control an object moving on the Stewart platform's 

table. All the tests made possible to determine the time delays on the path: setting the reference value 

of the object's position on the platform, triggering platform position, measuring the position of the 

object on the platform using vision algorithms, correcting the position of the platform, checking the 

positioning error. Details are provided in the next section. 

3. Analysis of delays occurring in the system 

Delays occurring in the system, based on the predicted algorithm of controlling the position of the ball 

rolling on the platform in a closed control loop are presented in the diagram in Fig. 7. 
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Figure 8.   Diagram of position control of an object rolling on the platform. Algorithms are denoted as 

follows: 1) estimation of platform position to move the object on the platform; 2) control of 

Stewart platform; 3) estimation of position of the object based on vision procedures. 

Expected execution times of individual code fragments, communication between subsystems and 

their response times can be determined as follows: 

1. delays due to internal hardware restrictions of the platform controller and cameras; 

2. delays resulting from the settings used, the algorithms used and the data transfer methods; 

3. total delay of the closed control loop, assuming that the control can be performed only after the 

system moves to the reference position in space; 

4. time delays in a closed control system include the time of: 

a. computations required by the platform’s control algorithm, 

b. transmission and interpretation of the control signal by the platform controller, 

c. dynamic platform response, 

d. image collection by cameras, 

e. image transfer from cameras to the controller, 

f. image processing, 

g. computing the algorithm for determining the position of the object on the images. 

The sum of the described delays is 60-70 ms. It is the time of signal propagation in the control 

system from the generation of the platform control signal, by changing the position of the platform to 

measure the location of the object. This approach to the control loop would be appropriate when testing 

the static properties of an object on a platform, where a stabilized state of the object would be required. 
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4. Conclusions 

The presented Stewart platform manipulator constructed in the Department of Automation, 

Biomechanics and Mechatronics of Lodz University of Technology allows for a relatively fast 

realization of mechanical enforcement in the form of various functions of position, velocity or 

acceleration. The described performance tests performed under control of LabVIEW environment and 

NI hardware have revealed some restrictions, but also a big potential in terms of improvement of the 

dynamic response characteristics and reduction of time delays. 

The tested system has various types of delays and each of them will be subject to a different 

reduction method. Delays resulting from the processing of algorithms will be subject to optimization 

of image processing algorithms and determining the movement of the platform. The selection of 

appropriate system performance parameters and algorithms may consist of: optimizing camera settings 

so that the controlled object occupies the largest part of the image frame; limiting the number of cameras 

needed to determine the position of the object; setting the lighting so that it is easier to distinguish the 

object (edges or markers) from the background by using the appropriate background, object and lighting 

colors. 

Such settings and optimization of code performance should allow for significantly accelerating the 

operation of algorithms and reducing time delays. The minimum delay time resulting from algorithm 

processing is not easy to estimate and requires additional testing. 

Acknowledgments 

The authors would like to thank the Vzero and Sparkflow companies cooperating in the installation, 

programming and testing of the experimental stand. 

References 

[1] Dasgupta, B., Mruthyunjaya, T.S. The Stewart platform manipulator: a review. Mechanism and 
Machine Theory 35(1), 2000, 15-40, doi: 10.1016/S0094-114X(99)00006-3. 

[2] Huang, X. Liao, Q. Wei. S. Closed-form forward kinematics for a symmetrical 6-6 Stewart 
platform using algebraic elimination. Mechanism and Machine Theory 45(2), 2010, 327-334, doi: 
10.1016/j.mechmachtheory.2009.09.008. 

[3] Dudita F., Neagoe M., Gogu G. On the Kinematic Calibration of a Stewart Platform. In: Gogu G., 
Coutellier D., Chedmail P., Ray P. (eds) Recent Advances in Integrated Design and Manufacturing in 
Mechanical Engineering, 2003, pp. 117-128, Springer, Dordrecht. 

Paweł Olejnik, Associate Professor: Department of Automation, Biomechanics and Mechatronics, 1/15 
Stefanowski Street, 90-924 Łódz, Poland (pawel.olejnik@p.lodz.pl). The author gave a presentation of 
this paper during one of the conference sessions. 

Jan Awrejcewicz, Professor: Department of Automation, Biomechanics and Mechatronics, 1/15 
Stefanowski Street, 90-924 Łódz, Poland (jan.awrejcewicz@p.lodz.pl). 

392



Design of a medium-scale test for the assessment of a resonant
seismic barrier within the ReWarD Project

Antonio Palermo, Farhad Zeighami, Athanasios Vratsikidis, Zhibao Cheng, Dimitris
Pitilakis, Alessandro Marzani

Abstract: The growing interest about meta-structures from the civil engineer
community has led to the development of novel low frequency isolation sys-
tems for ground borne vibrations and seismic waves. Among those, the res-
onant Metabarrier, i.e., an array of meter-size resonators embedded in the
ground around the structure, or a cluster of structures, to be protected, has
been recently proposed. The metabarrier is designed to attenuate the sur-
face ground motion induced by Rayleigh waves, with the potential ability to
retrofit and shield existing vulnerable structures including historical build-
ings and cultural heritage sites. Additionally, it can be tuned to operate
at specific frequencies ranges, for instance at the resonant frequencies of the
structure. While the metabarrier conceptual design has been validated nu-
merically and at small-scale laboratory tests, its engineering implementation
still needs an on-field validation. Here we present the design of an exper-
imental campaign, currently under development at the Euroseistest facility
(http://euroseisdb.civil.auth.gr) within the framework of the ReWarD
project (https://site.unibo.it/reward/en), meant at testing the perfor-
mance of a medium-scale metabarrier. The barrier is designed according to the
stratigraphy of the site exploiting dispersion curves and time history analysis
developed within a Finite Element framework. The experimental test, designed
according to such numerical indications, are expected to confirm a significant
attenuation of the ground motion in the presence of the metabarrier.

1. Introduction

Periodic and resonant foundations and buried wave barriers designed to damp the propaga-

tion of seismic waves can represent a breakthrough for the safety and for the preservation

of historic and strategic infrastructures including hospitals and power plants [1, 18, 21, 7,

9, 11, 19, 2, 20]. These structures, commonly defined as ”seismic metamaterials” [3], base

their seismic isolation capabilities on physical concepts well established in the domains of

phononic crystals and resonant metamaterials [10]. Phononic crystals are periodic materials

that can exhibit large band gaps, i.e. frequency regions where the propagation of waves

with wavelengths in the order of material periodicity is hindered. For seismic scale ap-

plications, meter size phononic crystals made of cylindrical holes in sedimentary soil have
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proved the possibility of reflecting seismic elastic energy, achieving attenuation of ground

accelerations at a frequency range around 50 Hz [3]. More recently, a similar concept has

been used to realize seismic lenses with large (100 m) gradient index able to reroute surface

waves around buildings [5]. Although revolutionary in their conception, implementation of

these systems at the low frequencies characteristic of seismic events (<30 Hz) requires very

large structures, since the wavelengths of typical seismic waves can be of several meters or

decameters. Complementary to phononic crystals, resonant metamaterials exploit an array

of embedded locally resonant units to interact with propagating waves at a sub-wavelength

scale. Therefore, for seismic waves characterized by long wavelengths, resonant metamate-

rials allow for the construction of more viable devices, i.e. of smaller and feasible spatial

dimensions. On the basis of this paradigm, sub-wavelength structures, in the form of reso-

nant metafoundations [4] or resonant metabarriers [11] have been proposed in recent years

to isolate buildings and infrastructures from incoming seismic longitudinal and shear waves

or to shield them from surface Rayleigh waves, respectively. The idea of a resonant metabar-

rier, in particular, is motivated by the fact that far from the epicenter surface waves can

carry a significant portion of the earthquake energy [6] and that existing structures may be

hard to be retrofitted with innovative foundation systems. The resonant metabarrier bases

its operating principle on the interaction between purposely designed resonant units with

surface waves in the low frequency regime (<10 Hz). The resonant units are passive devices

(mass-stiffness resonators), placed atop of the soil or buried below the surface and excited by

the vertical component of the Rayleigh wave motion. Once activated, their dynamic interac-

tion with the soil redirects part of the surface elastic Rayleigh wave energy into the interior

of the soil deposit as vertically polarized shear waves. The physics of these resonant systems

has been predicted analytically and verified numerically at different wave scales, or in other

words at different frequencies. Conversely, experimental proof of their working mechanism

and attenuation capabilities are up to now limited to few table-top experimental tests [11].

Nonetheless, measurements at the geophysical scale have shown a reduction of the surface

motion due to the resonance of forest trees [5], encouraging the realization of an experimental

proof of the metabarrier concept in the Hz range. Indeed a full scale realization and test of

a resonant barrier is still missing, probably due to its cost of realization as well as for the

significant resonating mass needed to activate the wave conversion. In this work, we aim

at making a further step towards the realization of this isolation system for seismic waves

by testing the effectiveness of a resonant metabarrier at a medium-size scale for the first

time, within a 50− 100 Hz frequency range, taking into account the inevitable variability in

stiffness and strength of the soil and the resonators components. To such purpose the design

of an experimental campaign under development at the Euroseistest TA facility [14] is here
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presented. The barrier is designed according to the in-situ soil properties and the available

operative frequency range of the measuring equipment. Multichannel Analysis of Surface

Waves (MASW) technique will be used to excite the soil and to measure the soil response

in the presence of the metabarrier or without it. The test setup is expected to confirm an

attenuation of the ground motion in the presence of the metabarrier. In what follows we will

describe the barrier arrangement and the site soil properties. In addition, we will provide

numerical predictions of the expected performance of the barrier. Experimental evidences

from the testing will be presented and discussed at the conference.

2. Metabarrier

The metabarrier consits of an array of resonators arranged in a regular square grid of 5× 10

m, spaced apart of 0.5 m (see Fig. 1a).

The key element of the metabarrier is the resonator (see Fig. 1b). Resonators can be

realized using simple construction materials (concrete, sand and steel). In this preliminary

design phase, our prototype resonator consists in a PVC barrel (diameter 400 mm and height

approximately 500 mm) filled with dry sand. The mass of the resonator can be thus varied

up to 100 kg by pouring different amounts of dry sand within the barrel. The barrel is placed

on a bed of 4 to 8 vertical steel springs kept between two 10 mm thick steel plates of planar

dimensions 400 × 400 mm. By varying the number of springs, the overall stiffness of the

resonator can be changed. The prototype resonator is designed to provide a surface wave

attenuation between 50 and 55 Hz, well above the frequency range of the seismic action,

but limiting the overall experimental cost. For a mass of 50 kg and a resonant frequency

fr = 50 Hz, the overall stiffness is Ktot = 50 · (2πfr)2 = 4934802 N/m, i.e. approximately

4935 N/mm.

The modular and tunable design of the resonator allows realizing metabarriers with

different resonant frequencies (even once the resonators are in place). The resonant frequency

of each resonator, once buried in the ground, will be evaluated to account also for the soil-

structure-interaction (SSI) which should slightly lower the nominal resonant frequency. To

this purpose, an operator can simply activate the resonator mass with a soft hammer stroke,

record its motion with a single axis (vertical) accelerometer positioned on the top of the

mass and measure its resonance frequency. Adjustments of the resonator frequency are

achievable by varying the compaction of the soil below the resonator base, or varying the

number/stiffness of some/all springs. Moreover, this flexible design approach of the resonator

allows also building metabarriers characterized by lines of resonators with different resonant

frequencies. This design strategy, known as rainbow trapping concept in the metamaterial

community, can widen the attenuation frequency range of the barrier.
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Figure 1. (a) Side view and top view of the 5 × 10 m array of resonators composing the

metabarrier. (b) Schematic of a single resonator.

3. Site description

Previous analytical and numerical studies [11, 12, 13] indicate that the metabarrier isolation

performance, both in terms of frequency width and wave amplitude decay, highly depends

on the soil mechanical properties (e.g., mass density, longitudinal and shear bulk speeds).

Hence, it is of paramount importance to have a detailed knowledge of the soil stratigraphy for

a meaningful design of the barrier. The EUROSEISTEST site is the longest running valley-

instrumentation project worldwide. The site is located in the centre of Mygdonian basin,

Thessaloniki (Greece), in a high seismicity region, where the epicentral area of the destructive

Magnitude 6.5 Volvi earthquake (1978) is included. The soil stratigraphy and dynamic

properties of the site are already well-documented from previous extended geotechnical and

geophysical surveys [16, 17, 14, 15]. Hence, the proposed site offers a unique opportunity

to validate the effectiveness of the metabarrier. In Fig. 2, the longitudinal (a) and shear

(b) bulk waves speed of the site versus the soil depth are given. The density of the soil is

assumed to be ρ = 1500 kg/m3.

The depth-dependent speed profile is used to compute the surface waves dispersion

curves supported by the soil. To such purpose, a 2D soil column (e.g. the model unit

cell) of dimensions d × h = 0.5 × 70 m is modeled via Finite Element method in Comsol
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Figure 2. Longitudinal (a) and shear (b) bulk waves speed of the EUROSEISTEST site

soil profile.

Multiphysics as shown in Fig. 3a. The 2D model with plane strain conditions suffices to

capture the dynamics of vertically polarized surface waves, which are of interest for this

study. The domain is discretized by quadrilateral elements with the maximum dimension of

dmax = 0.5 m. Following the Wave Finite Element approach [8], Bloch-Floquet boundary

conditions are applied to the vertical sides of the unit cell to extract the surface modes of a

semi-infinite soil column. Fig. 3b displays the first three surface modes within the frequency

range 10 − 70 Hz as extracted from the frequency-wavenumber eigenproblem setup via the

WFEM. As expected, due to the heterogeneous soil stratigraphy, multiple and dispersive

surface modes are found.

4. Metabarrier numerical design via dispersion curve calculations

The analysis of the resonant metabarrier is performed numerically by extracting the barrier

dispersion curve via WFEM. As a preliminary investigation we compute the soil column

dispersive properties considering only the effect of the trench, which is needed to bury the

resonators in the soil. The trench has dimensions 0.5 × 0.4 m as it is shown in Fig. 4a.

Excluding the presence of the trench, the soil column computational model is unchanged

and the surface wave dispersion extraction follows the same procedure as the pristine soil.

Results of this procedure are displayed in Fig. 4b. The presence of a trench introduces

two flat branches in the low frequency range, linked to the resonant behavior of the lateral
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Figure 3. (a) Schematic of the reference soil model (RSM). (b) Dispersion curves for the

RSM. (c) Longitudinal velocity vs. frequency.
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Figure 4. (a) Schematic of the soil model with the trench only and (b) its dispersion curves.

(c) Soil model representation in presence of the resonator placed inside trench and (d) its

corresponding dispersion curves.

cantilevered soil portions. In practice, these modes are prevented by utilizing stiffer material

or retaining walls. Within the remaining frequency range no significant changes in the

dispersion curve are found. For the metabarrier model, our 2D model (of unitary thickness

t = 1m) utilizes a resonator with an equivalent mass per unit length so to correctly model

the resonator density of the real metabarrier in its 3D configuration. This approach has

been validated in our previous study [13]. The introduction of the resonators induces two

flat branches around 20 Hz and 46 Hz, corresponding to the horizontal and vertical motion

of the resonators (see Fig. 4d). Here, we remind that the interaction between resonances and

surface waves in a homogeneous half space [11] leads to the nucleation of a clear band gap

398



where surface waves are redirected within the soil bulk. In heterogeneous or stratified soils no

clear evidences of this phenomenon is found [12]. Nonetheless, the significant changes in the

surface waves dispersion curve around the higher flat branches and in the frequency region

above displayed in Fig. 4d suggest that large wave attenuation should be expected around

and above 45 Hz due to the impedance mismatch between surface waves in soil and waves

travelling within the barrier. In what follows, we verify this hypothesis by performing time

transient analysis of surface waves travelling across a finite length resonant barrier embedded

in a pristine soil.

5. Metabarrier assessment via time transient analysis

Time transient analysis are performed by means of FE simulations utilizing the 2D plane

strain model shown in Fig. 5a. Bottom corners of model are restrained in horizontal and

vertical directions, and low reflective boundary conditions (LRBCs) are applied at the lateral

and bottom edges to prevent wave reflection phenomena from the boundaries. The model

is discretized by triangular mesh elements with mesh sizes equal to 0.5 m. The domain

has a dimension of 30 × 70 m and a velocity profile defined according to data in Fig. 2.

Surface waves are generated via a point load applied at the model surface at a distance of

10 m from the barrier edge. The signal of choice is a Ricker Wavelet centred at 50 Hz, able

to illuminate the whole frequency range of interest. The barrier counts 10 resonators with

dimensions and spacing defined according to the schematic in Fig. 1. The output wavefield

is evaluated as the averaged vertical displacement extracted over a grid of 11 points (i.e.,

equivalent to an array of physical sensors in the real scenarios) distributed over 10 m after

the barrier. The output displacement of the pristine soil is used as a reference case, namely

reference soil model (RSM). Fourier spectra of the averaged displacements for different test

configurations are used to evaluate the attenuation performance of the barrier in terms of

amplitude and frequency range. Two different scenarios are initially compared, a case with

an array of unfilled trenches and the metabarrier case, i.e. an array of trenches equipped with

resonators. In addition, two different resonators with overall masses of 50 and 100 kg, and

nominal resonant frequency fr = 50 Hz are considered. By comparing the spectrum of the

unfilled trench configuration with that of the reference pristine soil, a significant reduction

of amplitude in the frequency range > 40 Hz is noticed (see Fig. 5b). Reduction in the

wave amplitude can be ascribed to the scattering induced by the trench which acts as a

defect/discontinuity in the soil profile. This scattering becomes significant when the trench

depth is comparable w.r.t. the depth of the surface wave profile. It follows that a trench

designed to be effective for low frequency (e.g. <10 Hz) seismic waves would have a minimum

depth of tens of meters.
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Figure 5. (a) Schematic of the full 2D FE model used in numerical simulations. Frequency

spectra of the reference soil model (RSM, black line), unfilled trench (red line) and trench

(light purple line) considering resonators with nominal resonant frequency fr = 50 Hz and

(b) 50 kg and (c) 100 kg mass.

The addition of the resonators introduces a marked reduction in the spectrum amplitude

around the resonator vertical frequency. A larger mass results in a larger amplitude and

frequency width reduction as it can be comprehended by comparing Fig. 5b and c, in

accordance with what observed on previous studies on the metabarrier [13]. This marked

peak in frequency, could be further widened by using resonators of different nominal resonant

frequency and exploiting the so-called rainbow trapping concept [7].

As a further study, we compare the attenuation performance of a barrier fully buried in

the soil (’deep trench’), partially buried in the soil (’shallow trench’) and placed directly over

the soil surface (’no trench’). A reduction in the trench depth corresponds to a reduction in

the energy scattered in the high frequency range, which is minimized for the case where no

discontinuity in the soil profile is created (’no trench’) as shown in Fig. 6.
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Figure 6. Effect of trench depth in attenuation performance of the barrier.
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Figure 7. Surface barrier performance vs dead masses placed over the soil surface.

Finally, Fig. 7 compares the performance of this latter configuration to a companion

equivalent arrangement of dead mass, to single out the contribution of the resonances in the

attenuation performance of the barrier.

6. Discussion and conclusions

The metabarrier consists in a device located around the target which has to be protected

from surface waves. Since it does not require any intervention on the existing structure, the

metabarrier can represent not only an alternative to the traditional approaches for seismic
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retrofitting of a cluster of structures but also a mean for a more viable strengthening of

structures and infrastructures of prior importance for the public safety (schools, hospitals,

power plants, etc.).

Figure 8. (a) On-field line measurement setup across barrier length. (b) Dead mass

configuration atop soil surface (no trench).

The numerical investigations carried out in this work show that while a trench provides

seismic attenuation due to scattering at frequencies related to the depth of the trench, the

metabarrier exploits resonance to attenuate the seismic motion at frequencies related to the

resonators characteristics (i.e. masses and springs).The study evidences that the dynamic

coupling between the surface wave and the resonances of the distributed mass-spring isolation

system is fundamental to activate the barrier wave attenuation mechanism (see Fig. 7). In

particular, it is shown that a barrier of distributed resonator placed directly over the soil can

both simplify the realization of the test (no excavation phase required) and clearly highlight

the effect of the resonators on the attenuation spectrum. A first experimental campaign is

currently under development to validate the numerical findings. In particular, at first the

”dead mass” configuration atop the soil, i.e. the ”no trench” case, is considered (see Fig.

8). The test aims confirming the numerical results predicted in Fig. 7 for the reference soil

(RSM) and the dead mass case. Subsequently, the designed steel plates and springs will

be put in place to allow the masses to resonate. A throughout description of the testing

equipment, protocol and data processing will be presented during the conference.
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Alternative inverse kinematic calculation methods
in velocity and acceleration level

Dóra Patkó, Ambrus Zelei

Abstract: Inverse kinematics calculation of manipulators is a common build-
ing block in most of the robotic control processes. However, the numerical
implementation of the inverse kinematics calculation has several alternatives
yielding certain advantages and disadvantages.

This paper compares two approaches. In the classical one, the joint position in-
crement is stepwise calculated based on the local velocity vector of the desired
trajectory. In contrast, the joint position increment is obtained from the error
between the desired and the realized trajectory in some alternative methods.
The two approaches are also distinguished on the acceleration level. Our ana-
lytical and numerical studies show the benefits and drawbacks of these inverse
kinematics methods.

1. Introduction

Kinematic calculation of robotic manipulators is a fundamental task in robot control, involv-

ing many issues such as numerical efficiency [8, 10]. In case of direct kinematics, the position

and orientation of the end-effector is determined based on the joint coordinates. If the joint

space and the task space (or workspace), where the end-effector is moving, have different

dimensions, there is no kinematic redundancy [6, 7, 5] (joint space is higher dimension than

the task space for redundant manipulators). In other words, degrees of freedom (DoFs) of

the manipulator exactly equals the necessary DoFs for performing the task. We consider

non-redundant cases only.

In practice, the desired position of the end-effector (tool-center-point) is prescribed and

we try to find the corresponding joint coordinate values. This mapping from the task space

to the joint space is called inverse kinematics. Many methods exist in the literature to solve

the inverse kinematic problem with different approaches. These methods can be categorized

as geometric level approaches, velocity level approaches and acceleration level approaches.

Acceleration level resolution methods of the inverse kinematic problem may improve the

performance of redundant robots [4, 9] comparing to velocity level methods. There are

alternatives for the position error compensation too [2, 1]. In this paper, our focus is on the

accuracy and efficiency of different combination of approaches used for inverse kinematics.
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1.1. The idea of auxiliary input in motion control

For the sake of easy formalization of the inverse kinematic alternatives, we apply the idea

of the auxiliary input that is used in inverse dynamics control of robots [10, 11]. The idea

is summarized briefly in this subsection based on the literature. To this end, let us consider

the general form of the equation of motion of a robot given as

M(q)q̈ + C(q, q̇) = H(q)u . (1)

By chosing the control input according to

u = H−1(q) [M(q)ṽ + C(q, q̇)] , (2)

the closed loop system assumes the following linear form: q̈ = ṽ. The term ṽ in (2) is an

auxiliary input, which is typically chosen as ṽ = q̈d − D̃(q̇− q̇d)− P̃ (q− qd). This choice

makes the error dynamics stable, when a desired trajectory qd(t) is tracked. This can be

proven by substituting (2) into (1):

Mq̈ + C = HH−1
[
M
(
q̈d − D̃(q̇− q̇d)− P̃ (q− qd)

)
+ C

]
, (3)

which leads to the stable error dynamics

q̈− q̈d + D̃(q̇− q̇d) + P̃ (q− qd) = 0 . (4)

All in all, we can say that the auxiliary input ṽ can be chosen arbitrarily depending on

the control goal. The idea of the auxiliary input will be used in the subsequent sections.

2. Inverse kinematics calculation alternatives

Inverse kinematics is a fundamental process, when the task of the robot is transferred to the

joint space from the workspace [6, 5, 10]. In case of a simple position trajectory tracking,

the desired time history rd(t) ∈ Rn of the tool-center-point (TCP) position (or end-effector

position) is given in the workspace. The goal of the inverse kinematics calculation is to find

the joint variables in q ∈ Rn which satisfy the geometric equation for the position error e

e(q, t) = 0 with (5)

e(q, t) = r(q)− rd(t). (6)

The term r(q) in (6), which expresses the actual TCP position, depends on the joint co-

ordinates and the geometry of the manipulator. The desired position rd(t) is purely time

dependent. In the geometric level approach, (5) is solved directly with a proper non-linear

root searching algorithm. Geometric solution is not typical in practice; the inverse kinematics

is solved in velocity [12] or acceleration level [4, 9] as it is detailed in the followings.
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2.1. The application of the idea of the auxiliary input on velocity level

By the time differentiation of (5), we obtain that the equation

ė(q, t) = 0 with (7)

ė(q, t) = ṙ− ṙd (8)

must be satisfied in the velocity level approaches. Based on the system geometry, we know

that the linear connection of the TCP position and the joint speed is

ṙ = Jq̇ , (9)

where the Jacobian is J(q) = ∂r(q)/∂q. Consequently, we can write that the commanded

joint speed is

q̇ = J−1vv, (10)

where vv is considered as an auxiliary input of the inverse kinematic control (such as ṽv

in (2)). Based on (8), vv = ṙd is an obvious choice; however it does not guarantee the

elimination of position error e. Therefore there are many alternative possibilities.

In the followings, two alternatives are explained for the choice of vv with the possibility

of the elimination of position errors.

2.1.1. Classical velocity level approach

By chosing the auxiliary input vv in (10) in such way that the TCP position error is main-

tained [12] (vv := ṙd − κ(r− rd)), we obtain the commanded joint velocity in the form:

q̇ = J−1
(
ṙd − κ(r− rd)

)
. (11)

Neglecting the digital effects, and by substituting (11) into (9), the TCP velocity can

be expressed as:

ṙ = ṙd − κ(r− rd) , (12)

which leads to a stable error (see (6)) dynamics governed by the following first order differ-

ential equation with the solution e(t) = Be−κt:

ė + κe = 0 , (13)

if κ > 0. The stability analysis in the presence of digital effect is detailed in Section 3.
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2.1.2. An alternative velocity level approach

Again, the question is that how we choose the auxiliary input vv appearing in (10). As it is

explained in papers [2, 1], the main idea in this approach is to define the auxiliary input in

such way that the position error is eliminated immediately if it is possible.

For the sake of precise explanation, we introduce the actual value of variables in the

specific time instances: qi := q(ti), ri := r(q(ti)) and rdi := rd(ti). We also introduce the

timestep h := ti+1 − ti.
We consider the error δi = rdi+1 − ri between the actual TCP position in the current

timestep ti and the desired TCP position in the upcoming timestep ti+1. The goal is to

eliminate δi. We assume constant TCP velocity ṙi, with which the desired TCP position of

the upcoming timestep rdi+1 can be approximately reached (see Fig. 1 left panel):

rdi+1 = ri + hṙi . (14)

By solving (14) for ṙi, one can see that the error δi is approximately eliminated if the

auxiliary input in the time instant ti is chosen as vv,i = (rdi+1 − ri)/h. With this, the

commanded joint speed (see (10)) reads:

q̇i = J−1
i

rdi+1 − ri
h

. (15)

After a single explicit Euler [3] time integration step (qi+1 = qi + hq̇i) we obtain the

commanded joint position in the upcoming time instant as:

qi+1 = qi + J−1
i (rdi+1 − ri) . (16)

The resulting error of the TCP position is depicted in Fig. 1 right panel. The commanded

joint coordinates would give the exact TCP positioning of the end-effector in case of linear

relation of the joint coordinates and the TCP position. However, if r(q) is nonlinear, a

certain error ei+1 occures. This error is small in case of small timeteps h. The thorough

convergence analysis is presented in Section 3.

Figure 1. Left panel: sketch of the TCP velocity estimation. Right panel: sketch of the

joint coordinate values and the TCP position after a single integration step.
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2.2. The application of the idea of the auxiliary input on acceleration level

By the double time differentiation of (5), we obtain that the equation [4, 9]:

ë(q, t) = 0 with (17)

ë(q, t) = r̈− r̈d (18)

has to be satisfied in the acceleration level approaches. Similarly to (9), we know that the

TCP acceleration can be expressed as

r̈ = Jq̈ + J̇q̇ . (19)

From (19), we express the commanded joint acceleration as

q̈ = J−1(va − J̇q̇), (20)

where va is again an auxiliary input of the inverse kinematic control. Based on (18), va = r̈d

is an obvious choice. Since this choice does not guarantee the decaying of the position error

e, there are several alternatives. Two alternatives, which are capable of eliminating the

position errors, are explained for the choice of va in the followings.

2.2.1. Classical acceleration level approach

By chosing the auxiliary input va in (20) in such way that the TCP position error is elimi-

nated [4] (va := r̈d − κD(ṙ− ṙd)− κP (r− rd)), we obtain the commanded joint acceleration

q̈ = J−1
(
r̈d − κD(ṙ− ṙd)− κP (r− rd)− J̇q̇

)
. (21)

Neglecting the digital effects, and by substituting (21) into (19), the TCP acceleration

in the workspace can be expressed as:

r̈ = r̈d − κD(ṙ− ṙd)− κP (r− rd) , (22)

which leads to a stable error (see (6)) dynamics with κP > 0 and κD > 0 governed by the

following second order differential equation with the stable solution:

ë + κDė + κP e = 0 . (23)

The error dynamics is assymptotically stable, if κP > 0 and κD > 0. The detailed stability

analysis, in the presence of digital effect, is detailed in Section 3.
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2.2.2. An alternative acceleration level approach

The goal is the elimination of the position error by chosing the auxiliary input appearing in

(20) properly. Similarly, as in Section 2.1.2, we consider the error δi = rdi+1−ri between the

actual and the desired TCP position. We assume constant TCP acceleration r̈i, with which

the desired TCP position of the upcoming timestep rdi+1 can be reached (see Fig. 2):

rdi+1 = ri + hṙi +
1

2
h2r̈i . (24)

By solving (24) for r̈i, one can see that the error δi is approximately eliminated if the

auxiliary input is chosen as va,i = 2(rdi+1 − ri)/h
2 − 2ṙi/h. Knowing that ṙi = Jiq̇i, and

using the joint speed estimation q̇i ≈ J−1(rdi+1 − ri)/h, the commanded joint speed (see

(20)) reads:

q̈i =
2J−1

i (rdi+1 − ri)

h2
− 2q̇i

h
− J−1

i J̇iq̇i =

=
2J−1

i (rdi+1 − ri)

h2
− 2q̇i

h
− J−1

i J̇iJ
−1(rdi+1 − ri) . (25)

The time integration is performed in the following two steps (see Adams-Moulton family of

numerical integrators in [3]):

q̇i+1 = q̇i + hq̈i , (26)

qi+1 = qi + h(q̇i+1 + q̇i)/2 . (27)

After time integration, we obtain the commanded joint position in the upcoming time instant.

Again, the nonlinearity of r(q) causes small errors in the TCP position. The smaller the

timestep, the smaller the position error. The convergence analysis is detailed in Section 3.

Figure 2. Sketch of the TCP acceleration estimation.

3. Case study examples with convergence analysis

The case study examples are shown in Fig. 3. For all case examples, the mapping of the

commanded joint coordinates from the time instant ti to ti+1 arises in the form:

qi+1 = Aqi + b (28)
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after linearizaton around an arbitrarily chosen point of the desired trajectory. Depending

on the integration scheme and the formula for the auxiliary input vv or va, the coefficient

matrix A and the vector b might change. The eigen-values of A defines the convergence of

the inverse kinematic method, which are summarized in Section 3.4.

Figure 3. Case study examples: single DoF problem (in the left panel), Cartesian PP

robotic arm (in the middle panel), RR robotic arm (in the right panel).

3.1. Case example: single DoF nonlinear system

The simplest (kinematically non-redundant) case example for testing the inverse kinematic

methods is depicted in Fig. 3 left. A nonlinear connection of the single joint coordinate q

and the TCP position r is given by r = f(q).

3.1.1. Analytical study of the linearized mapping (single DoF example)

For the single DoF example, the mapping matrix A appearing in (28) is obtained for all four

inverse kinematic approaches.

In the classical velocity level approach (abbreviated as cv), the numerical integration

scheme was the second order Adams-Bashforth scheme [3]:

qi+1 = qi + (3q̇i+1 − q̇i)h/2 . (29)

This integration scheme is applied on the commanded joint velocity defined in (11) with

which, the mapping matrix is obtained in the form

Acv =

(2− 3κh)/2 −h/2
−κ 0

 . (30)

In the alternative velocity level approach (abbreviated as av), the numerical inte-

gration is already incorporated in (16), for which the mapping matrix is:

Aav =
[
0
]
. (31)
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In the classical acceleration level approach (abbreviated as ca), the numerical inte-

gration scheme was the second order Adams-Bashforth scheme combined with the second

order Adams-Moulton scheme [3]:

q̇i+1 = q̇i + (3q̈i+1 − q̈i)h/2 , (32)

qi+1 = qi + (q̇i+1 + q̇i)h/2 . (33)

This integration scheme is applied on the commanded joint acceleration defined in (21) with

which, the mapping matrix reads

Aca =


(4− 3κPh

2)/4 (4h− 3κDh
2)/4 −h2/4

−3/2κPh (2− 3κDh)/2 −h/2
−κP −κD 0

 . (34)

In the alternative acceleration level approach (abbreviated as aa), the commanded

acceleration is defined by (25), and the numerical integration scheme is defined in (26) and

(27), with which the mapping matrix is:

Aaa =

 0 0

−2/h −1

 . (35)

3.1.2. Simulations (single DoF example)

In the test simulations (see Fig. 4) and also in the above analytical calculations, the desired

trajectory rd(t) and the joint space 7→ workspace mapping function f(q) were:

rd(t) = a0 + a1 sinωt , (36)

f(q) = c+
√
q (37)

with the parameter values a0 = 1.2 m, a1 = 0.6 m, ω = 0.28 rad/s and c = 0.2 m. The

simulation was performed with an initial error as it is shown in Fig 4. The control parameters

and the timestep were κ = 5.5 1/s, κP = 110 1/s2, κD = 6.5 1/s and h = 0.12 s respectively.

3.2. Case example: two DoF linear system

A two dimensional problem is introduced for test purposes. The example PP manipulator,

which is illustrated in Fig. 3 middle, consists of two perpendicular prismatic drive. The TCP

position r = [x, y]T is given by the mapping r(q) = f(q1, q2):

r(q) =

 l + q1

l + q2

 , (38)

where l is a geometric parameter.
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Figure 4. Position error for the 1 DoF case study example with stable parameters. Each

inverse kinematics approach is reported here.

3.2.1. Analytical study of the linearized mapping (two DoF linear example)

The mapping matrices were obtained as it was explained in case of the single DoF example.

Although, the size of the matrices are double because of the two DoFs:

Acv =


(2− 3κh)/2 0 −h/2 0

0 (2− 3κh)/2 0 −h/2
−κ 0 0 0

0 −κ 0 0

 , (39)

Aav =

0 0

0 0

 , (40)

Aca =



4−3κP h
2

4
0 4h−3κDh

2

4
0 −h

2

4
0

0 4−3κP h
2

4
0 4h−3κDh

2

4
0 −h

2

4

− 3
2
κPh 0 2−3κDh

2
0 −h

2
0

0 − 3
2
κPh 0 2−3κDh

2
0 −h

2

−κP 0 −κD 0 0 0

0 −κP 0 −κD 0 0


, (41)

Aaa =


0 0 0 0

0 0 0 0

−2/h 0 −1 0

0 −2/h 0 −1

 . (42)
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The eigen-values of the matrices of the two DoF linear example are the same as the single

DoF example, but there are twice as many of them because of the eigen-value multiplicity.

3.2.2. Simulations (two DoF linear example)

Firstly, we performed simulation (see Fig. 5 and Fig. 6 left) with parameters which are

intentionally out of the stable range; i.e. the norm of the corresponding eigenvalues of A

are larger than 1. The control parameters and the timestep were κ = 17 1/s, κP = 400 1/s2,

κD = 6 1/s and h = 0.0628 s respectively.

Figure 5. Left: Tracking of a test trajectory with badly tuned unstable parameters. Right:

Tracking of a test trajectory with nearly optimal and stable parameters.

Figure 6. Left: Tracking error with badly tuned unstable parameters. Right: Tracking

error with nearly optimal and stable parameters.
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Secondly, the simulations were performed with stable parameters (see Fig. 5 and Fig. 6

right), with which the norm of the eigenvalues are smaller (or equal in alternative acceleration

method) than 1. The timestep h was the same. The control parameters were κ = 11.5 1/s,

κP = 365 1/s2, κD = 12.5 1/s respectively.

3.3. Case example: two DoF nonlinear system

A two dimensional non-redundant problem with geometric nonlinearity is shown in Fig. 3

right. The example system is a planar RR manipulator, consists of two rigid bars and the

driven joints. The TCP position r = [x, y]T is given by r(q) = f(q1, q2):

r(q) =

 l cos(q1) + l cos(q2)

l sin(q1) + l sin(q2)

 , (43)

where l is a the length of the bars.

After defining a statical point in the workspace, the analytical calculations were per-

formed similarly as in the previous case examples, and the resulting mapping matrices were

obtained in exactly the same form (see (39), (40), (41) and (42)). Consequently the eigen-

values and the stable parameter regions are the same too.

Firstly, we performed simulation (see Fig. 7 and Fig. 8) with unstable parameters. The

control parameters and the timestep were κ = 5 1/s, κP = 61 1/s2, κD = 3.8 1/s and h = 0.2 s

respectively.

Secondly, the simulations were performed with stable parameters. The timestep h was

the same. The control parameters were κ = 3.25 1/s, κP = 40 1/s2, κD = 4 1/s respectively.

Figure 7. Left: Tracking of a test trajectory with badly tuned parameters. Right: Tracking

of a test trajectory with nearly optimal and stable parameters.
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Figure 8. Left: Tracking error with badly tuned parameters. Right: Tracking error with

nearly optimal and stable parameters.

3.4. Summary of the case examples

For all case examples, the same stability chart is obtained for the classical velocity and

acceleration level approaches. These are reported in Fig. 9. The grey region is stable in the

left panel for the classical velocity level approach. On the right panel, for different h values,

different regions are plotted in the 2D space of the control parameters κP and κD.

Figure 9. Left panel: stable region of the parameters h[s] and κ[1/s] in case of the classical

velocity level methods. Right panel: stable region of the parameters h[s], κD[1/s] and κP [1/s2]

in case of the classical acceleration level methods.

For all case examples, the eigenvalue(s) for the alternative velocity level approach is/are

always 0 regardless any parameter. The set of eigenvalues for the alternative acceleration

method always consists of 0 and -1 values.
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In simulations, the alternative acceleration level invers kinematic methods behaved more

favorably than expected based on the analytical calculations. The linear stability was

marginal; however, the trajectory tracking error decayed because of the nonlinear effects.

4. Conclusion

In the literature, the classical velocity and acceleration level approaches are analysed. The

alternative velocity level method is available in the literature too. As a novelty, the acceler-

ation level alternative method was tested.

Based on the simulations, we observed that the trajectory tracking error in the velocity

level is smaller for the alternative method comparing to the classical one. However, in

acceleration level, the classical method performs better, since the alternative method is

marginally stable only.

The stable control parameter ranges were defined by the linearization of the numerical

inverse kinematics formulae. The simulations showed stable operation when the control

parameters and the time step were chosen from the theoretically stable domain.
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Experimental evaluation of PLC based fractional order PIλDµ

temperature control in pipeline

Jakub Petryszyn, Jakub Możaryn, Stepan Ozana

Abstract: The following paper presents the experimental evaluation of the
fractional-order PIλDµ temperature control in the pipeline, using standard
PLC Siemens S7-1200 controller. The control algorithm is based on the im-
plementation of the Grünwald-Letnikov differ-integral Continuous Fraction Ex-
pansion approximation and tuned using the Interior-Point optimization method
with the Integral Time Squared Error (ITSE) criterion. The PIλDµ temper-
ature control system wasevaluated using simulations, and experiments on the
laboratory test stand. Based on the discussion of the results obtained dur-
ing the simulation, Hardware-In-Loop, and experimental research, there are
proposed further developments considering the accuracy and robustness of the
PLC-based fractional order PIλDµ control system.

1. Introduction

PID (Proportional-Integral-Derivative) algorithm is one of the most commonly used algo-

rithms to control processes in the industry. It has a simple implementation, and there is a

vast number of methods of tuning such a controller depending on the controlled process. This

allowed to develop easy to use and intuitive tuning methods, which mostly meet required

quality constraints [7].

The standard PID control system design is based on the integer order calculus. However,

some systems, mostly in chemistry and pharmacist industry, can be precisely described by

fractional-order equations [9, 10, 20]. In such situations, to model processes with higher ac-

curacy, the non-integer calculus is used. In such cases, the PID algorithm can be insufficient.

The fractional order PID algorithm (FOPID), which is described as PIΛDµ, enables to

use of non-integral derivatives and integrals. That increases the number of tuned parameters

from 3 to 5 and allows to better match controller with the process. In [3, 4, 10] authors prove

that fractional order PID outperforms in some applications integral order solution. There

are alsoproposed different tuning methods for the FOPID controller which fulfil the control

system design requirements e.g. optimization with integral criterions [4, 10], constrained

min-max optimisation [1], swarm optimization [8], auto-tuning methods [11] or robust tun-

ing methods [22]. Usually, PIΛDµ algorithm istested and simulated in MATLAB/Simulink

environments, for example, to control HVAC systems [18], water tanks [13] or nuclear power
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plant [21]. Unfortunately, there is still a lack of tests on real-time systems, mostly because

of the complicated implementation issues.

Nowadays, most production lines in small and medium companies are controlled by

Programmable Logic Controllers (PLC). The main problem to solve and ensure the proper

functionality of the automation system is tuning of controller parameters. Unlike e.g. Dis-

tributed Control Systems (DCS), solutions based on PLCs dont have wide support in terms

of integration and operation of control algorithms.

This paper describes the results of implementing and tuning the fractional order PID

algorithm on the laboratory test stand, where the controlled value is the temperature in

the pipeline. In the test stand system, it is possible to impose additional disturbances,

and checking the robustness of the proposed solution. The test stand is equipped with

Siemens S7-1200 PLC controller, allowing for data acquisition. Therefore, the industrial

implementation of the PIΛDµ algorithm can be evaluated.

The article is organized as follows. In Section 2, basic fractional-order calculus definitions

and numerical approximations are explained. Then, in Section 3, the laboratory test stand

is described. In Section 4 the process identification is presented. In Section 5 the PIΛDµ

controller design and tuning are described. In Section 6 the PLC implementation of the

PIΛDµ controller is presented. In Section 7 experimental results for the PIΛDµ controller,

obtained during simulations and experiments, are demonstrated. Finally, concluding remarks

are given.

2. Fractional order calculus definitions

2.1. Differ-integral operator

The fractional calculus generalizes the well-known integer order actions by using real numbers

to differentiation and integration actions. The differ-integral operator is the combination of

non-integral differentiation and integration operators of the function f(t), defined as

Defa D
a
t f(t) =


dα

dtα
α > 0

1 α = 0∫ b

a
(dτ)−α α < 0

(1)

where: α - integer order of the operation (α ∈ R), a and b - time limits.

The differ-integral operator (1) acts as the integrator for α < 0, as the derivative for

α > 0. It is defined, according to the Riemann-Liouville definition (RL definition) [12], as

RL

a
Dα

t f(t) =
dαf(t)

d(t− a)α
=

1

Γ(m− α)

dm

dtm

∫ t

0

f(τ)(t− τ)m−α−1dτ > 0 (2)
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The Laplace transform of (2) can be calculated as

L [0D
α
t f(t)] = sαF(s)−

m−1∑
k=0

sk
[
Dα−k−1f(t)

]
t=0

(3)

2.2. Grünwald-Letnikov numerical approximation

There are many differ-integral operator definitions. The most commonly used are the

Riemann-Liouville (RL definition) [12], the Caputo (C definition) [2], and the Grünwald–

Letnikov definition (GL definition) [9, 10].

Because of easy numerical implementation in PLC controllers, the Grünwald–Letnikov

definition of the numerical approximation of the differ-integral operator is used in the form

GL

a
Dα

t f(t) =
dαf(t)

d(t− a)α
= lim

N→∞

[
t− a

N

]N−1∑
j=0

(−1)j

 α

j

 f

(
t− j

[
t− a

N

])
t > 0, (4)

where: m ∈ Z - integer number fulfilling dependence m − 1 < α < m, (α ∈ N) and Γ(̇) -

Euler function [6].

2.3. Oustaloup approximation of differ-integral operator

Because direct numerical implementation of the differ-integral operator (3) is hard to calcu-

late, it is necessary to approximate it. The most commonly used approximation method in

practical implementations is the Oustaloup filter in the form [10]

sα = K

N∏
i−1

s + ω′i
s + ωi

(5)

where the filter coefficients are calculated using the following equations

ω′i (α,N, ωd, ωw) = ωdωw
(2i− 1− α)

N

ωi (α,N, ωd, ωw) = ωdωw
(2i− 1 + α)

N

K (α, ωg) = ωαg

ωw (ωg, ωd) =

√
ωg

ωd

, (6)

ωd, ωg - lower and higher bound frequencies (ω ∈ [ωd, ωg], N - the order of the approximation.

2.4. Discrete approximation methods of differ-integral

To implement the differ-integral operator in the digital controller (e.g. PLC), there are used

different discrete approximation methods. The first common approximation method is the
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Power Series Expansion (PSE) [13, 16] that implements directly GL differ-integral and has

digital Finite Impulse Response (FIR) filter structure, based on the system outputs. Unfor-

tunately, PSE approximation requires many values from previous steps of approximation,

which increases the controllers hardware and memory minimal requirements. Another pop-

ular approximation is the Continued Fraction Expansion (CFE) [15, 16], which has Infinite

Impulse Response (IIR) filter structure, containing both zeros and poles of the system. It

requires previous outputs and inputs of the system, allowing for faster convergence and low

order of the filter (not higher than 5).

(
ω
(
z−1))±α =

(
1 + a

T

)±α
CFE

(
1− z−1

1 + az−1

)±α∣∣∣∣∣
p,q

=

(
1 + a

T

)±α Pp (z−1
)

Qq (z−1)

=

(
1 + a

T

)±α
P0 + P1z

−1 + P2z
−2 + · · ·+ Ppz

−p

Q0 +Q1z−1 +Q2z−2 + · · ·+Qqz−q

(7)

where: a - argument that depends on the approximation method (a = 0 for Euler approxi-

mation and a = 1 for Tustin approximation), T - sampling time.

Since CFE provides better memory usage, it is implemented often in real systems with

limited capacity. Digital devices as a PLC or a micro-controller, have to work with finite

sampling time and it is crucial to choose its adequate value. The PLC with too short T

cannot make all calculations in the real-time, but then too long T will cause the lower

control quality.

3. Laboratory test stand

The laboratory test stand (see Fig. 1) comprised a pipeline with a heater (G) in which

an airflow is induced by the fan (S). The control system controlled the amount of the heat

released by the heater (G) at the constant airflow. The power control signal of the heater

(YG) and speed of the fan (YW ) were standard current signals 4 - 20 mA generated by the

PLC controller used in the closed-loop control system.

To measure the temperature there was used the T/I measuring transducer with the

Pt100 resistant thermometer and additional linearization. The measurement range of the

transducer was 25 ◦C - 75 ◦C.

To control the system, a PLC S7-1212c DC / DC / DC Siemens controller was used

with the analog input and analog output module and a 24V power supply. The SIMATIC

HMI KPT 600 panel and the desktop PC with the TIA-Portal software were used for the

visualization and the controller implementation.

On the test stand it was possible to artificially induce following disturbances (see Fig.

1):
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• The step change in the air inlet orifice (D1, change of the cross-section from 389 to

1661 mm2).

• The step-change in the heater power (G) by adding or disconnecting additional resis-

tance which changes the heater resistance from 100 Ω to 75 Ω (D2).

• The step-change of the fan speed through - (YW ) signal.

Figure 1. The scheme of the process part of the temperature control system and the photo

of the laboratory test stand: a) PC with the TIA-Portal software, b) the control interface,

c) the pipeline with induced airflow and the heater, d) the industrial box with the PLC

controller and the HMI panel for the process monitoring.

4. Process identification

The mathematical model of the process was approximated with the transfer function of the

first-order lag system with a delay. The plant parameters were determined from the open-

loop system step response using the secant method [5]. The following transfer function of

the control object was identified

Gob(s) =
∆PV (s)

∆CV (s)
=

kob
Tzs+ 1

e−T0s =
0, 765

42, 37s+ 1
e−5,63s (8)

where: y(s) = PV (s) - the process value, u(s) = CV (s) - the control value, Tz - the first

order lag time constant, T0 - the delay time constant and kob - the process gain.
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5. PIλDµ controller design and tuning

5.1. Controller structure

The adopted PIλDµ controller transfer function was in the following form

GPIλDµ(s) = KP + KIs
λ + KDsµ (9)

where: KP - the proportional gain, KI - the integral time constant, KD - the derivative

time constant, sλ, sµ, λ < 0, µ > 0 - differ-integral operators.

5.2. Controller tuning

PIΛDµ controller was tuned according to the method described in [10, 19, 17], assuming the

controller transfer function in the form (9) and the process transfer function in the form

Go(s) =
1

a1sα + a2sβ + a3
(10)

The chosen tuning method based on the Oustaloup approximation (5). It required to solve

following set of equations

Kp+
KI

ωλp
cos

πλ

2
+KDω

µ
p cos

πµ

2
= − a1

Am
ωαp cos

πα

2
− as
Am

ωβp cos
πβ

2
− a3

Am

− KI

ωλp
sin

πλ

2
+KDω

µ
p sin

πµ

2
= − a1

Am
ωαp sin

πα

2
− as
Am

ωβp sin
πβ

2

Kp +
KI

ωλg
cos

πλ

2
+KDω

µ
g cos

πµ

2

= −a1ω
α
g cos

(πα
2

+ θm
)
− a2ω

β
g cos

(
πβ

2
+ θm

)
− a3 cos θm

−KI

sin πλ
2

ωλg
+KD sin

πµ

2
ωµg

= −a1ω
α
g sin

(πα
2

+ θm
)
− a2ω

β
g sin

(
πβ

2
+ θm

)
− a3 sin θm

(11)

where: ωp - the cut-off frequency, Am - the gain margin, θm - the phase margin.
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The following condition had to be fulfilled to calculate λ, µ, ωp, ωg(
ωλ+µ
g − ωλ+µ

p

){
a1

[
ωαg cos

(πα
2

+ θm
)
− ωαp cos

πα

2

]
+

a2

[
ωβg cos

(
πβ

2
+ θm

)
− ωβp cos

πβ

2

]
+a3 cos

(
θm −

1

Am

)}
+

(
ctg

πλ

2
+ cot

πµ

2

)(
ωλpω

µ
gFp

Am
+ ωβgω

µ
pFg

)

−

(
ωλ+µ
p Fp

Am
+ ωλ+µ

g Fg

)
ctg

πµ

2

−

(
ωλ+µ
p Fg +

ωλ+µ
p Fp

Am

)
ctg

πλ

2
= 0

(12)

where Fp = a1ω
α
p sin πα

2
+ a2ω

β
p sin πβ

2

Fg = a1ω
α
g sin

(
πα
2

+ θm
)

+ a2ω
β
g

(
sin πβ

2
+ θm

)
+ a3 sin θm

(13)

6. PLC implementaion of PIλDµ controller

The process of implementing the PIλDµ control algorithm (9) on PLC can be divided into

three stages.

The first stage base on implementing the PIΛDµ control algorithm and testing its per-

formance in the MATLAB/Simulink environment. Theset of functions had been created to

determine the parameters of the discrete CFE approximation.

While tuning the PIΛDµ controller, the following conditions had been assumed:

• No steady-state error

• Gain margin: 10 dB

• Phase margin: 60 ◦

There was used the Interior-Point optimization method [14] with the Integral Squared Time

Error (ITSE) criterion, to fulfill the conditions (11)-(12) while calculating the controller

parameters.

In result, the following PIΛDµ controller transfer function was chosen

GPIΛDµ(s) = 2.142 + 0.856s−0.9851 + 29.626s0.7998 (14)
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In the second stage, the code for the PLC was created in the Structured Control Language

(SCL). For this purpose, the extension Simulink PLC Coder1 was used, which allowed cre-

ating code for PLC directly from the MATLAB code. In this stage, the CFE differ-integral

approximation was used (See Section 2.4).

The last stage of the design was to simulate the algorithm in the PLC and to simulate a

controlled object using MATLAB/Simulink (Hardware-In-the-Loop, HIL). For this purpose,

it was necessary to transfer data between the Siemens PLC software (TIA-Portal) and the

MATLAB/Simulink environment. An additional OPC UA server was used to enable data

exchange between the simulated controller in PLCSim (part of the TIA-Portal software)

and Simulink. Moreover, there was used NetToPLCsim 2 extension, allowing TCP / IP

connections of simulated controllers. The preliminary results of the implementation tests

practically coincided with the ones calculated in MATLAB only. This confirmed the effective

implementation of the code from the MATLAB/Simulink environment to the Siemens S7-

1200 PLC controller.

7. Laboratory tests

During laboratory tests, the designed and tuned PIΛDµ controller was used in the laboratory

test stand.

The step response of the control system with the PIΛDµ controller, as well as the influ-

ence of disturbances, were examined.

The quality of the control system was analyzed in the time domain using the following

indexes:

• Maximum error

emax = max
t

[esp(t)] (15)

where: esp(t) = ysp(t)− y(t)

• Overshoot

γ =

∣∣∣∣e2

e1

∣∣∣∣ 100% (16)

where e1 and e2 are the first two consecutive biggest errors with opposite signs,

assuming as the zero level (baseline) the steady state value of the output signal y(t)

after the transient response.

1https://www.mathworks.com/products/sl-plc-coder.html
2http://nettoplcsim.sourceforge.net/ (it should be noted that it is necessary to use TIA-

Portal V15)
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• Transient response time TR - it is the time between the moment of change of the set

point ysp(t), or introduction of disturbances d(t) and the moment when error esp(k)

reaches a fixed value inside a boundary |0.05esp max(t)|.

The calculated control quality indexes for the control system with the PIΛDµ controller

aresummarized in Table 1 and showed in Fig. 2. It should be noted, that the plant imple-

mentation in the HIL simulation did not include disturbances.

Figure 2. a) Simulated step response of the system with PID and PIΛDµ controllers; b) the

laboratory control system response to the set-point step change with the PIΛDµ controller.

Table 1. Quality of the PIΛDµ temperature control system

HIL simulation Laboratory stand
emax γ TR emax γ TR
[%] [%] [s] [%] [%] [s]

Step SP change 1.00 8.50 87.00 10.00 15.00 45.00
Air inlet change - - - 0.76 0.00 60.00
Heat power change - - - 0.77 0.00 23.50
Fan speed change - - - 0.70 0.00 23.00

The results gathered in Table 1 prove the successful implementation of the PIΛDµ con-

troller. Besides tracking the set-point the controller was robust to induced disturbances

(air inlet change, heat power change, fan speed change). Comparing with the HIL simula-

tion, the test stand implementation is characterized with shorter transient response times

(TR), higher maximum errors (emax) and higher overshoot (γ). It can be due to the prob-

lems with selecting the optimal controller settings for the system with a delay and the

additional disturbances. Another problem is the numerical approximations used during the

implementation. The simulated PIλDµ controller tuning based the Oustaloup continuous

approximation. However, because of implementation requirements, in the PLC controller,
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the discrete approximation using CFE method was used. Therefore, there still exists the

problem of interpreting of the optimized parameters for PLC.

8. Conclusions

The paper describes the experimental evaluation of the fractional-order PIλDµ temperature

control on the laboratory test stand, where the fractional order controller is implemented on

standard PLC Siemens S7-1200 controller. For the approximation of the Grünwald-Letnikov

differ-integral, the Continued Fraction Expansion (CFE) was used and implemented on the

PLC controller. The proposed solution was tested using simulations, and experiments on

the laboratory test stand.

The results obtained during the presented research, with the thermal-flow process,

showed that to apply the proposed control algorithm, it is crucial to develop methods for

tuning the controller to minimize the influence of input delays and disturbances. There-

fore, the proposed future work will include the research on proper tuning methods of PIλDµ

controllers with CFE approximation of differ-integral.
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Theoretical and numerical analysis of different modes in a 

system of a “kicked” magnetic pendulum 

 

 

Krystian Polczyński, Adam Wijata, Jan Awrejcewicz 

Abstract: A non-linear magnetic pendulum system has been studied theoretically and 

numerically. The main component of the system is a pendulum equipped with a 

neodymium magnet, which is “kicked” by an alternating magnetic field form an 

electrical coil underneath. The current signal which flows through the coil is repeatedly 

switched on and off with a given frequency and a duty cycle. Switched on magnetic 

field introduces a two-well potential instead of a single-well gravitational one, what 

results in two stable fixed points and one saddle from a dynamical point of view. 

Describing the system with a discrete two-state equation, different modes of regular 

motion have been analyzed. The excitation signal parameters set has been identified for 

a special type of systems trajectory. Existence of different solutions has been examined 

in terms of switching signal parameters, that is a frequency and a duty cycle. Obtained 

numerical results from discrete as well as continuous simulative models have been 

justified against experimental data from a specially constructed laboratory stand. 

1. Introduction 

The content of the presented paper focuses on the behavior of an electro-magneto-mechanical system 

whose the main part is a pendulum. Recent years have shown a growing interest in that kind of systems, 

it is a result of searching for novel methods of excitation in mechanical engineering as well as 

pendulums are easy-to-built examples of strongly non-linear mechanical systems. 

The experiment setup suggested by Duboshinsky [1–3] involves a pendulum with a magnet 

suspended above the inductance coil connected to an alternating current source. The orientation of 

solenoid is perpendicular to the pendulum. The system exhibits quantized modes regarding changes in 

the system’s parameters such as frequency of current or length of the pendulum. The disturbances of 

these parameters can cause the jumps of system trajectory from one mode to another, those jumps 

imitate the “quantum jumps” of atomic physics. A similar experiment was conducted by J. Bethenod 

[2,4]. He reported the phenomenon of growing and sustained oscillations exhibited by a pendulum with 

a ferromagnetic bob embedded in vary inductance generated by a coil. The pendulum revealed different 

kinds of behavior in terms of electrical circuit’s parameters. The steady-state of oscillations was 

obtained for an electrical circuit with a predominant reactance. Furthermore, with predominant 

resistance the oscillations decayed more rapidly than in the case when the coil was unexcited. Sustained 

oscillations of definite amplitude depended on the reactance of the coil, the voltage and the frequency 
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of excitation as well as internal damping of the mechanical system. Damgov and Popov [5] studied 

numerically and analytically a kick-excited, self-adaptive pendulum system. Attractor set of the system 

has been analyzed by multiple bifurcation diagram as well as complex dynamics, evolution and the 

fractal boundaries of the multiple attractor basins. Siahmakoun et al. [6] investigated experimentally 

and numerically a driven pendulum in the repulsive magnetic field. They obtained a different kind of 

attractors and their transformations regarding the system’s parameters such as the distance between 

magnets and frequency of a driven force. Wojna et al. [7] studied a dynamics of a double pendulum 

driven by external torque, while the lower link of the pendulum has been equipped in a strong magnet 

acting on the other magnet fixed to the rig’s frame. Chaotic and regular motion have been obtained 

numerically and experimentally and discussed. Numerous of presented regular motions have featured 

a  multiperiodic form. The system of two coupled pendulums subjected to the alternating magnetic field 

has been examined by Polczyński et al. [8,9]. Numerical and experimental investigation justified the 

existence of not only a chaotic and regular motion but also quasi-periodicity. Computed basins of 

attraction have shown the richness of symmetric system’s responses in terms of different initial 

conditions. 

2. Experimental setup and physical model 

In this section, we present the experimental rig which has been constructed in our department as well 

as its physical model with forces and moments of forces acting on it. The experimental rig and the 

physical model of the system are shown in Fig. 1a and Fig. 1b, respectively.  

 

Figure 1.   Experimental setup of a single magnetic pendulum (a) and its physical model (b) where: 1 –

pendulum, 2 – neodymium magnet (not visible), 3 – electrical coil, 4 – brass pivot, 5 – 

rubber elastic element and 6 – torque transducer. 
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The main parts of the system are a single physical pendulum (1) equipped with a neodymium magnet 

(2) (not visible in Fig.1) at the end of the link and an electrical coil (3) placed underneath. The pendulum 

is fixed to a brass pivot (4) which is connected with an elastic rubber element (5). The other side of the 

mentioned element has been fixed to the stationary torque transducer (6). The pendulum’s rod is 

subjected to a gravitational force mg and a torque Mmag being a result of repulsive magnetic forces 

coming from the electric coil. Force mg is put in a center of mass of the pendulum and distance between 

this center and the axis of rotation is denoted as s. The resistance of the motion is introduced as a torque 

MD. It is a sum of all damping factors such as viscous friction, dry friction and internal damping of the 

elastic element. Moreover, stiffness of the elastic element induces a torque MS. 

The repulsive force generated by the coil is realized by a rectangular current waveform which flows 

inside the circuit. Fig. 2 pictures particular parameters which are regulated, that is the frequency 𝑓 =
1

𝜏
 

and the duty cycle 𝑤 =
𝜏𝑂𝑁

𝜏
⋅ 100% , current’s amplitude I was set on 1A. 

 

Figure 2.   The rectangular current signal flows through the electric coil, where τ is a period of the 

signal, τON is a time when the coil is powered and τOFF is a time when the coil is switched 

off. 

Angular position of the pendulum has been measured by an incremental optical encoder HEDS-

9040#J00, the smallest angular displacement which can be detected is 0.36°. LabVIEW software and 

NI USB-6341 device were used for the data acquisition process. 

3. Mathematical modeling of the system 

In this paper two approaches to the systems modeling are presented. The first approach is based on one 

non-autonomous ordinary differential equation (ODE) describing the system’s motion, where the coil’s 

current rectangular signal is modelled with a continuous approximation. The second approach assumes 

that the coil current signal is discrete, i.e. the coil is instantaneously switched on or off. In this case 

motion of the system is described with two different autonomous ODEs, which are switched between 

themselves accordingly to the set frequency and the duty cycle. In this section, we present the 

conceptions of these two approaches as well as a mathematical model of electromagnetic interaction. 

Some nomenclature in the section is based on work [5]. 
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3.1. Electromagnetic interaction between a neodymium magnet and an electric coil 

The electromagnetic interaction between the magnet and the coil has been investigated previously in 

our work [8]. The proposed mathematical model was based on experimental data of the torque generated 

by a steady magnetic field. The complexity of the mentioned model has encouraged us to develop a 

simpler model to accelerate numerical computation. The simpler model was yielded by the potential 

analysis. Mathematically, a character of the potential energy generated by the coil-magnet interaction 

in our system can be approximated by the Gaussian peak function. The mathematical formula used to 

describe the magnetic potential is as follows 

𝑉𝐺(𝜑) = 𝑎 exp (−
𝜑2

𝑏
), (1) 

where coefficient a, b are constant and depend on current amplitude. According to the mechanical 

definition of the potential, we can calculate torque Mmag* acting on the pendulum for steady coil’s 

current as: 

𝑀𝑚𝑎𝑔∗(𝜑) = −
𝜕𝑉𝐺

𝜕𝜑
=

2𝑎

𝑏
exp (−

𝜑2

𝑏
) 𝜑. (2) 

Fig. 3a depicts the potential of the system. In the case of the one-well potential the system is subjected 

only to gravitational and elastic element’s forces. In the case of the powered coil the two-wells potential 

is obtained. One can notice that, the significant differences between these two kinds of potentials occur 

only in so-called “active zone”, which is placed between angles ±φA. Outside of the active zone, the 

influence of the electromagnetic interaction on the pendulum can be neglected. The experimental 

measurement and approximation (Eq. 2) of the torque Mmag* are shown in Fig. 3b. 

(a) (b) 

  
Figure 3.   The one-well and two-well potentials of the system (a); The experimental measurement and 

approximation of the torque Mmag* (b). 

3.2. Non-autonomous mathematical model 

Taking into account the classical mechanics the governing equation of the system can be written as one 

ODE in a following way 

434



𝐽�̈� + 𝑐𝑒�̇� + 𝑘𝑒𝜑 + 𝑚𝑔𝑠 sin 𝜑 + 𝑇𝑠(�̇�) − 𝑀𝑚𝑎𝑔∗𝐼(𝑡) = 0, (3) 

where J is the pendulum’s moment of inertia, ce and ke denote viscous damping and stiffness of the 

elastic element. Term mgs stands for a torque of the gravitational force mg at arm s. Moreover, basing 

on the experimental measurements we decided to model the damping 𝑇𝑠(�̇�) which comes from the 

rolling bearings with the following function:  

𝑇𝑠 = [𝐹𝑐 + (𝐹𝑠 + 𝐹𝑐) exp
−(�̇�)2

𝑣𝑠
] tanh 𝜀�̇� + 𝑐�̇�, (4) 

where Fc is the value of the simple Coulomb friction, vs represents so-called Stribeck velocity and the 

Fs denotes the value of static friction when the pendulum does not move. Term c is viscous damping 

coefficient, whereas ε is a regularization parameter. Because, the magnetic interaction is possible only 

when the current flows through the coil, in Eq. 3 the value of Mmag* is multiplied by dimensionless 

current signal I(t) (see Fig. 2) described by the following formula [8] 

𝐼(𝑡) =
1

2
[1 +

2

𝜋
arctan(𝜖 sin(2𝜋𝑓(𝑡 + 𝑡0)) + 𝑖0)], (5) 

where 𝑖0 = − sin (
𝜋−

2𝜋𝑤

100

2
) and 𝑡0 =

𝜋−
2𝜋𝑤

100

2𝜋𝑓
. Term w is a percentage duty cycle, f [Hz] stands for the 

frequency and 𝜖 is a regularization parameter. 

3.3. Discrete mathematical model 

The main goal of this approach is to eliminate the continues form of the current signal from the motion’s 

equation. The goal can be achieved by dividing the motion into two different states. Each of the states 

is described by one autonomous ODE. The occurrences of the relevant states are related to times 

calculated on the basis of frequency and duty cycle of the current signal. The first state corresponds to 

the time when the coil is switched off and is governed by the following equation  

𝐽�̈� + 𝑐𝑒�̇� + 𝑘𝑒𝜑 + 𝑚𝑔𝑠 sin 𝜑 + 𝑇𝑠(�̇�) = 0, (6) 

whereas the equation of the second state corresponding to the switched-on coil is as follows 

𝐽�̈� + 𝑐𝑒�̇� + 𝑘𝑒𝜑 + 𝑚𝑔𝑠 sin 𝜑 + 𝑇𝑠(�̇�) − 𝑀𝑚𝑎𝑔∗ = 0. (7) 

As a result, the continues coil current signal has been discretized. Parameters used in Eqs. 6 and 7 have 

the same description as parameters in the subsection 3.2. The trajectory of the motion is a set of 

solutions received in numerical integration of the Eqs. 6 and 7. The initial conditions employed to 

integration process have been taken from the last point of a preceding state’s solution. The values of 

system’s parameters were as follow: a=0.0425 [Nm rad], b=0.0181 [rad2], J=6.787⋅10-4 [kgm2], 
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mgs=5.800⋅10-2 [Nm], ke=1.742⋅10-2 [Nm/rad], ce=1.282⋅10- 4 [Nms/rad], Fc=2.223⋅10-4 [Nm], 

Fs=4.436⋅10-4 [Nm], φA=0.3484 [rad], vs=0.5374 [rad/s], c=7.369⋅10- 5 [kg m2], ε=5.759 [-], ϵ=200 [-]. 

4. Experimental and numerical investigation of 1-period and one-side pendulum’s 

oscillation 

In this section, we present experimental and numerical investigations of one-side oscillations of the 

pendulum. By one-side oscillations, we mean oscillations of the pendulum without moving through the 

lower and upper equilibrium positions. Our studies focus on the influence of the duty cycle and 

frequency of the current signal on the motion. Experimentally, one can observed that for set constant 

frequency f exists a wide range of the duty cycle w for which the pendulum’s oscillation does not 

change. Fig. 4 displays experimentally obtained phase plots of these same oscillations for various 

excitation signal’s parameters. 

(a) (b) (c) 

   

Figure 4.   Experimental phase plots and Poincaré sections for a fixed frequency f=3.5 Hz but different 

duty cycles w: (a) 30%, (b) 60% and (c) 80%. 

It is well visible that for a given frequency and different duty cycles it is possible to hold similar 

oscillations’ amplitude, angular velocity and periodicity. In order to understand and explain this 

behavior we started our analysis from determining the initial conditions, which have to be fulfilled to 

achieved one-side oscillation. In Fig. 5 we can distinguish two states of pendulum’s motion and 

characteristic points, which pendulum has to cross during oscillation. The first state starts when the 

pendulum is freely falling from the initial point (φ0,ω0=0) to the point (φk,ωk) where the coil is switched 

on what results in the magnetic barrier (blue arrows in Fig. 5a). We call this point “the kick”, because 

the system is “kicked” to the higher energy state (green arrow in Fig. 5a). The system goes to the second 

state when the pendulum bounces from the magnetic barrier and goes away from it (red arrows in Fig. 

5a). Fig. 5b depicts a phase plot of trajectory with colored line segments corresponding to the systems 

states. Taking into consideration the relations shown in Fig. 5, the 1-period motion can exist only for 

particular values of boundary conditions (φk,ωk), which used as initial conditions in Eqs. 7 result in the 

trajectory which crosses the point ( φ0,ω0=0). The set of these values has been obtained numerically. 

Frist, a range of search was limited by boundaries following the motion scenario shown in Fig. 5: 

(i) the kick must be within the active zone, 
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(ii)  the minimum initial angle φ0 cannot be smaller than φA (yellow line (2) in the Fig.6), 

(iii) the initial angle φ0 cannot provide to potential well escape (blue line (1) in the Fig. 6). 

(a) (b) 

  
Figure 5.   The potential plot (a) and phase plot (b) with characteristic points and stages during one-

side pendulum’s oscillation. 

The obtained set of (φk,ωk) and boundary lines are shown in Fig. 6. For each point (φk,ωk) the time t1 

and t2 (see Fig. 5a) of the motion’s states have been computed. These times are related to the frequency 

and duty cycle of the current signal I(t) in the following way: 𝑓 = 1/(𝑡1 + 𝑡2) and 𝑤 = 𝑡2/(𝑡1 + 𝑡2). 

In Fig. 7, the line labeled as 3 shows the values of w and f that have been computed for the basic scenario 

shown in the Fig. 5a. However, since we have noticed before, that outside the active zone differences 

between two states are insignificant, switching off the coil (transition from state 2 to 1) can be 

performed anywhere outside the active zone. For those same (φk,ωk) one can found the shortest time t2 

(spread from point (φk,ωk) to some point before (φ0,ω0)) which corresponds to the minimum duty cycle 

w – line labeled as 1 in the Fig.7. The similar situation concerns calculating the longest time t2 (spread 

from point (φk,ωk) to point after (φ0,ω0)) what corresponds to the maximum w – line labeled as 2 in the 

Fig.7. In other words, the coil can be switched off just after the system leaves the active zone, or just 

before the system enters it.   

 
Figure 6.   (1), (2) – Boundary conditions; (3) – set of (φk,ωk) fulfilling period-1 motion 

scenario. 
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Figure 7.   Range of w and f giving 1T and one-side oscillations; (1) – solution described in 

text; (2) – minimum w; (3) – maximum w. 

Values of frequency and duty cycle get from the green area in Fig. 7 result in period-1 and one-well 

oscillating solution of the pendulum’s motion. The comparison of numerical results to previously 

presented in Fig.4 solutions is shown in Fig. 8. 

(a)   

   
(b)   

   
Figure 8.   Numerical results of 1T solution calculated by using (a) non-autonomous mathematical 

model (Eq. 3) and (b) discrete mathematical model (Eqs. 6 and 7). 

The comparison of the phase plots has justified that both non-autonomous and discrete models give 

those same solutions as experiment for fixed frequency 3.5 Hz and three different duty cycles. 

Numerical investigation have yielded that the amplitude of oscillations increases with decreasing 

frequency of current signal. Fig. 9 presents behavior of the system for different values of the frequency. 
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Figure 9.   Influence of increasing frequency on oscillation amplitude. 

5. Concluding remarks 

The nonlinear one-degree-of-freedom system has been investigated numerically and experimentally. 

The system is composed of a single magnetic pendulum elastically coupled with a fixed base and 

excited by an alternating magnetic field. Two approaches of mathematical modeling of the system’s 

motion have been presented as well as the model of magnetic interaction. The one-well oscillation has 

been analyzed in terms of parameters of the current signal: duty cycle and frequency. The numerical 

computation has yielded a range of duty cycles and frequencies for which the system exhibits period-1 

motion. Both non-autonomous and discrete mathematical models provide similar results which are in 

good agreement with experiment. The work presents promising results which can be used to control so-

called “kicked” systems. The future studies will concern more complicated scenarios of the 1-period 

motion. 
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Stability and vibration of a two-member cantilever column with an 

integrated PZT rod 

 

Jacek Przybylski, Krzysztof Kuliński 

Abstract: This paper concerns the problem of transversal vibration a geometrically 

non-linear two-member column with a piezoceramic rod being a component of the 

structure. In the considered system, the external load applied to the column with an 

unintentional eccentricity and the internal piezo force are distributed among both 

members. The piezo rod is mounted discretely with an offset distance in regard to the 

host column what makes that the piezoelectric actuation may be effective in 

suppressing of prebuckling deflection in the whole range of the external load. 

Although the main role of the piezoelectric force generated by the actuator is the 

control of the column shape, it affects also the natural vibration frequency of the 

system. To analyze the problem a non-linear analytical model of the structure is 

developed on the basis of Hamilton’s principle and solved with use of the perturbation 

method.  

Performing adequate computations, the static deflection and internal axial force 

distribution modified by the electric field application are determined by changing 

column properties such as the offset distance and the eccentricity of the external load. 

In the dynamic analysis, the fundamental vibration frequency of the deflected column 

and the adequate modes are studied in relation to both the external load and the 

piezoelectric force. It has been proved that the natural vibration frequency, affected by 

the piezoelectric force, also depends on the matched column and rod materials, the 

ratio of the cross section of the rod to the host column and the direction of the electric 

field. 

1. Introduction 

The problem of stability and vibrations of beams and columns subjected to various types of external 

load with different types of support, cross-section dimensions, imperfections etc. is the subject of 

interest by many researchers. In those works, the problems are stated and formulated on the basis of 

both the classical analytical methods and the finite element method. Among physical models of  the 

studied structures, two types of geometrical systems can be distinguished, i.e. the linear and non-

linear systems. It is worth noting that linear systems do not exist in practice - each analyzed model 

has certain non-linear properties like imperfect rod/beam shape, non-homogeneous material, unideal 

mounting head assembly etc. The assumed linearity of the system results from application of abstract 

mathematical models, which simplify performed analysis. In mechanics, one of typical geometrically 
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non-linear structures consist of two or more parallely connected rods with different geometry of the 

cross-section, as well as the axial and bending rigidities. 

The prebuckling behavior of the geometrically non-linear column, composed of two bars 

subjected to compression by means of the axial force was analyzed by Tomski [1]. In that paper the 

stability problem and its solution in regard to the slender two-member column was presented to show 

that the non-linear nature of the problem allows one to observe the straight and curvilinear static 

equilibrium of the system. Moreover, it was found that the bifurcation load value for a single member 

column is greater than that of a geometrically non-linear one. Numerical studies on the local and 

global instability and vibrations of a geometrically non-linear column subjected to Euler’s load were 

discussed in [2]. Two-member column with a hinge and rotational spring located on one of the 

members in the specified distance from the support was investigated. The stated problem was 

formulated on the basis of Hamilton principle. It was proved that significant influence on column’s 

instability and vibrations frequency had the localization of the hinge and rotational spring stiffness. 

Moreover, regardless of the spring stiffness, the closer the location of the hinge to the column’s free 

end, the more stable system was observed. The influence of structural and geometrical parameters, the 

ways of applied loading, mounting conditions, prestress, etc. on the static and dynamic behavior of 

geometrically non-linear systems are widely discussed in [3-5]. 

In civil engineering and mechanics, a common solution to improve static and dynamic behavior 

of structures is prestressing of one or more their components. Prestress may be achieved via cables, 

turnbuckles, springs, electromagnets and “intelligent” materials – piezoelectric rods/patches, shape 

memory alloys (SMA) etc. The change in the frequency of vibrations and critical force in a beam 

made of carbon fiber with mounted pre-stretched SMA wires along the neutral axis of the system was 

the subject of interest of Baz et al. [6]. It was stated by Baz [6] that the appropriate use of 

reinforcement introduced by prestressed SMA wires increased the stiffness of the tested system and 

reduced its structural strength to buckling. With the use of the reinforcement, a shift in the basic 

forms of beam vibrations to higher frequency bands was observed in comparison to unreinforced 

beams. In addition, the system was discretized using the finite element method and the obtained 

results confirmed the validity of the experimental study. Ballas [7] made a numerical analysis of a 

simply supported Euler-Bernoulli beam with attached single sensor and actuator. The aim of the 

analysis was to actively control the first four vibration frequencies. Active control of the natural 

frequency of the cantilever beam using a piezoelectric polymer made of polyvinylidene fluoride was 

considered by Bailey and Hubbard [8]. The authors stated that if only the angular velocity of the 

beam’s free end under the influence of vibrations is known, it is possible to control all forms of 

vibrations at the same time. Crawley and Luis [9] presented analytical methods and experimental tests 

of aluminum cantilever beams and graphite epoxy beams, where piezoactuators were mounted on the 
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top and bottom surface or embedded into the host beam structure. Experimental studies of the 

systems’ dynamic response confirmed adopted analytical models. Moreover it was shown, as a part of 

experimental investigations, that embedding the piezoactuator inside the glass and epoxy-graphite 

laminate reduces its tensile strength by 20%. It should be noted that the stability and vibration control 

by means of piezoelectric actuation is an important problem from the optimization point of view. 

Significant influence on system’s static and dynamic response has piezoactuator position, its cross-

section dimensions, mounting method, voltage applied etc. The optimization of physical and 

theoretical intelligent structures with the use of piezoceramic materials was discussed in [10-12]. 

In this paper a slender geometrically non-linear two-member cantilever column subjected to 

eccentric partially follower force is investigated. One of the column members is made of 

piezoceramic material and is discretely mounted to the host column rods. The influence of the 

piezoelectric rod member offset location in regard to the host column neutral axis on static and 

dynamic system response is considered. Knowing that ideal axial loads do not exist in the practical 

engineering, the piezoceramic rod offset location is introduced to enhance the influence of 

piezoelectric force to counteract the bending moment resulting from the external eccentric load. A 

possibility of changing natural vibration frequency via the piezoelectric actuation is taken into 

considerations. 

2. Problem formulation 

In this study the slender two-member cantilever column is investigated. The host column 

member consists of two symmetrically mounted aluminum rods with regard to the z-axis as shown in 

Fig. 1b. The second member is a piezoceramic rod, which longitudinal axis is offset by distance 

d along z-axis in regard to the host column member neutral axis. The bottom end of the column is 

clamped making the displacements and rotations in any direction nulled. Both members are connected 

with ideally rigid mounting head on their top. External load is applied eccentrically, where 

eccentricity e  is measured along z-axis as shown in Fig. 1a. Moreover, the external force direction is 

determined by follower force parameter η describing the relation between the direction of the external 

load and the tangent of bent column’s end. 

A stability and transversal vibrations problem of the column with piezoceramic rod shifted 

outside the contour of host member rods manifested by value 30/1/  Ldd  is discussed. 

Implementation of the piezoceramic rod into the system allows induction of a compressive or a tensile 

internal piezoelectric force as a result of the applied electric field. The direction of that force is 

determined by the direction of the electric field vector. It is worth noticing that the piezo-rod 

assembled with the host column takes over some amount of the external force. 
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Figure 1.   Cantilever two-member column subjected to partially follower force with eccentricity e (a), 

column’s cross-section (b). 

The Hamilton principle has been used for the problem's formulation. On the basis of the theory 

of moderately large deflections, which is a development of the non-linear von Karman theory, the 

deformation-displacement relationship and curvature of the i-th column’s rod can be expressed as: 
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where: εi(x, t) denotes the mid-plane strain, κ(x) is the curvature, U(x, t), W(x, t) are the axial and 

transverse displacements, respectively. The variation of the total mechanical energy may be presented 

as follows: 
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(3) 

where: ρi denotes the volumetric mass density, Ai – i-th member cross-section area, Ei – Young’s 

modulus, Ji – cross-section moment of inertia, e31 – piezoelectric constant, P – external load, e –

 eccentricity, η is the follower force parameter. 

It is worth noting that when the piezoceramic rod is offset with regard to the neutral axis of the 

host column, the center of mass of the column’s cross-section changes its initial location. According 

to that, the Ji parameter in Eq. (3) is described as: 
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where:  0

i
J denotes cross-section moment of inertia with respect to the centroidal axis, β is the 

relation of Young’s modulus (β = E1/E2), d  is the sum of distance between column members neutral 

axes in regard to the center of mass ( 21 ddd  ) and hi is the i-th rod thickness. 

After some mathematical manipulation of Eq. (3), taking into account that the virtual 

displacements δUi(x, t) and δWi(x, t) with respect to i = 1, 2 are arbitrary and independent in the range 

of 0 < x < L, one obtains a set of two equations describing column members’ transversal vibrations 

motion and equations describing the strain invariance:  
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After double integration of Eq. (6), the equation describing the longitudinal displacements in i-th 

column’s rods is: 
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where Si(t) is an internal longitudinal force depending on the members strain.  

In the studied system the presence of the piezoceramic rod allows one to induce an additional tensile 

or compressive piezoelectric force as a result of the applied electric field. When the electric field 

vector and the polarization vector are parallel to each other and both vectors have the same direction, 

the internal compressive piezoelectric force is generated. Such force is a very effective tool for 

modification both the transversal displacements and the natural vibration frequency of the system. 

The piezoelectric force may be expressed by the electric field applied or by electric potential as 

follows: 

312
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312 eA
h

V
eAEF z   (8) 
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where Ez denotes the electric field and V corresponds to the voltage applied. Sign (+) in Eq. (8) 

denotes the compressive piezoelectric force, whereas sign (-)  describes tensile force, respectively. 

Geometrical boundary conditions of considered structure from Fig. 1a are: 
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By performing necessary variational operations and integration by parts in Eq. (3) and successively 

introducing boundary conditions from Eq. (9a-i) one obtains a set of natural boundary conditions 

necessary to solve Eqs. (5) and (7): 
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In order to generalize the analysis, following dimensionless parameters are introduced: 
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Taking into account Eq. (5) and assuming the dimensionless parameters described by Eq. (13), 

the dimensionless equation of motion of the i-th column member takes the form: 
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The axial force parameter ki
2 may be expressed as: 
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Dimensionless longitudinal displacements on the basis of Eq. (7) are expressed as: 
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The solution to the problem is based on the small amplitude parameter perturbation method. 

According to that method, transversal and longitudinal displacements, axial forces and vibration 

frequency are expanded into power series with respect to the small amplitude parameter ε: 
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The introduction of Eqs. (17a-d) into the general equation of motion (14) and longitudinal 

displacements (16) leads to an infinite sequence of these equations with increasing powers of small 

amplitude parameter ε, where the first two sets are:  
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 (19a-b) 

The equation with zero power of small amplitude parameter (Eqs. (18a-b)) describes the system’s 

static behavior, whereas Eqs. (19a-b) under the first power of ε describe the dynamic response, 

respectively. In order to obtain the load-displacement relation, the solution of Eq. (18a) needs to be 

introduced into boundary conditions (9a-h)-(12) written in the nondimensional form. The obtained 

system of inhomogeneous linear algebraic equations with respect to integration constants cannot be 
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solved due to unknown parameter of the longitudinal force 2

0i
k . The ninth, additional equation is 

determined by the condition (9i), after the introduction of (13) and expansion (17). By grouping the 

members with zero power of the small parameter ε, a transcendental equation determining the 

relationship between dimensionless longitudinal forces ( 2

0i
k ) in the column’s rods is obtained, 

depending on the piezoelectric force (f 2) and external load (p2).  

As soon as the column’s stability problem is solved, one proceeds to solve the problem of 

transversal vibrations on the basis of Eq. (19a). The general solution of that equation consists of the 

sum of the general equation integral and the inhomogeneous equation integral. The solution is applied 

to boundary conditions (9)-(12), in which are introduced (13) and (17), then members with the first 

power of ε parameter are collected to separate the space with time variables. It should be noted that 

the frequency parameter ω0 is not known at that moment, thus supplementary condition is derived on 

the basis of Eq. (19b) introduced to (9i). Both static and dynamic problem are solved numerically with 

the use of Mathematica code.  

3. Exemplary results 

To study the column's static and dynamic response, three different external load eccentricities 

(e = -0.01, 0, 0.01) and two different values of follower force parameter (η = 0 and η = 0.50) are taken 

into considerations. Dimensionless geometrical relations in column’s cross-section are related to the 

column’s host member thickness h1 (see Fig. 1b). The following relations hold: b1 = (3/2)h1, 

b2 = 2b1, h2 = 0.5h1 and the total length of both column members is assumed as L=30h1. The piezo-

rod member is made of a piezoceramic material P-41 and on the basis of manufacturer's data [13] it 

has the following properties: E2 = 83.33 GPa, e31 = 8.333 and ρ2 = 7450 kg/m3. In order to avoid the 

phenomenon of piezo-material depolarization, it is assumed that the maximum operational value of 

the electric field intensity should not exceed EMAX = 2000 V/mm. Due to the fact that the highest 

influence of piezoelectric force on static column’s response on the basis of [14] is obtained when the 

offset parameter is d = 1/30, that value is adopted to the presentation of numerical results. Remaining 

parameters required in the analysis are assumed as follows: μ(0) = 0.148, λ1
(0) = 10800 and 

λ2
(0) = 43200. An actual example of the discussed configuration may be a column in which the host 

member has the thickness equal to h1 = 7 mm and according to that, the remaining dimensions of the 

rods would be: b1 = 10.5 mm, b2 = 21 mm, h2 = 3.5 mm, L = 210 and d = 7.0 mm, respectively.  

In Fig. 2a-c the influence of tensile/compressive piezoelectric force f 2 = ±0.20pc
2 on vibration 

frequency ω of the conservative system with different load eccentricities is documented. The dashed 

line corresponds to the compressive piezo-force, the dashed-dot line denotes the tensile piezo-force 

and with the continuous lines the non-actuated system is distinguished. 
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Figure 2.   The first natural vibration frequency ω versus non-dimensional load p2 (a, b, c), 

load-displacement relation (d); other parameters: η = 0, d = 1/30. 

By mounting the piezoceramic rod at a distance d = 1/30 in regard to the host column member 

neutral axis, a strong influence of the load eccentricity on column’s tip transversal displacement is 

observed (Fig. 2d). That impact is also clearly visible when the relation between internal forces is 

analyzed (see. [14]). Regardless of the eccentricity parameter value (e), the load-displacement curves, 

presented in Fig. 2d, cross the asymptote, exhibiting the level of critical buckling force at points 

Ci (i = 1, 2, 3), which are located under the limit points Di (i = 1, 2, 3). Points Di correspond to the 

maximum external load values at which the considered systems becomes unstable. It is worth noticing 

that analogical course of the load-displacement curves regarding the stability of geometrically 

nonlinear frames were presented by the Simitses and Vlahinos [15]. The presented numerical results 

in Fig. 2a-c prove that regardless of eccentricity parameter e, the greater the value of external load p2, 

the lower the vibrations frequency ω of the non-actuated systems. As shown in Fig. 2a-c one may 
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notice that the second load-frequency curve starts beneath the pc
2 point and ends at that point. That 

solution appears between local minimum in Fig. 2d and the critical buckling force. The influence of 

the piezoelectric force on the natural vibrations frequency increases with the growing external load 

value up to the limit point Di. Then, with a rapid increase of the column’s tip transversal displacement 

(Fig. 2d), the role of the piezoelectric force in modifying the vibration frequency decreases (Fig. 2a-

c). Generation of the tensile piezo force increases system’s natural frequency in regard to the non-

actuated system, whereas compressive piezoelectric force acts in an opposite way. The intensity of 

vibrations control depends on points Di location. The lower position of point Di on the load-

displacement curves, the higher range of frequency changes through piezo actuation is observed. 

The influence of piezoactuation on the system's vibration frequency for the nonconservative load 

is presented in Fig. 3a-c, whereas the load-displacement relations for the non-actuated systems are 

shown in Fig. 3d. When the column is subjected to a partially follower force characterized by η = 0.5, 

the courses of the load-displacement curves only slightly changes in comparison to the system loaded 

by a force of the constant direction (compare Fig. 3d and Fig. 2d). In both cases, the load-frequency 

and load-displacement relationship curves strongly depend on the value of eccentricity e. The 

vibration frequency assume zero value in the non-actuated systems for the external load lower than 

that obtained in limit points denoted by Di in Fig. 3d. The induction of piezoelectric force in the 

analyzed nonconservative systems allows one to only slight modification of the vibration frequency. 

Comparing to the Euler’s load, the highest influence of piezoactuation on natural frequency ω is 

observed when deflection of the column is relatively small under relatively high value of external 

load p2 (near the limit points Di). The highest range of vibration frequency modification is observed 

for e = 0 (Fig. 3a) when p2 ≈ 8.00. Characteristic changes in the vibration frequency occurs for 

e = -0.01 (Fig. 3c) within the load range for which the force-displacement relation changes irregulary 

(Fig. 3d). For 06.7,33.62 p , the tensile piezo-force diminishes frequency ω, whereas the 

compressive force increases the value of ω. 

4. Conclusions 

In this paper the static and dynamic response of a slender non-linear column with discretely mounted 

piezoceramic rod and subjected to the eccentric load has been analyzed. The rod operates as a 

piezoelectric transformer which under the applied electric field induces in the system an internal axial 

force. That force is used for control purposes of the column’s deflection and it modifies also the 

natural vibration frequency of the structure. The thorough numerical analysis proved that the structure 

instability occurs due to buckling or at limit points what depends on the piezoceramic rod offset. The 

natural vibrations frequency may be modified significantly only in indicated ranges of the external 

load. Regardless of both the follower parameter η and eccentricity e, the greatest range of vibration 
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Figure 3.   The first natural system’s frequency ω versus non-dimensional load p2 (a, b, c), 

load-displacement relation (d); other parameters: η = 0.50, d = 1/30. 

frequency modification is obtained when the external load is slightly below given limit points of 

instability. It has been demonstrated also that the tensile piezoelectric force increases the natural 

vibration frequency of the system, whereas the compressive piezo-force decreases the frequency, 

respectively. The performed study reveals that the actuated piezoceramic rod integrated into the 

system may be successfully applicable for avoiding the resonance phenomenon in small structures. 
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Investigation of energy harvesting in a 2DOFs portal frame by 

means of the positioning of the piezoelectric material 

 

 

Rodrigo T. Rocha, Remei H. Junior, Wagner B. Lenz, Maurício A. Ribeiro, Angelo 
M. Tusset, Jose M. Balthazar, Elzbieta Jarzebowska 

Abstract: In this work, a piezoelectric energy harvesting application will be considered 

using a two-degrees-of-freedom portal frame. The piezoelectric material will be 

considered as a linear device by using a capacitive mathematical model. The portal 

frame is a two-degrees-of-freedom structure considering a quadratic coupling in its 

coupling and set a 2:1 internal resonance between the first and second modes of 

vibration, which is a special condition of this kind of system due to the appearance of 

saturation phenomenon. As this phenomenon makes the system starts vibrating from 

the first mode and then, at steady state, vibrates into the second mode, the objective of 

this work is to verify the energy harvesting by considering the different positioning of 

a piezoelectric material, which are either to the supported beam or to the column. 

However, this portal frame is excited by a non-ideal DC motor with limited power 

supply. The results showed a considerably nonlinear behavior due to the non-ideal 

motor and, with the saturation phenomenon, it is more efficient to harvest energy by 

coupling the PZT on the column. 

1. Introduction 

The research about nonlinear dynamic systems has been increased substantially in the last decades. 

Mainly because such nonlinearities can make dynamic systems behave with unexpected behavior, 

presenting different responses depending on the excitation which is applied to such system. 

External excitation in the environment, which provides kinetic energy (vibrations) in vibrating 

structures, are very common due to wind, vehicle traffic, and so on. However, there are some excitations 

which affect such structure and are affected by the vibration of the structure as well, and they are well-

known by non-ideal excitations. Generally, they are small excitation sources, such as, for example, a 

DC motor or a crank-mechanism. The DC motor is one of the most used devices due to its non-ideality, 

for the mechanical output power depends on the motion of its armature and on the dynamics of its rotor, 

among other factors. In addition, these DC motors, when they have an orthogonal shaft coupled to its 

axis, it causes an imbalance, in which when used on a vibrating structure, they can affect each other, 

which is a non-ideal excitation source. Some non-ideal problems were studied in Refs. [1-3]. 

As such non-ideal excitation sources can cause high amplitudes of vibration and sometimes 

undesirable, it would be worthy to suppress them while transforming the mechanical energy from the 
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vibration into electrical energy. Among such possible energy harvesting devices which are can 

transform mechanical energy into electrical energy, the piezoelectric materials have been used as a 

common energy transducer due to their significant response for stimulus of different physical natures 

[4,5]. These materials were studied since last decade by several authors by considering a linear [6-8] 

and nonlinear materials [9-13]. An overview of the nonlinearities presented in the piezoelectric material 

was carried out in [14]. 

With that, some kind of structures in which can be found as buildings or bridges, they may have 

two particular degrees-of-freedom in which they are internally resonant with a ratio of 2:1. In addition, 

it is known that these kinds of structures are nonlinear due to geometry affecting directly the dynamics 

of them. One dynamic phenomenon which can happen, and it is quite dangerous is the saturation 

phenomenon [13,15]. This phenomenon happens when such a structure with 2:1 internal resonance is 

excited in resonance with the doubled natural frequency, in which such DOF will increase its amplitude 

of vibration until it saturates and then transfer the surplus energy to the other DOF. Sometimes, the 

structure was not supposed to move on such direction and then it can be quite dangerous. However, 

depending on the scale of the structure, it would be a good idea to harvest the surplus energy [13,15-

21]. 

 Therefore, this work presents the comparison of positioning a piezoelectric material as an energy 

harvesting device by using a two-degrees-of-freedom portal frame platform when the saturation 

phenomenon happens. In addition, the effect of the DC motor as an excitation source is taken into 

account.  

 In the following, the next section shows the mathematical and physical models to be studied and 

its governing equations of motion. 

2. The 2:1 portal frame platform 

The two-degrees-of-freedom portal frame system, represented by Fig. 1, consists of a supported beam 

of length L pinned to two columns with height h that are clamped in their bases. The beam and columns 

are considered as lumped masses, which are M and m, respectively, being that their motions are stated 

for two directions, vertical and horizontal directions. The coordinate q1 is related to the horizontal 

displacement related to the sway mode of vibration, with natural frequency ω1, while q2 is the vertical 

displacement of related to the symmetric mode, with natural frequency ω2. Both coordinates are related 

to the displacement of the mid-span of the beam (lumped mass M). The linear stiffness of the columns 

and the beam can be evaluated by a Rayleigh-Ritz procedure using cubic trial functions, which depend 

on the Young modulus E and the momentum of inertia I. Geometric nonlinearity is introduced by 

considering the shortening due to bending of the columns and of the beam. 
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 As mentioned previously, two piezoelectric materials are coupled, one to a column and the other 

one to the supported beam of mass M. In this way, it is possible to evaluate the energy harvesting of 

both vertical and horizontal directions, i.e., verify if either the sway or the symmetric mode is the most 

efficient way to harvest energy. The piezoelectric material is considered as a nonlinear device proposed 

by (Tripplet and Quinn, 2009). The authors defined an approximation of the theoretical model to 

experimental results as d(x) = β(1+Θ|x|), where β is the linear piezoelectric strain coefficient and Θ is 

the nonlinear piezoelectric strain coefficient. Its representation is an RC circuit with capacitance C, 

resistance R, and electrical charge Q. 

 In this case, the excitation is given due to the non-ideal source on top of the mid-span of the 

supported beam. This source is an unbalanced DC electric motor with limited power supply composed 

of a moment of inertia J, eccentricity r, a shaft with a mass m0 in its tip and with angular displacement 

θ. The torque of the motor is due to the resistive torque applied to the motor, which is represented by a 

function  H  , and the driving torque is provided by the energy source, which is represented by  L 

. The function that defines the characteristic curve of the energy source of the motor as straight lines is  

      1 2L H V V        , where V1 is the voltage applied across the armature of the power 

supply and V2 is a constant related to the kind of the motor to be utilized, which is directly related to 

the angular velocity [1,2,3]. As the latter constant is related to the angular velocity of the shaft of the 

motor, it has the most influence on the frequency of excitation of the system, then it is very important 

the choice of the right kind of DC motor. Therefore, depending on this value, the frequency of excitation 

provided by the motor can be set near resonance with the symmetric mode, which is the twice of the 

frequency of the sway mode, i.e., ωn ≈ ω2 + σ2 and ω2 ≈ 2ω1 + σ1, in which σ1 and σ2 are detuning 

factors. Such resonant conditions are set to saturation phenomenon appear. 

 

Figure 1.   Portal frame physical system 

Nodal displacements, shown in Fig. 1, are given by Eq. (1) 
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where A = 6/5h and B = 24/5L. The stiffness of the beam and column calculated by the Rayleigh-Ritz 

method are, respectively, kb = 48EI/L3 and kc = 3EI/h3. 

 The generalized coordinates are the displacements of the concentrated mass at the mid-span of the 

beam M. Using nodal displacements of Eq. (1), the kinetic energy is denoted by 
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in which, substituting the nodal displacements and eliminating higher-order terms that there is no 

contribution to the behavior of the system, it is obtained 
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The potential energy of the system is given by the strain energy of the structure, the work of the 

weight of the masses of the beam and columns and by the electrical potential part of the piezoelectrics 

circuits with the contribution of the piezoelectric and the capacitor for each PZT layer, resulting in 
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Substituting Eq. (1) into Eq. (4), in terms of the general coordinates q1, q2, q3, Q1 and Q2, the 

potential energy becomes 
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Next, the dissipation energy of the system is considered by comprising the structural defined by a 

Rayleigh function and the resistance of the electrical circuits, which is denoted by 

2 2 2 2

1 1 2 2 1 1 2 2

1 1 1 1

2 2 2 2
D c q c q R Q R Q    ,                                                                                       (6) 

The external excitation is given by the total torque of the DC motor, which is 

      1 2L H V V        ,                                                                                                 (7)  
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Therefore, by applying Lagrange's function and Euler-Lagrange equation, the equations of 

motion of the system are given by 
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Afterward, it is important to carry out a dimensionless process of the equations of motion of the 

system, becoming 
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where 
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To calculate the harvested power of the considered system, Eqs. (10) are given as dimensional, 

dimensionless harvested power and the average power, respectively 
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 where R0 = R1,2(ω1q0)2. 

Next, Section 3 shows some numerical simulations neglecting the nonlinear piezoelectric 

contribution fixed in Θ = 0. 

3. Numerical simulations and discussions 

The numerical simulations for this system were focused on the frequency-response of the system to 

find out about saturation phenomenon and the DC motor influences on the behavior of the system. For 

the numerical simulations, the parameters to be used are given in Tab. 1. Those parameters are 

considered to be fixed for the system with the exception when indicated. 

Table 1. Parameters of the system 

µ1 µ2 α1 α2 G2 δ1 δ2 δ3 

0.0064 0.0183 0.443 0.3103 0.033 2.435 0.787 3.409 

δ4 = δ6 δ5 ρ1 ρ2 ρ3 ρ4 ρ5 ω2 

0.146 0.067 0.02 0.01 1.0 1.0 Vary 1.9297 

3.1. Frequency-response of the dynamic system 

First of all, it is important to characterize the dynamic behavior of the system due to the non-ideal 

excitation source without any coupling of the piezoelectric material. As it is expected some nonlinear 

behavior in a region near resonance, the frequency-response of the system is plotted in Fig. 2 for the 

vertical motion (Fig. 2a) and horizontal motion (Fig. 2b). Note that the curves delight amplitude versus 

ρ5 due to these parameters is directly related to the excitation frequency. 

With the drawn plots, it is possible to see a softening behavior of the system due to the presence 

of the non-ideal motor, which is different from the common saturation phenomenon (as reported in 

[13,15]). In addition, saturation phenomenon still happens in a small region of 0.39 ≤ ρ5 ≤ 0.491, 

however, in a forward variation (black dots). This is totally different in a backward variation (red dots), 

as it is possible to see, saturation occurs in 0.209 ≤ ρ5 ≤ 0.476. Still, between 0.6 ≤ ρ5 ≤ 0.7, there is 

such phenomenon occurring, however, with a small potential. Note that this phenomenon occurred due 

to the increase of the amplitude of the horizontal motion (sway mode) while the excitation comes from 

the mid-span of the supported beam. 
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Even though the excitation source gives a rotational motion which affects the horizontal motion as 

well, it is possible to figure out that not always this excitation will affect the horizontal motion, only 

when there is resonance between the DC motor and the middle-beam, which is a condition of the 

saturation phenomenon. Then, a little bit after ρ5 > 0.5, the horizontal motion decay to zero whereas the 

vertical motion does not, which means there is no resonance but still excitation of the vertical motion. 

 

(a)                                                                                   (b) 

Figure 2.   Frequency-response of the system, (a) Vertical motion, (b) Horizontal motion 

Next, some frequencies-responses will be shown to show the influence of the piezoelectric material 

on the system, its energy harvesting and how worthy it is harvesting energy by considering saturation 

phenomenon. 

3.2. Piezoelectric material coupled to the mid-span of the supported beam 

When coupling the piezoelectric material to the structure, it changes a little bit the dynamics of the 

system due to the effect of the PZT material into the stiffness and also converting the mechanical energy 

from the vibrations into electrical energy. 

Then, Figs. 3 show the frequencies-responses of the system with the piezoelectric material coupled 

to the mid-span of the supported beam. The softening behavior still comes up and it is very important 

because, without it, it would not be possible to obtain the peak of energy harvesting. In addition, the 

interval of saturation phenomenon is reduced as the PZT material is making the beam stiffer, and 

consequently, making it more difficult to reach in the critical amplitude to saturation occurs. 

In this way, looking at Figs. 3a and 3b, the forward variation shows that a small initial condition 

will contribute weakly to reach at the resonance of the system so that the interval in which the system 

harvests high levels of energy is  0.409 ≤ ρ5 ≤ 0.6 in which the harvested power is 3.32 ≤ Pavg ≤ 0.036. 

However, in the backward variation, the system goes to a different trajectory due to the high initial 

condition in which the power gets a peak of energy of Pavg = 9.947 (at ρ5 = 0.162). It is important to 

highlight that when the energy is at this peak, saturation phenomenon is occurring, then, becoming 
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important the analysis of the energy harvesting from the column, as it will be presented in the next 

section. 

 

(a)                                                                                   (b) 

 

(c) 

Figure 3.   Frequency-response of the system with the piezoelectric material coupled to the mid-span of 

the supported beam, (a) Vertical motion, (b) Horizontal motion, (c) Energy harvesting 

3.3. Piezoelectric material coupled a column 

When the piezoelectric is coupled to one of the columns, the horizontal motion is affected, as mentioned 

before due to the beam becomes stiffer, which, consequently, changes the natural frequency of the sway 

mode. 

Therefore, it is possible to see those differences through the frequencies-responses of Figs. 4 for 

the horizontal and vertical displacements and the energy harvesting with that. With the PZT coupled to 

the beam, it is noted that the softening is kept, however, shifting its interval to a smaller value of ρ5. 

The saturation phenomenon then occurs in the interval of 0.158 ≤ ρ5 ≤ 0.364 in which the harvested 

power is 11.25 ≤ Pavg ≤ 0.104, where Pmax = 11.25 (at ρ5 = 0.158) is the maximum harvested power 

extracted from the column. 
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(a)                                                                                   (b) 

 

(c) 

Figure 4.   Frequency-response of the system with the piezoelectric material coupled to a column, (a) 

Vertical motion, (b) Horizontal motion, (c) Energy harvesting 

3.4. Piezoelectric coupled to both column and beam 

According to the previous two subsections, harvesting energy from the column or the excited supported 

beam is very efficient and can provide a big amount of power. Then, it is worthy to evaluate the 

harvested power when there are both piezoelectric coupled at the same time and see their effectiveness. 

Figures 5a and 5b show the frequencies-responses for the system with piezoelectric materials 

coupled to the mid-span of the supported beam and a column. The interval of parameters in which 

saturation phenomenon occurs reduced even more with the PZT coupled to both beams. However, as 

the system still presents softening, the amplitudes are high enough to harvest a good amount of power. 

Figure 5c shows the total harvested power from the system, i.e., the sum of the energy harvested 

from both supported beam and column. It is possible to see that in 0.252 ≤ ρ5 ≤ 0.6, the energy harvesting 

is due to only the supported beam. However, when 0.157 ≤ ρ5 ≤ 0.251, there is the contribution of the 

column, which is the interval where saturation phenomenon starts to appear. In this interval, the 

harvested power increases a lot reaching a maximum of Pmax = 13.89 (at ρ5 = 0.157). 
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(a)                                                                         (b) 

 

(c) 

Figure 5.   Frequency-response of the system with the piezoelectric material coupled to both column 

and beam, (a) Vertical motion, (b) Horizontal motion, (c) Energy harvesting 

4. Conclusions 

Basically, this work shows the effect of 3 (three) possible configurations of a piezoelectric material in 

a portal frame of two-degrees-of-freedom. 

The configurations, in which it will be said as a case, consisted of in a case when there is only a 

PZT coupled to the mid-span of the supported beam, or only coupled to a column, or coupled to both 

beam and column. 

Due to saturation phenomenon, the harvesting of energy was possible by coupling the PZT to the 

column, and with a high amount of power. Comparing both cases of isolated PZTs, the energy 

harvesting is more efficient when there is saturation phenomenon, due to the higher amplitude of 

vibration of the column than in the beam. However, when considering both PZT harvesting energy at 

the same time, there is a gain of energy when saturation comes up, so that the extraction of energy is 

due to beam plus column vibrations. 
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In addition, the DC motor has a great influence on the behavior of the system, because it is possible 

to see some irregular motion in the resonance region (near saturation region), even because there is 

softening behavior, which is not common in this system when excited by a shaker of a harmonic force 

[13]. 
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Investigation of a tensegrity structure with multiple equilibrium
configurations as jumping motion system

Philipp Schorr, Valter Böhm, Lena Zentner, Klaus Zimmermann

Abstract: Often, the operating range of mobile robots is limited by environ-
mental circumstances like obstacles or gaps. Therefore, an adaptation of the
motion principle is required to enable an operating continuation of such robots.
A jumping motion is a promising approach. This motion type allows to cross
gaps or to overcome obstacles where common motion principles which bases
on wheels or legs fail. However, especially during landing large forces occur
as a consequence of the impact with the ground. This issue encourages the
use of compliant tensegrity structures which feature a great shock resistance.
In this paper a tensegrity structure with multiple equilibrium configurations is
considered. The two-dimensional structure is equipped with two actuators to
vary the prestress of the system. The tensegrity structure is in contact to a
horizontal plane due to gravity. Two actuation strategies are derived. Beside
varying the prestress state of the structure, a jump can be realized by changing
the equilibrium configuration. Both actuation strategies and the correspon-
ding motion characteristics are evaluated by numeric simulations. The results
emphasize the advantageous properties of tensegrity structures for a jumping
motion system. In particular, the multistabilty of the structure allows a simple
actuation strategy for a reliable jumping motion.

1. Introduction

Nowadays, mobile robots are applied for the investigation of unknown terrain, like the explo-

ration of new planets or the operation in dangerous areas. However, often the environmental

circumstances are unknown and the motion performances of these robots cannot be pre-

dicted anymore. Especially the occurrence of obstacles or gaps limits the operating range

of most of the conventional mobile motion systems which base on wheels or legs. This issue

encourages the investigation of jumping motion systems which allow to overcome obstacles

or gaps. Therefore, an extension of the reachable area can be realized.

The general principle of the jumping motion bases on a great pulse on the ground which

yields a take-off of the system. Therefore, the realization of a jump usually requires high

dynamic actuators as presented in [3, 13]. Another possibility is the use of mechanisms

which enable a sudden release of prestressed systems as shown in [4, 6, 7]. However, both

approaches are vulnerable to damage because of the impact with the ground during the
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take-off and the landing sequence. This issue encourages the investigation of compliant

structures featuring great shock-resistance. Tensegrity structures represent a special kind of

prestressed framework consisting of one-dimensional members which are loaded by tension

or compression. According to the tensegrity principle all compressed members are connected

to each other only by tensioned members. Thus, great loads occurring during the impact

are distributed within the entire structure. Although tensegrity structures were established

in the fields of architecture these structures can also be applied as motion system. In [8]

a motion system based on a tensegrity structure is investigated. The motion is realized by

successive tilting sequences controlled by varying the prestress of the structure. A tensegrity-

based rolling system is shown in [5]. In [12] a worm-like motion is realized by a tensegrity

structure. In [10] a multistable tensegrity structure is applied as vibration driven motion

system. A multimodal motion system based on a multistable tensegrity is shown in [9].

In this paper a jumping motion system is developed. In section 2 the structural dynamics

are derived. Two possible actuation strategies of the jumping motion system are presented in

section 3. In section 4 numerical simulation for both actuation strategies are evaluated with

regard to the corresponding motion characteristics. In section 5 the results are concluded

and further research topics are discussed.

2. Mechanical Model of the Tensegrity Structure

2.1. Structural Topology and Modeling

The two-dimensional tensegrity structure illustrated in Fig. 1 is considered. The structure

consists of 11 members (j = 1, 2, . . . , 11) which are connected in 6 nodes (i = 1, 2, . . . , 6).

These nodes are modeled as frictionless planar revolute joints. The members of the tensegrity

structure are divided into compressed members and tensioned members with regard to the

occurring load. For the given structural topology, the members j = 1, 2, 3 are compressed

members. The remaining members (j = 4, 5, . . . , 11) are tensioned members.

Figure 1. Investigated two-dimensional tensegrity structure.
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A descriptive approach to represent the topology of the tensegrity structure is the use of

the incidence matrix B known from the graph theory. This matrix represents the connectivity

of the members and the nodes of the structure. Each member j, represented by the jth

column of B, is connected to two nodes (lower node number → −1, higher node number

→ +1). Each node i is represented by the ith row of B.

B = (bij) =



−1 0 0 −1 0 −1 0 0 0 0 0

+1 0 0 0 −1 0 −1 0 0 0 0

0 −1 0 0 0 0 +1 −1 0 0 −1

0 +1 0 0 +1 0 0 0 −1 −1 0

0 0 −1 0 0 +1 0 +1 +1 0 0

0 0 +1 +1 0 0 0 0 0 +1 +1


(1)

The compressed members (j = 1, 2, 3) are assumed as rigid with constant length Lj and

mass Mj . The tensioned members (j = 4, 5, . . . , 11) are modeled as parallel arrangement of

a linear spring (stiffness kj , free length lj) and a visco-elastic linear damper (damping coef-

ficient cj). The mass of the tensioned members is neglectable comparing to the properties of

the compressed members. Based on the experience of already existing tensegrity prototypes,

the parameter values listed in Tab. 1 are selected. Moreover, the structure is equipped with

two actuators connected to the tensioned members 6 and 7 which enable the control of the

free length of the spring (actuation parameters: ∆l6, ∆l7).

Table 1. Selected parameter values of the tensegrity structure.

Compressed Members Tensioned Members

j Mj [kg] Lj [m] j lj [m] kj [N/m] cj [Ns/m]

1 0.100 0.200 4, 5, 6, 7 0.040 1000 0.2

2, 3 0.040 0.080 8, 9, 10, 11 0.020 4000 0.2

2.2. Equations of Motion and Equilibrium Configurations

For the derivation of the equations of motion the Einstein summation convention is sup-

posed. The current configuration of the tensegrity structure can be defined by the posi-

tion ri = (xi, yi)
T of the nodes i respective to a fixed Cartesian coordinate system {x, y}.

The vector q = (q1, q2, . . . , q12)T = (x1, y1, x2, y2, . . . , x6, y6)T contains all node coordinates.

Using the incidence matrix from (1) the distance vector dj and the geometric center sj of

all members j can be calculated as shown in (2).

dj = bijri; sj =
b2ij
2
ri (j = 1, 2, . . . , 11) (2)
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However, because of the non-deformable behavior of the compressed members additional

holonomic constraints ψb = 0 (b = 1, 2, 3) have to be taken into account. For the derivation of

the equations of motion the Lagrange formulation with additional multipliers λb is applied.

This approach is given in (3). Here, the parameters T and U represent the kinetic energy

and potential energy of the tensegrity structure. The vector F i describes the nodal forces

considering damping forces and external forces, e.g. contact forces, friction forces, gravity,

etc. (see section 4.1).

d

dt

∂T

∂q̇a
− ∂T

∂qa
+
∂U

∂qa
= F i ·

∂ri

∂qa
+ λb

∂ψb

∂qa
(a = 1, 2, . . . , 12)

ψb = |db| − Lb = 0 (b = 1, 2, 3) (3)

The kinetic energy T is defined in (4). The parameter ϕj describes the orientation

of the compressed member j respective to the positive x-axis. The potential energy U is

characterized by the deformation of the tensioned members. This approach is shown in (5).

T =

3∑
j=1

(
Mj

2
|ṡj |2 +

Mj |dj |2

24
ϕ̇2

j

)
with ϕj = arctan

(
dj · ey

dj · ex

)
(4)

U =

11∑
j=4

kj
2

(|dj | − (lj + ∆lj))
2 with ∆lj ≡ 0 ∀ j \{6, 7} (5)

Furthermore, a stabilization of the numerical integration is required in order to avoid the

drift-off of the holonomic constraints. Therefore, the Baumgarte method (see [1]) is app-

lied. Hence, the holonomic constraints are varied to ensure the stable integration despite of

numerical accuracy. Moreover, the Baumgarte parameters α and β are chosen respective

to the step size ∆t (α = β = ∆t−1, see [2]). This approach is shown in (6).

d

dt

∂T

∂q̇a
− ∂T

∂qa
+
∂U

∂qa
= F i ·

∂ri

∂qa
+ λb

∂ψb

∂qa
(a = 1, 2, . . . , 12)

ψ̈b + 2αψ̇b + β2ψb = 0 (b = 1, 2, 3) (6)

For the determination of the static equilibrium configurations of the investigated tense-

grity structure (6) is simplified. Beside neglecting the dynamic terms also the environmental

influences F i are ignored. This yields the nonlinear system of equations formulated in (7).

∂U

∂qa
= λb

∂ψb

∂qa
(a = 1, 2, . . . , 12)

ψb = 0 (b = 1, 2, 3) (7)
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For the selected parameter values 8 equilibrium configuration are detected. Moreover,

the stability of these equilibria is evaluated considering the bordered Hessian of the potential

energy U . This yields 4 stable (I, III, V, VII) and 4 unstable (II, IV, VI, VIII) equilibrium

configurations. These configurations are displayed in Fig. 2. In order to highlight the different

states despite of the similar shape node 5 is marked by a black square.

Figure 2. Detected equilibrium configurations of the investigated tensegrity structure (node

5 marked by a black square).

3. Actuation Strategy

3.1. Variation of the Prestress State

The potential energy U characterizes the prestress of the tensegrity structure and can be

controlled by the actuation parameters ∆l6 and ∆l7 (see (5)). Moreover, the potential energy

depends on the current equilibrium state. However, based on the results of [9] the detected

equilibrium configuration exist only for a limited parameter set of ∆l6 and ∆l7. The results

of the potential energy U are depicted in Fig. 3 for all stable equilibrium configurations. The
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white areas represent the parameter ranges where the according equilibrium state does not

exist. These results confirm the influence of the actuation on the potential energy of the

structure. Therefore, a sudden change into a configuration with lower energy level can result

in a jumping motion (approximation by conservation of energy: T + U = const.; U ↓, T ↑).
This principle requires a high dynamic actuation to realize this change in marginal time.

Figure 3. Potential energy of the tensegrity structure for the actuation parameters ∆l6

and ∆l7 - a) equilibrium I, b) equilibrium III, c) equilibrium V, d) equilibrium VII.

3.2. Change of the Equilibrium Configuration

Another possibility to initialize a jump is the utilization of the multistability of the structure.

Therefore, by changing into a stable equilibrium configuration with lower potential energy a

jumping motion can be realized. The change between the stable states is controlled by leaving

the existence ranges which are depicted in Fig. 3. However, the resulting configuration cannot

be predicted if multiple equilibria exist for the selected actuation. Therefore, the boundary
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of the initial state has to be crossed into a parameter range where only one stable equilibrium

configuration exists. This yields the curve displayed in Fig. 4. Moreover, depending on the

location where this limiting curve is crossed different energy difference can be realized. The

according results are illustrated in Fig. 4.

Figure 4. Potential energy of the tensegrity structure for the actuation parameters ∆l06

and ∆l07 - a) equilibrium I, b) equilibrium III, c) equilibrium V, d) equilibrium VII.

These results confirm the occurrence of energy differences by changing between the

stable states. In particular, changing between states which are not located next to each

other (I↔V, III↔VII) seems to be the most efficient opportunity to realize great energy

difference. Furthermore, the great advantage of this actuation strategy is that there are no

sophisticated requirements on the actuators. Crossing the existence limit of the equilibrium

state in a controlled way is sufficient to realize a jump. No dynamic actuation is required.

4. Simulation of the Jumping Motion

The equations of motion formulated in (6) are solved numerically using 4th order Runge-

Kutta-Method with a suitable constant step size (∆t = 10−4 s). As initial state the

jumping motion system is assumed to start in a stable equilibrium configuration (I, III, V or

VII) and the entire system is supposed to be in rest (q̇ = 0). Furthermore, the environmental

influences as well as the actuation of the structure are taken into account.

471



4.1. Modeling of Environment and the Actuation

The tensegrity structure is in contact with a horizontal plane due to gravity (g = −gey with

|g| = 9.81 m/s2). Occurring friction effects are taken into account by Coulomb’s Law of

Friction. Moreover, stiction is modeled using Karnopp’s method and the dynamic partitio-

ning method (see [11]). Therefore, the nodal forces caused by the environmental conditions

represent the influence of gravity, friction and the contact forces. The contact force F contact,i

at the node i is modeled by (8).

F contact,i =


−kgyi ey if yi < 0

(−kgyi − cg ẏi) ey if yi < 0 and ẏi < 0

0 else

(8)

The jumping motion is simulated for two different actuation strategies which are qua-

litatively illustrated in Fig. 5. The actuation strategy in Fig. 5a) bases on the approach of

section 3.1. The prestress is varied to realize a configuration which greater potential energy.

Afterwards, a sudden return into the original state (see t ≈ 1 s) should release this energy.

As result of the approach of section 3.2 the actuation strategy displayed in Fig. 5b) is de-

rived. Varying the prestress into a critical state which yields a change into another stable

configuration is sufficient for the actuation. Therefore, this approach does not require any

sophisticated high-dynamic actuators.

t [s]

"
l a

[m
]

0 1 2
0

0.01

0.02
a)

t [s]

"
l a

[m
]

0 1 2
0

0.01

0.02
b)

a=6 a=7

Figure 5. Investigated actuation strategies - a) sudden change into a configuration with

lower energy level, b) change of the equilibrium state.

4.2. Motion Characteristics of the Jumping Motion

The motion of the structure is evaluated until the first impact with the ground after the take-

off (the structure was at least for one time instant not in contact with the ground). Further

jumps as consequence of the impact are not considered for the jumping performance.
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4.2.1. Jumping by varying the prestress state

The actuation strategy displayed in Fig. 5a) is formulated in (9). Here, ∆la,max (a = 6, 7)

describes the maximum actuation parameters. For the parameters ranges illustrated in

Fig. 3 the motion behavior of the system is simulated. The result of the jumping height are

shown in Fig. 6. However, only for few small isolated parameter configurations a take-off

occurs (H > 5 mm). Instead, the released potential energy is transferred into high frequent

oscillations of the structure. Therefore, this actuation strategy is classified as inefficient for

the chosen actuated members. Thus, the consideration of further motion characteristics like

jumping distance is not evaluated.

∆la(t) =

∆la,max t if t ≤ 1

0 else
(a = 6, 7) (9)

Figure 6. Jumping height of the motion system operating in - a) equilibrium I, b) equili-

brium III c) equilibrium V, d) equilibrium VII.
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4.2.2. Jumping by changing the equilibrium state

For the change of the equilibrium configuration the actuation strategy formulated in (10) is

applied (see. Fig. 5b)). Moreover, the parameter values of ∆la,max (a = 6, 7) are chosen as

illustrated in (11).

∆la(t) =

∆la,max t if t ≤ 1

∆la,max else
(a = 6, 7) (10)

∆l6,max = cos(α) · 0.04 m, ∆l7,max = sin(α) · 0.04 m

with

q(t = 0) =̂ I if α ∈ (0, π/2], q(t = 0) =̂ III if α ∈ (π/2, π]

q(t = 0) =̂ V if α ∈ (π, 3π/2], q(t = 0) =̂ VII if α ∈ (3π/2, 2π]
(11)

Figure 7. Motion characteristics of the jump, a) actuation parameter range, b) jumping

height ∆y, c) jumping distance |∆x| (black: jump forward, grey: jump backward).
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The results of the jumping motion controlled by the change of the equilibrium state

are displayed in Fig. 7. These results show that indeed a jumping motion can be realized

by a controllable change between the stable states I and V. The motion characteristics

corresponding to the change between the states III and VII also represent a reliable jump.

However, after the take-off a second impact occurs. Therefore, the resulting motion is not

considered. Moreover, the jumping direction can be varied by changing the parameter value

of α. Because of the symmetric topology of the system a feasible control of the direction

of motion is possible. In general, this actuation strategy represents a simple opportunity to

realize a reliable jumping motion.

5. Conclusion

This paper deals with the use of tensegrity structures as jumping motion system. A two-

dimensional tensegrity structure featuring 4 stable equilibrium configurations is considered.

Based on the potential energy of the tensegrity structure two actuation strategies in order to

realize a controllable jump are derived. Beside varying the prestress state of the structure, a

controllable change between the stable states is utilized to realize a jump. Numerical simula-

tions are evaluated to validate these approaches. However, the simulation results show that

varying the prestress state does not yield an efficient jumping motion. Instead of initializing

a jump the released energy is transformed into high-frequent oscillations of the compliant

tensegrity structure. Only utilizing the multistability of the structure enables a reliable jum-

ping motion by changing between different stable configurations. Moreover, because of the

symmetry of the structure a feasible control of the jumping direction is possible. This issue

encourages the application of multistable tensegrity structures as jumping motion system.
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Piezoaeroelastic system based on a double aerodynamic pendulum

Yury D. Selyutskiy, Andrei P. Holub, Ching-Huei Lin

Abstract: During last decades, possibilities of using piezoelectric generators to
harvest energy from the flow using various mechanical devices that perform
flow-induced oscillations are intensively studied (for instance, those that can
be classified as aeroelastic systems). In this work, an electromechanical sys-
tem is considered that consists of a double aerodynamic pendulum connected
with a piezoelectric element. The element is connected to a load resistance.
When the pendulum oscillates, the piezoelectric element is deformed, and elec-
tric voltage is generated. Aerodynamic forces acting upon the pendulum are
described using the quasi-steady approach. Periodic solutions of the result-
ing dynamic system are studied depending on values of different parameters
(such as wind speed, load resistance, etc.). It is shown, in particular, that it
is possible to choose parameters of the system in such a way that the trivial
equilibrium (where both links of the pendulum are oriented along the wind) is
unstable when the wind speed belongs to a certain finite range of values, and
asymptotically stable outside this range.

1. Introduction

Wind power generation became an important part of power industry in many countries.

Wind generators are widely used both in industry and in households. There exist different

types of such facilities (horizontal axis wind turbines, Darrieus wind turbines, Savonius rotor,

etc.) These devices convert the flow energy into the energy of rotation of a working element

(turbine, rotor) connected to electric generator.

However, in recent years, there appeared an interest to investigation of another type

of devices intended to convert energy of air (or water) flow: devices where the working

element performs not rotational, but oscillatory motion. Such developments and research

are conducted by many groups of researchers in different countries. In systems of this type,

various effects are used — wing flutter [3, 5], vortex-induced oscillations of bluff structures

[2], or galloping [8]. A comprehensive review of various systems generating electric energy

using oscillations induced by flow is provided in [1].

Dynamics of an elastically mounted double aerodynamic pendulum was studied in [6].

It was shown that such system can perform self-oscillations under the action of the flow and,

thus, can be used to extract power from the flow.

In this paper, a scheme is proposed for the use of self-oscillations of a double aerodynamic

pendulum for generating electic power using piezoelectric elements.
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2. Description of the system and equations of motion

Consider a mechanical system consisting of a double aerodynamic pendulum O1O2O3, the

first link of which is connected with two identical piezoelectric elements P1 and P2 (see Fig.

1). We assume that the axes of rotation of the links of the pendulum are vertical. Let the

pendulum be placed in a flow of a medium whose velocity at infinity is constant and equal

to V . Introduce a fixed coordinate system with the origin on the axis of rotation of the first

link, and the abscissa axis is directed along the flow velocity.

�

�

O1

O2

O3C
�

VC

X

Y

V
G

rp
P1

P2

L

D

Mz

Fp

Dp

Figure 1. Sketch of the double aerodynamic pendulum connected with piezoelements.

Let ϕ, θ be the angles between the first and second links of the pendulum and the x-axis.

We assume that the first link of the pendulum is connected with the piezoelements with

inextensible cords. These cords are fixed to the disk Dp installed on the axis of rotation

of the first link and rigidly connected to this link. Thus, when the first link is rotated by

the angle ϕ (say, counterclockwise), one of the piezoelectric elements is deformed by the

value ∆ = rpϕ (where rp is the radius of the disk Dp). The second piezoelement remains

undeformed due to the slacking of the corresponding cord. It gets deformed when the first

link rotates in clockwise direction.

To describe the aerodynamic effect on the pendulum, we will use a quasistatic model,

assuming that this effect is reduced to the force of the drag D and the lift force L applied

in the middle of the C chord wing, as well as the moment Mz about this point.

D =
1

2
ρσVCCd(α)VC , L =

1

2
ρσVCCl(α)ez ×VC , Mz =

1

2
ρσbV 2

CCm(α) (1)

Here ρ is the air density; σ is the wing area; b is the length of the wing chord; Cd, Cl, Cm

are dimensionless coefficients of the drag, lift force, and aerodynamic moment with respect

to the point C, respectively; ez is the unit vector normal to the plane of motion, VC is the

airspeed of the point C (i.e. the speed of this point with respect to the incoming flow); α is

the instantaneous angle of attack, i.e. the angle between the vector VC and the wing chord.
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The angle of attack and airspeed are determined by the following kinematic relations:

VC cosα = V cos θ + l1ϕ̇ sin (ϕ− θ)

VC sinα = V sin θ + l1ϕ̇ cos (ϕ− θ) + rθ̇
(2)

Here l1 is the length of the first link, and r is the distance between the inter-link joint O2

and point C.

To simulate piezoelectric elements, we will use the phenomenological approach proposed

in [4]. It describes the change of the voltage U generated by the piezoelement depending on

the strain rate using an ODE:

CpU̇ +
U

R
+ χ∆̇ = 0. (3)

Here Cp is the capacitance of this element, χ is the coefficient of electromechanical inter-

action, R is the external resistance in the electric circuit, kp, hp are the coefficients of the

effective stiffness and damping of each piezoelement. Paper [4] provides the following char-

acteristic values of these parameters:

Cp = 120 nF, χ = 1.55 mNV−1, kp = 1000 kgc−2, hp = 27.43 kgs−1,R = 105Ohm.

We will use these values in subsequent numerical simulations.

Given the above, equations of motion of the system have the following form:(
J1 +ml21

)
ϕ̈+ml1l2 cos (θ − ϕ) θ̈ −ml1l2 sin (θ − ϕ) θ̇2

= −ρσVC l1
2

Cd(α)
(
V sinϕ+ l1ϕ̇+ r cos (θ − ϕ) θ̇

)
+
ρσVC l1

2
Cl(α)

(
−V cosϕ+ r sin (θ − ϕ) θ̇

)
− r2p (kpϕ+ hpϕ̇) + rpχU(

J2 +ml22
)
θ̈ +ml1l2 cos (θ − ϕ) ϕ̈+ml1l2 sin (θ − ϕ) ϕ̇2

= −ρσVCr

2
Cd(α)

(
V sin θ + rθ̇ + l1 cos (θ − ϕ) ϕ̇

)
+
ρσVCr

2
Cl(α) (−V cos θ + l1 sin (θ − ϕ) ϕ̇) +

ρσV 2
Cb

2
Cm(α)

CpU̇ +
U

R
+ χrpϕ̇ = 0

(4)

Here J1 is the moment of inertia of the first link relative to the axis of rotation, J2 is the

central moment of inertia of the second link, m is the mass of the second link, l2 is the

distance from the point O2 to the center of mass G of the second link.

In order to simplify the notation and reduce the number of parameters, we introduce

the dimensionless time τ = tV0/b (here V0 is a certain characteristic flow speed), as well as

the following dimensionless variables and parameters:

Ū =
UCp

bχ
, J̄1,2 =

2J1,2
ρσb3

, m̄ =
2m

ρσb
, l̄1,2 =

l1,2
b
, r̄ =

r

b
, r̄p =

rp
b
,
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V̄ =
V

V0
, V̄C =

VC

V0
, k̄p =

2kpb

ρσV 2
0

, h̄p =
2hp

ρσV0
, ξ̄ =

2χ2b

ρσV 2
0 Cp

, R̄ =
RCpV0

b

After this procedure, the equations of motion can be written as follows (for convenience,

we use dot to designate the derivative with respect to τ , and omit bars over dimensionless

values):

(
J1 +ml21

)
ϕ̈+ml1l2 cos (θ − ϕ) θ̈ −ml1l2 sin (θ − ϕ) θ̇2

= −VC l1Cd(α)
(
V sinϕ+ l1ϕ̇+ r cos (θ − ϕ) θ̇

)
+VC l1Cl(α)

(
−V cosϕ+ r sin (θ − ϕ) θ̇

)
− r2p (kpϕ+ hpϕ̇) + rpξU(

J2 +ml22
)
θ̈ +ml1l2 cos (θ − ϕ) ϕ̈+ml1l2 sin (θ − ϕ) ϕ̇2

= −VCrCd(α)
(
V sin θ + rθ̇ + l1 cos (θ − ϕ) ϕ̇

)
+VCrCl(α) (−V cos θ + l1 sin (θ − ϕ) ϕ̇) + V 2

CCm(α)

U̇ +
U

R
+ rpϕ̇ = 0

(5)

We assume that the wing has a symmetrical profile. Then Cm(0) = Cl(0) = 0. One

can readily see that in this case the system has a trivial equilibrium ϕ = θ = U ≡ 0, which

corresponds to the position where both links are stretched along the flow. It was shown in [6]

that this equilibrium position for a two-link aerodynamic pendulum in an elastic suspension

(without connection to electric circuit) is unstable, if parameters of the system belong to a

certain range.

Here, we need to study the stability of this equilibrium taking into account the electric

part of the system.

3. Intability and periodic solutions

First, we analyze the influence of system parameters (wing position, wind speed, moments

of inertia of pendulum links) upon stability of the “along the flow” equilibrium. We take

V0 = 5 m/s and use the following values of our dimensionless parameters:

l1 = 1, l2 = 2, rp = 0.1,m = 100, R = 1, ξ = 3, kp = 150, hp = 200.

We use aerodynamic coefficients for the standard NACA0012 airfoil [7] (but the drag

coefficient in the range of small angles of attack is increased in order to take into account

resistance of other elements of the system).

In Fig. 2, domains of instability are shown (with grey color) in the (V, ra) plane for

different values of J1 and J2.
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Figure 2. Areas of instability depending on moments of inertia of pendulum links.

From these figures, the following general conclusions can be drawn. Instability arises for

small enough values of r, that is, when the wing is located close enough to the inter-link joint.

For small r, the equilibrium is unstable for any values of other parameters. The instability

area decreases when J1 increases, and, contrarily, increase in the moment of inertia of the

second link results in increase of the instability area.

It is interesting to emphasize the following phenomenon. For certain values of param-

eters, increase in the wind speed first leads to stability loss; but if the wind speed keeps

growing, the asymptotic stability is recovered (at least, in the considered range of V ). This

effect is more pronounced when the moment of inertia of the first link is large enough.

Consider the behavior of our system in this case in somewhat more detail. Choose

J1 = 100, r = 2, and let J2 take the same values as in calculations represented in Fig. 2: 10,

100, 1000.
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Then the trivial equilibrium is asymptotically stable for small enough wind speeds.

When V reaches a certain critical value V1, the stability is lost, and an attracting limit cycle

is born (Andronov-Hopf-type bifurcation). Naturally, V1 depends upon other parameters of

the system.

Evolution of this cycle with the increase of V is illustrated in Fig. 3, where amplitudes

ϕ∗ of the first link, amplitude θ∗ of the second link, and amplitude U∗ of the output voltage

are represented (blue lines).
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Figure 3. Amplitudes ϕ∗ and θ∗ of oscillations of pendulum links and dimensionless output

voltage amplitude U∗ vs wind speed.

For “moderate” values of J2 (10 and 100), the asymptotic stability of the considered

equilibrium is recovered, when V becomes large enough. Here, again, an Andronov-Hopf-

type bifurcation occurs. The corresponding limit cycle (black line) is also attracting, however,

it exists only in a rather narrow interval of wind speeds. Ranges of V , where the asymptotic

stability takes place, are shown in Fig. 3 with hatching.

It is interesting to note that, in the case of J2 = 10, the limit cycle disappears, when

V gets large enough. From the practical point of view, this means that the pendulum
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“automatically” stops under sufficiently strong wind.

For J2 = 100, the first limit cycle exists for all V > V1. Evidently, a hysteresis is

observed in both discussed cases when the wind speed increases and then decreases.

In the case of “large” J2, the equilibrium remains unstable in the studied range of wind

speeds exceeding V1. The amplitude of oscillations of the first link grows with V . Then,

the limit cycle becomes multi-periodic (such cycles are not represented in Fig. 3). For still

larger V , there appears another single-periodic limit cycle (shown with red lines in Fig. 3).

However, when the wind speed reaches a certain value, this cycle also disappears, giving

birth to a couple of limit cycles located symmetrically with respect to the origin (not shown

in Fig. 3).

It seems that the described effect of stability loss and recovery when the wind speed

increases could be used for practical purposes. One of important problems of wind generators

is necessity to brake them when the wind speed exceeds a certain value. In our case, if

parameters are selected in such a way that the trivial equilibrium is asymptotically stable for

large V , it is sufficient to decelerate the system, so that it would reach the basin of attraction

of the equilibrium, and then it stops itself. After that, no active control is required due to

the stability. Moreover, if there are no attracting limit cycles for such wind speeds, it is not

necessary even to use special control to brake the system: it stops by itself. When the wind

speed gets smaller, the equilibrium becomes unstable, and the system resumes operation

(though, due to the mentioned hysteresis effect, it may get to the limit cycle with smaller

amplitude).

4. Conclusions

Mathematical model of the electromechanical system consisting of a double aerodynamic

pendulum connected with piezoelements is considered. Numerical simulation shows that

parameters of this system can be selected in such a way that there exists an attracting

limit cycle. Under certain conditions, the “along the flow” equilibrium of the pendulum is

asymptotically stable both for small and relatively large wind speeds, while being unstable

in a certain range of “moderate” wind speeds.

This makes the system potentially suitable for use as a mini wind power generator.
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Instability and vibration control  

by means of piezoceramic element 

 

 

Krzysztof Sokół 

Abstract: The control of vibration frequency and stability of slender systems is a very 

important issue in engineering. The control phenomenon can be realized with the use 

of different methods, while prestressing is one of them. In this paper, the studies on an 

influence of the prestressing caused by a force generated by a piezoceramic element 

on stability and vibrations of a multi-member column subjected to the specific load 

are presented. At this load one can find divergence and divergence-pseudoflutter 

shapes of the characteristic curves. The boundary problem is formulated by use of 

Hamilton’s principle on the basis of which the differential equations of motion as well 

as natural boundary conditions are obtained. The main goal of this study is to find 

such a magnitude of the presressing force at which the control of vibration frequency 

can be done as well as the change of instability regions at different parameters of the 

loading unit. 

1. Introduction  

The piezoceramic sensors and actuators are used as elements responsible for active/passive control of 

systems subjected to static or dynamic excitation. The vibration control [1] is the main direction of 

research is many scientific departments. Taking into account the variety of shapes  

of piezoelements and their mechanical limitations they can be easily integrated with the host 

structures and successfully complete their tasks. 

In the studies done in [2, 3] it was presented that one can achieve the shape control of initially 

deformed structures. In such a structures the piezorods can be installed symmetrically in relation  

to the main elements, what allows one to obtain the axial deformation or bending. Moreover, 

piezoelements can also be used when active dynamic instability control is the goal [4, 5].  

Faria [6] has studied a case of an increase of the buckling critical forces of single beams with 

piezoelements. In the considered system (with both fixed ends) the elements have generated tensile 

axial forces. Sokół and Uzny [7] has discussed an influence of the residual longitudinal forces on the 

instability of the column subjected to Euler’s load.  

It has been shown that the conventional method of gluing of piezoelements on the surface  

or between the layers of the basic structure is not the only one available. In [8] Chaudhry and Rogers 

have proposed the discrete eccentric connection of the piezoelement to the beam. Finally, on the basis 
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of the obtained results of numerical and experimental investigations it was stated that higher level  

of control of transversal displacement can be achieved when the new method of installation is used. 

Taking into account that most of engineering structures have shape and assembly imperfection 

Przybylski and Sokół [9] have proposed an eccentric installation of a piezoceramic in order to control 

the defection of the system. It was concluded that after the voltage has been applied to the 

piezoceramic rod the investigated column have regained the rectilinear form of static equilibrium. 

The main purposes of this paper is to investigate an influence of the residual force generated  

by the piezorod on the vibrations and loading capacity of a column subjected to the specific load 

realized with heads with circular outline. Due to used heads the columns loses stability by divergence 

having divergence or divergence – psedoflutter shape of the characteristic curve. 

2. Boundary problem formulation 

In fig. 1 the investigated system subjected to the specific load has been presented. The structure of 

loading heads is described in [10]. 

 

 

Figure 1.   Bent axes of the investigated column 

Rod 1 is a continuous element and is a part of external member I.  Rods 2, 3 and 4 are included  

in internal member II. Each of rods can be made of piezoceramic material, but having in mind cost 

and problematic production of long piezo it is proposed to use rod 3 as piezoceramic one.  

The connection to the host structure will be realized with pins and rotational springs CL and CH what 
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allows one to simulate different connection stiffness without consideration of mechanical design.  

The continuity of displacements, longitudinal forces, deflection angles and bending moments can be 

satisfied with the natural boundary conditions. Each od rods have length l1, l2, l3, l4. The total length 

of a column is l = l1 = l2+ l3+ l4.  The loading heads have mass m and radiuses R (loading head) and  

r (load receiving head). The radius R has a center in the pole point which is located on the 

undeformed axis of a column. The distance between the end of the column and the contact point of 

both heads is l0. The physical model of a investigated system can be a flat frame or a column 

composed of two coaxial tubes or rube and rod. 

The boundary problem formulation is divided into two section. In first one on the basis of 

Hamilton’s principle (Eq. 1) the differential equations of motion as well as boundary conditions are 

found. While in the second the calculation of residual internal force is presented.  

The combination of those two gives final description of the boundary problem. 
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Ei – Young’s modulus [GPa], Ji – moment of inertia [m4], Ai – cross-sectional area [m2],  

i – material density [kg/m3], CH,L – rotational spring stiffness [Nm], P – external load [N],  

Wi – transversal displacement [m], Ui – longitudinal displacement [m], R – radius of the loading head 

[m], r – radius of the load receiving head [m], m – mass of heads [kg],  

l0 – transom length [m].  

After performing variation and integration operations, one obtains inter alia equations of motion:  
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and a set of natural boundary conditions supplemented with geometrical ones: 
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The solution of the boundary problem has been performed with the small parameter method [11, 12]. 

It assumed that rod 3 is made of piezoceramic material. Additionally the considered structure 

keeps the rectilinear form of static equilibrium. Applying voltage to the piezoelement in direction 

perpendicular to the axis of the column results in compression or tension what leads to prestressing. 

The energetic method [13] is used in order to present this phenomenon. The potential energy is equal 

to: 
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Stress-strain relationships are given with (27-29) while (30) stands for electrical displacement 

which is induced by electrical field Ez. Moreover: 
xi  – axial strain,  Ei – Young’s modulus,  

e31 – piezoelectric constant, 
33  – piezoelectric conductivity. The electric field is defined  

as /zE V h   and the piezoelectric force as 
31F be V  . After performing some mathematical 
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operations with assumption of constant voltage applied to the piezo element finally obtains the 

formula for residual force F. The F force depends not only on applied voltage but also on length of 

the rods and compression stiffness:  

  
,

41114433322233
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  (31) 

.4411 AEAEQ   (32) 

The residual force in accordance with the piezoelectric principle causes prestressing of the column. 

Thus, in the absence of an external load or its low value in relation to the applied voltage, its 

individual members can be tensioned or compressed alternately. In a special case, the residual force 

may balance the components of the forces coming from the external load. At the same time, the 

absolute value of the residual force in all bars is the same. 

The residual for must be introduced into equations of motion in the form:  
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Derived dependencies will be used in the further part of the work to determine the influence of the 

prestressing force on the vibration and stability control. 

3. Numerical simulation results 

This section is devoted to the influence of the voltage applied to the piezoelement on the correction of 

the loading capacity curves as well as characteristic ones as a function of the r21 parameter describing 

bending stiffness relationship. The results are plotted in the non-dimensional form, where: 
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The instability regions are devoted to the local and global. The local region can be found then the 

critical load of the corresponding linear system (without internal rods, marked as KL) is greater than 

bifurcation load of the non-linear one. The global instability region is at the opposite situation.  

Depending on the direction of the electric field vector applied to the piezoceramic element, it is 

possible to obtain reduction/increase of the local and global instability regions (fig 2 – 3). In the 

presented cases, it was observed that the stiffer connections of the rod 3 to the 2 and 4, the smaller the 

change of the area of local and global instability in relation to the unprestressed system. In addition, 

an increase in r21 causes a decrease in the loading capacity, at the same voltage level applied. 

 

 

Figure 2.   The effect of the change in bending stiffness r21 on the value of the bifurcation load of  

a geometrically non-linear column, at different levels of prestressing, 

(ζA = 0.2, ζB = 0.2, ζC = 0.5, r32 = r43 = 1, d2 = 0.25, d3 = 0.2, cH = 5, cL = 5) 

491



 

Figure 3.   The effect of the change in bending stiffness r21 on the value of the bifurcation load of  

a geometrically non-linear column, at different levels of prestressing, 

(ζA = 0.2, ζB = 0.2, ζC = 0.5, r32 = r43 = 1, d2 = 0.25, d3 = 0.2, cH = 0.5, cL = 5) 

When springs with different stiffness are used (fig. 3) increase in r21 results in no curves intersection  

in the entire considered range for the prestressed and unprestressed systems. It was also observed that 

the smaller the r21, the greater the influence of the same voltage level on the transfer of the external 

loads. 

The characteristic curves (fig. 4 - 6) are plotted at r21 = 0.4, 1 and 1.6; the other parameters of the 

system are as follows ζA = 0.2, ζB = 0.2, ζC = 0.5, ζD = 0.2 , r21 = 0.4, r32 = r43 = 1, d2 = 0.25, d3 = 0.2, 

cH = 0.5, cL = 5. To the piezoceramic rod the voltage has been applied with different direction of the 

electric field vector, the non-dimensional magnitude of the prestressing force was f = ±2. It was 

observed that with a flexible connection of rods of a multi-element member, depending on the 

direction of the electric field vector, a reduction or increase in the natural frequency can be obtained 

for each of the considered values of the parameter r21. It was found that the smaller the r21, the greater 

the effect of the applied voltage on the correction of the characteristic curves.  
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Figure 4. The effect of prestressing on the shape of characteristic curves,  

(ζA = 0.2, ζB = 0.2, ζC = 0.5, ζD = 0.2, r21 = 0.4, r32 = r43 = 1, d2 = 0.25, d3 = 0.2, cH = 0.5, cL = 5) 

 

 

Figure 5.The effect of prestressing on the shape of characteristic curves,  

(ζA = 0.2,ζB = 0.2, ζC = 0.5, ζD = 0.2, r21 = r32 = r43 = 1, d2 = 0.25, d3 = 0.2, cH = 0.5, cL = 5) 
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Figure 6. The effect of prestressing on the shape of characteristic curves, 

(ζA = 0.2, ζB = 0.2, ζC = 0.5, ζD = 0.2, r21 = 1.6, r32 = r43 = 1, d2 = 0.25, d3 = 0.2, cH = 0.5, cL = 5) 

 

The generation of + f forces causes smaller changes in the shape of curves p -  than forces with 

identical absolute value but causing tension of rod 1 (-f). In each of the analyzed cases, the initial 

parts of the characteristic curves of the column run very close to each other, and the effect  

of the prestressing generated by the piezoelement on their shape is small. With an increase  

in the external load magnitude, at the same absolute value of the prestressing force a significant 

changes of the discussed curves can be found. 

The generation of compressive/tensile forces with the use of voltage applied to the piezoceramic 

rod which is a part of a column subjected to a specific load realized by means of heads with circular 

outline allows one to achieve the control of vibration frequency as well as loading capacity.  

The control ranges depend not only on the parameters of the heads, but also on the rigidity of the used 

springs (what is not discussed in this paper) and the coefficients describing the relationships between 

the rods. 

4. Conclusions 

In this paper, the investigations into control of loading capacity and vibration frequency  

of a column subjected to the specific load realized by circular elements of heads were discussed.  

The phenomenon of control was achieved by means of the piezoceramic rod. The connection  

of piezorod with the host elements was modeled with pins and rotational springs.  

Finally, it can be concluded that: 
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 - the induction of compressive/tensile forces by means of the application of the voltage to the  

           piezoceramic element allows one to obtain the control both of vibration frequency and loading   

          capacity, 

- the size of control depends not only on the magnitude of the applied voltage but also on other  

          parameters of the system such as spring stiffness or bending rigidity relationships, 

- prestressing of the column with piezorod changes the regions of local and global instability, 

- the characteristic curves of the host system and the prestressed one are overlapping each other     

  at low magnitude of the external load. 

As presented the piezorods can be used to control the stability of the slender systems. In the future 

studies on the area of control of vibration frequency as well as loading capacity should be done taking 

into account other important factors of the system such as parameters of the loading heads or length 

ratio between elements of the internal member. 
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Vibration Busters – an interdisciplinary approach 

to education of dynamical systems 

 

 

Ryszard Walentyński, Damian Słota, Marcin Szczygieł 

Abstract: A group of 6 pre-graduated students of Civil Engineering, Mathematics and 

Mechatronics studied problems of dynamics of structures within a project called 

Vibration Busters [5] implemented in a formula of Project Based Learning [1,2]. They 

worked under supervision of professors from the above mentioned faculties. Students, 

according to their competencies, implemented a procedure of numerical analysis of the 

problem within Mathematica system, built a physical model of a frame and loaded it 

with vibrating electrical motors and measured behavior of the structure. The aim of the 

project was to develop methods of passive and active controlling of vibrations of 

building structures. A technology of 3D printing was implemented to build a structure. 

Thanks to the project students had an opportunity to share their skills and knowledge 

and receive several new hard and soft competencies. It was also a unique experience 

for supervisors and great opportunity to extend fields of interdisciplinary cooperation. 

The aim of the presentation is to share results and achieved experience gained thanks 

to this extraordinary and successful educational project. 

1. Introduction  

Project Based Learning [1,2] formula is an innovative way of student education which introduces soft 

competences connected with project management and team cooperation among not only students and 

supervisors from different faculties but faculties themselves, too. Vibration Busters [5] is a generic 

name of the project implemented within a program [3] at the Silesian University of Technology. It was 

a second edition of the project "Individual Study Programs implemented in the form of Project Based 

Learning" , This edition was directed to the pre-graduated students (first level).  

Recruited students are awarded with Individual Study Programs (IPS) where half of European Credit 

Transfer Points (ECTS) are gained thanks to the IPS. Consequently some subjects of the regular courses 

were replaced, but required effects of learning had to be fulfilled. 

31 proposals of the projects have been submitted in that edition [4]. They were considered by experts 

and 12 of them were awarded. Our proposal has got the highest score as it was the most interdisciplinary 

and satisfied also other requirements of PBL formula. The students to the project were recruited 

according to their achievements in studies and activity in other projects. All selected students studied 

on 6th semester of the bachelor level (pre-graduated).  
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1.1. Supervisors and expert 

The work of the students was supervised by 3 professors: 

1. Ryszard Walentyński – the main supervisor from the Faculty of Civil Engineering 

2. Damian Słota – the auxiliary supervisor from the Faculty of Applied Mathematics 

3. Marcin Szczygieł – the auxiliary supervisor from the Faculty of Electrical Engineering. 

To sort out specific problems an expert prof. Wojciech Burlikowski was employed to give several 

lectures and tutorials for students. 

1.2. Students 

The following students were recruited to the Vibration Busters project: 

1. Grzegorz Fulczyk – from the Faculty of Civil Engineering 

2. Monika Drzewiecka – from the Faculty of Applied Mathematics 

3. Roman Kluger – from the Faculty of Applied Mathematics 

4. Agata Wilk – from the Faculty of Applied Mathematics 

5. Szymon Jarzombek – from the Faculty of Electrical Engineering (Mechatronics) 

6. Mateusz Skorupiński – from the Faculty of Electrical Engineering (Mechatronics). 

The one of the problem that had to be solved is to implement the project in the way which will fulfill 

learning effects required by curricula of each faculty.  

2. Targets  

2.1. Hard targets 

The main hard targets of the project were: 

1. Implement a procedure of dynamical analysis of discretized bar structures in Mathematica 

system. 

2. Compare the results of the above procedure with the ones obtained from student versions of 

professional programs for structural designing based on Finite Element Method. 

3. Design and construction of a model of 3D frame with application of 3D printing and design 

tools for that technology. 

4. Building an electronic system of vibration generation, control and measurement. 

5. Analysis of vibrations and comparison measurements with theoretical models. 

6. Attempts of implementing of the passive and active methods of vibration dumping. This was 

the final aim of the project and therefore we called the project Vibration Busters. 
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2.2. Soft targets 

The main soft targets were: 

1. Work in an interdisciplinary project team and implementation of general rules of project 

management 

2. Training in designing elements in 3D virtual space and implementation of it in 3D printers 

3. Training and perfecting skills in application Mathematica system, Finite Element Method 

system, programs for 3D printing and signal analysis. 

3. Implementation  

Due to size limitation of the paper we will only show selected extracts of the final report [5]. The 

implementation can be divided to 3 parts: mathematical, structural and mechatronic.  

3.1. Mathematical part 

Students of Applied Mathematics Faculty were responsible for implementing procedures within 

Mathematica system. Here are some extracts from their work: 

Procedure for finding eigenvectors: 

wektoryWlasneT = Table[0, {i, 1, n}]; 

        Do[ 

            mac2[kk] = macK0 - (\omega0[[kk]])^2 macB; 

            mr[kk] = MatrixRank[mac2[kk]]; 

            ww[kk] = Table[w1[kk][i], {i, 1, n}]; 

            wektorzerowy = Table[0, {i, 1, n}]; 

            rr[kk] = Solve[mac2[kk].ww[kk] == wektorzerowy, ww[kk]]; 

            wekW[kk] = ww[kk] /. rr[kk][[1]]; 

            wektoryWlasneT[[kk]] = wekW[kk], 

            {kk, 1, n}]; 

The above procedure computes eigenvectors for the matrix: 

𝐌 = 𝐊 − 𝜔2𝐁, 

where 𝐊 is a stiffness matrix, 𝐁 is an inertia matrix and 𝜔 is an angular frequency.  

Solution of differential equation of not dumped vibrations: 

𝑦′′(𝑡) + 𝜔2𝑦(𝑡) =
𝑃

𝑚
 

DSolve[D[y[[i]],{t,2}] + \[Omega][[i]]^2 y[[i]] ==     

wspP[[i]]/wspM[[i]], y[t], t] 

Differential equation of dumped equations: 

𝑦′′(𝑡) + 2𝑐 𝑦′(𝑡) + 𝜔2𝑦(𝑡) =
𝑃

𝑚
 

   D[y[[i]],{t,2}]+2 wspM[[i]] c[[i]] D[y[[i]],t]   

\[Omega] [[i]]^2 y[[i]] = wspP[[i]]/wspM[[i]] 
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3.2. Structural part 

Within this part 2D and 3D models were analyzed within a Finite Element Method program (Figs. 1 

and 2) and results were first used to verify mathematical procedures. It was done by students of Civil 

Engineering and Mathematics 

 

 

 

Figure 1.   Structural analysis of 2D model. 

 

 

Figure 2.   Structural analysis of 3D model. 

The computations were used to design a frame and to plan an experimental part. 
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In the next stage all students learned to design elements for 3D frame. 3D printing is a modern 

technology of incremental production that allows you to recreate a virtual 3D model in reality. 

Depending on the type of printer, this technology allows you to create objects, including plastic, metal 

or concrete. The printer used in the project allows you to create objects from plastic using the FDM 

(Fused Deposition Modeling) method. This method involves applying molten material layer by layer 

using a head moving in three axes of the coordinate system (x, y, z). This was the most time consuming 

part of the project mainly because troubleshooting with 3D printing connected with high accuracy and 

particular shape of elements of the structure. First elements were designed in Autodesk Inventor, Fig. 

3. Next the model was transferred to the 3D printing program, which controlled work of 3D printer, 

Fig.4. The printed out elements are showed in Fig. 5. 

 

 

Figure 3.   Model of the frame support element in Autodesk Inventor. 

 

 

 

Figure 4.   Model in the 3D printing program. 
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Figure 5.   Printed out elements: in higher resolution of printing (1) and in lower resolution of printing. 

Autodesk Inventor was used to calculate dynamic characteristic of the structure (modal frequency 

analysis) as a 3D model, Fig. 6. Results was compared with discrete models developed in the previous 

stage.  

 

 

 

Figure 6.   Modal analysis of the frame. 
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3.3. Mechatronic part 

The research stand is presented in Fig. 7. It was mounted in the laboratory of the Department of 

Mechatronics at the Faculty of Electrical Engineering. The frame is loaded with 4 electrical DC motors 

generating vibrations with varied frequencies. In the configuration presented here 2 motors were placed 

on the upper level in vertical position and two a level below in horizontal position. Students did 

experiments in different configurations. 

 

Figure 7.   Research installation. 

 

One of the phenomena observed during the experiment was rumble of vibrations of the structure if 

frequency of excitation is close to one of the natural frequencies of the structure. The characteristic 

course of the phenomenon is shown in Fig. 8. The displacement shown here were measured with a 

precise laser detectors.  
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Figure 8.   Sample analysis of vibrations. 

Figure 9 shows results of the analysis of the experiment of the active vibration control using the 

phenomenon of dumping with motors working with rumbling frequencies. Due to time limitation we 

have only checked that this phenomenon can be researched with this installation and we plan to continue 

it in future. 

 

 

Figure 9.   Sample frequency analysis of active vibration dumping. 
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4. Shared experience 

All of us gained new knowledge, skills and competencies. Mathematicians found, first of all, that their 

vast knowledge has important practical application. Civil engineers, whose education is based mostly 

on designing, had opportunity to work in the laboratory of mechatronics. Mechatronics had first of all 

possibility to extend their field to the bigger scale of space.  

5. Conclusions 

Despite problems encountered within implementation of the project we can say that crucial results 

fulfilled expected targets. The hard results of the project, especially the newly developed installation 

will be used in further research and education. We plan to continue the project within Master Degree 

course next year. The most important are unique soft competencies achieved both by students and 

supervisors. The extraordinary experience will bear fruits for all of us, our University and further 

employers of our students. They gained ability for working in interdisciplinary teams, knowledge and 

skills in solving difficult problems of dynamics. It is worth to mention that all of this was done on the 

early stage of their studies. They were students of the bachelor course. For supervisors it was also a 

possibility to learn about for future cooperation among faculties within other projects. 
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Nonlinear forced oscillations of the coupled masses between 

repelling magnets 

 

 

Krzysztof Witkowski, Grzegorz Kudra, Sergii Skurativskyi, Grzegorz Wasilewski, 
Jan Awrejcewicz 

Abstract: In these studies, we consider oscillations in the physical model consisting of 

two carts mounted on a guide. The movement of these carts is restricted by the 

repelling magnets. The interaction between carts is provided by spring or impact 

element. The harmonic external loading is applied to one of the carts. To describe this 

system, the nonlinear mathematical model is developed. The results of model 

parameter identification are presented. Moreover, the procedure of model validation 

on the bases of experimental and numerical analysis of system dynamics is discussed 

as well. 

1. Introduction 

A large amount of natural and artificial systems incorporates the influences of mechanical, magnetic, 

and electric fields. When small deviations from the steady state are considered, the description of 

each field is very similar and can be carried out separately from others. Beyond the linear approach 

the peculiarities of forces, namely the character of nonlinearity and cooperative effects, are 

manifested. In particular, a wide range of fascinating phenomena are revealed in the oscillating 

systems consisting of mechanical elements [1, 2], like a spring, dash-pot or impact, and magnetic 

parts [3]. Our research is concerned with the studies of cooperative actions of mechanical and 

magnetic forces, when nonlinear character of both fields is essential. To do this, the magneto-

mechanical experimental system performing the forced oscillations is established. Classification of 

modes observed experimentally, the development of proper mathematical models and their validation 

keep in our focus as well.  

2. Experimental rig 

To begin with, let us describe the main steps of experimental studies.  Fig. 1 exhibits an experimental 

stand of two-degree-of-freedom mechanical oscillator with linear mechanical and non-linear magnetic 

stiffness and external harmonic forcing, modeled and analyzed in the present work.  
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Figure 1.   Experimental stand. 

The experimental stand consists of two carts (2 and 8) connected with the spring (13) and 

moving, via linear rolling bearing blocks (3), along a common rail (6). Positions of the carts are 

measured by the use of Hall sensors (5) and magnetic tape (7) integrated with the bearing blocks and 

the rail, respectively. The cart (2) is equipped with stepper motor (10) generating harmonic forcing 

via the disc (12) with an unbalanced mass (4). The transoptor (11) mounted behind the disc (12) 

allows one to control the absolute angular position of the stepper motor. Both carts on the outer sides 

have pair of permanent magnets (9) interacting repulsively with the identical ones mounted on the 

fixed supports (1). Mass of the second cart can be modified by the use of additional mass elements 

(14). 

The peculiarities of experiment procedure can be found in [1]. To be convinced that we correctly 

understand the observed phenomena, the mathematical model for the experimental stand is developed.  

3. Mathematical model 

 

Figure 2.   Physical model. 

To construct the equations of motion for the experimental rig, let us consider the physical model, 

presented in Fig.2. The coordinates 𝑥1 and 𝑥2 define the displacements of two masses 𝑚1 and 𝑚2, 
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connected with the spring of stiffness 𝑘. Each mass undergoes the rolling friction force  𝐹𝑅𝑅𝑖 =

𝑇𝑖𝑠𝑔𝑛(�̇�𝑖) ≈ 𝑇𝑖
�̇�𝑖

√�̇�𝑖
2+𝜀𝑖

2
, viscous damping  𝑐𝑖�̇�𝑖 and interacts with the wall via the magnetic repulsive 

force 𝐹𝑀 acting between pair of permanent magnets with the gap . A disc is mounted on the body of 

mass 𝑚1  and rotates with the angular frequency of forcing �̇� = 𝜔 providing the harmonic external 

disturbances. An additional unbalanced body of a mass 𝑚𝑛 is placed on radius 𝑒 of the disc. Utilizing 

the second Newton law leads us to the following equations of motion  

𝑚1�̈�1 + 𝑘(𝑥1 − 𝑥2) + 𝐹𝑅1(�̇�1) − 𝐹𝑀(𝑥1 + 𝛿) + 𝐹𝑀(𝛿) = 𝑓0�̇�2sin𝜑,  

𝑚2�̈�2 + 𝑘(𝑥2 − 𝑥1) + 𝐹𝑅2(�̇�2) + 𝐹𝑀(𝛿 − 𝑥2) − 𝐹𝑀(𝛿) = 0, (1) 

where 

𝐹𝑅𝑖(𝑦) = 𝑐𝑖𝑦 + 𝑇𝑖
𝑦

√𝑦2+𝜀𝑖
2
, 

𝐹𝑀(𝑦) =
𝐹𝑀0

(𝑑3𝑦3+𝑑2𝑦2+𝑑1𝑦+1)𝑛. 

To validate the derived model, at first, we elucidate the degree of magnetic force nonlinearity 

and establish the analytic expression for it assuming that magnets are the point objects and force 

magnitude depends only on the distance to the magnet.  

4. Parameter’s estimation 

4.1. Magnetic springs’ characteristics 

Static characteristics of two (P1 and P2) of four pairs of magnets used in the experimental stand 

presented in Fig. 1 have been investigated using special equipment. The experimental results along 

with fit theoretical model in two versions A and B there are presented in Fig. 3, where 𝑧 is distance 

between the magnets. The corresponding parameters of the model are given in Tab. 1.  

 

Table 1. Parameters of the magnetic springs’ models for pairs of magnets P1 and P2. 

Model Magnets 
𝐹𝑀0  
[N] 

𝑛 
𝑑1 

[m−1] 
𝑑2 

[m−2] 
𝑑3 

[m−3] 
𝐹𝑂 

[mm2] 

A 

P1 107.0 3.571 60.37 0 0 0.2401 

P2 101.2 3.771 54.96 0 0 0.1650 

P1, P2 104.4 3.624 58.66 0 0 1.2885 

B 

P1 109.5 1.727 143.0 186.6 2.015 ∙ 105 0.0160 

P2 103.1 1.989 115.9 189.1 1.125 ∙ 105 0.0200 

P1, P2 106.8 1.719 141.1 387.0 1.919 ∙ 105 1.0916 
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The objective function 𝐹𝑂 is defined as average squared difference between magnetic forces 𝐹𝑀 

obtained experimentally and from the model. 

 

 

Figure 3.   Magnetic springs’ characteristics for the pair P1 (a) and the joined data of two pairs of 

magnets P1 and P2 (b) 

 

4.2. Estimation of the dynamical model parameters 

Masses of the carts were measured and assumed to be fixed during identification and all presented 

numerical simulations: 𝑚1 = 8.0985 kg, 𝑚2 = 6.7838 kg. Moreover we assume 𝜀1 = 𝜀2 =

10−6 m/s. Additionally the following quantities were measured directly before the experiment used 

in the identification: 𝛿1 = 0.022984 m and 𝛿2 = 0.022994 m, where 𝛿1 and 𝛿2 are distances 

between the magnets on the left and right side of the experimental rig, respectively, when the 

measurement system is reset. We use ten periodic experimental orbits in the identification process, for 

the external forcing frequencies: 𝜔 = 19.37, 19.57, 19.78, 20.995, 20.205, 20.43, 20.62, 20.84, 

21.46, 21.665 rad/s.  

The minimized objective function is defined in the following way  

𝐹𝑂(𝛍) =
1

2𝑁
∑ ∑

𝑤𝑥 ∫ (𝑥𝑖𝑗𝑒(𝑡)−𝑥𝑖𝑗(𝑡))
2

𝑑𝑡+𝑤𝑣 ∫ (𝑣𝑖𝑗𝑒(𝑡)−𝑣𝑖𝑗(𝑡))
2

𝑑𝑡
𝑡2𝑖

𝑡1𝑖

𝑡2𝑗

𝑡1𝑗

𝑡2𝑗−𝑡1𝑗

2
𝑖=1

𝑁
𝑗=1 , (2) 

where 𝑥𝑖𝑗  and 𝑣𝑖𝑗 are displacement and velocity of 𝑖th body in the 𝑗th solution obtained numerically 

from the model, while 𝑥𝑖𝑗𝑒  and 𝑣𝑖𝑗𝑒  are corresponding experimental solutions, 𝛍=(𝑓0,𝑘,𝑐1,2, 
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𝑇1,2,𝛿,𝐹𝑀0, 𝑑1,2,3,n) is the set of parameters for estimation. The symbols 𝑤𝑥 and 𝑤𝑣 stand for the 

corresponding weights, and they were assumed as 𝑤𝑥 = 0.9 1/mm and 𝑤𝑣 = 0.1 s/mm. 

The experimental displacements used in the formula (2) are obtained in the following way  

𝑥1𝑗𝑒 = 𝑥1𝑗𝑒0 + 𝛿1 − 𝛿,  

𝑥2𝑗𝑒 = 𝑥2𝑗𝑒0 + 𝛿 − 𝛿2, (3) 

where 𝑥𝑖𝑗𝑒0 is displacement obtained during experiment and burdened with some shift error. 

Velocities 𝑣𝑖𝑗𝑒  are obtained by numerical differentiation of experimental displacement.  

The parameters of magnetic force model were identified again, because of some differences 

between the four pairs of magnets used in the experimental rig. The estimated values of model 

parameters obtained after the procedure of minimizing the function 𝐹𝑂(𝛍) are presented in Table 2.  

 

Table 2. Estimated values of the model parameters. 

Model 
𝑓0 

[m] 

𝑘 

[N/m] 

𝑐1 

[N ∙ s/m] 
𝑇1 

[𝑁] 
𝑐2 

[N ∙ s/m] 
𝑇2 

[𝑁] 
𝛿 

[𝑚] 

A 0.040612 1284.7 4.6298 2.3144 14.408 3.2669 0.022825 

B 0.041544 1256.6 2.6617 3.1295 17.164 2.6265 0.022411 

Model 
𝐹𝑀0 

[N] 
𝑛 

𝑑1 

[m−1] 
𝑑2 

[m−2] 
𝑑3 

[m−3] 
𝐹𝑂 

A 178.40 4.1087 46.946 0 0 2.4345 

B 132.22 1.5283 93.879 201.63 3.3943 ∙ 105 1.8255 

 

Using the parameters for model B from Table 2, the solution of system (1) was derived and 

compared with experimental profile (Fig.4) at different frequencies of external loading 𝜔. We can see 

the good coincidence of profiles on the intervals of moderate rate of profile growth and permissible its 

deviation in the vicinity of extrema.  

5. Bifurcation dynamics and model validation 

Aforementioned results testifying the good agreement between experimental and numerical data 

at finite time interval and fixed values of parameter 𝜔 allow us to continue the model validation and 

use the Poincaré section technique for the bifurcation diagram construction when the angular 

frequency (𝑡) increases as shown in Fig.5a.  To get the experimental and simulation bifurcation 

diagrams (Fig.5b-d), the cart positions are sampled at instances fulfilling the condition 𝜑 = 2𝑖, 

(𝑖𝑍). The final part of motion for decreasing forcing frequency was cut off and ignored. It is worth 

noting that the nonstationarity of  (𝑡) does not influence essentially on the bifurcation diagram due 

to the small rate of  increasing. Additional comparison of simulation diagrams derived at constant 
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frequency (𝑡) confirms this conclusion (Fig.5e,f). As shown in Fig.5b, the scenario of period 

doubling bifurcation is realized at  increasing. This leads to the chaotic attractor creation. 

 

Figure 4.   Final agreement between selected periodic experimental solutions (green colour) and the 

corresponding numerical simulations (red colour) obtained during the model B parameters’ 

estimation, for 𝜔 = 19.57 (a), 19.78 (b), 20.205 (c), 20.84 (d), 21.665 rad/s (e). 
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Figure 5.   Angular velocity of the forcing 𝜔(𝑡) applied in the experiment (a) and the corresponding 

experimental bifurcation diagram (b), bifurcation diagrams of the models A and B obtained 

for the experimental forcing (c, d) and the corresponding numerical  bifurcation diagrams 

obtained classically (e, f). 

There is also the critical value of frequency when an abrupt chaotic attractor collapse is observed. 

Instead, the stable periodic regime exists. Qualitatively the same behavior demonstrates the model A 

and B (Fig.5c,d). However, the detailed analysis of bifurcation diagrams shows that the model B 

matches the experimental data better and, thus, is preferable for the further studies. 
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6. Conclusions 

We thus developed the experimental rig suitable for the studies of mutual influence of 

mechanical and magnetic forces and validated corresponding mathematical model. We have shown 

that the magnetic force introduces into the system strong nonlinearity playing the essential role in the 

formation of complex system’s behavior including chaotic. Our results provide the starting point for 

the detailed analytical and numerical investigations of the developed mathematical model. It should 

be noted also that the system in question can be easily expanded by incorporating the additional 

structural elements, for instance impact bond.  
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The pair of oscillators coupled by the electromagnetic field 

 

 

Mateusz Wojna, Grzegorz Wasilewski, Jan Awrejcewicz 

Abstract: The paper concerns numerical and experimental study of a system consisting 

of two identical oscillators coupled by the electromagnetic field. A system contains two 

permanent neodymium magnets hung up on the two vertical springs and vibrating in the 

hollows of two coils. The system with both, linear and non-linear springs has been 

considered and studied. The coils are connected in series, what makes the oscillators 

coupled. The coupling is determined by the currents which are induced by moving 

magnets in the nearby of coils. Based on the Faraday's law, the coupling variables are 

velocities of the magnets. Such a system can be easily applicable. One of the potential 

use in the field of energy harvesting is scavenging the energy from ocean waves. 

The work consists of modelling, numerical simulation and experimental study of the 

earlier introduced mathematical model. The results of numerical simulations are 

confronted with experimental data and taken under discussion. 

1. Introduction 

The progress of modern technologies and challenges faced by researchers indicates the need 

for interdisciplinary approach. At the present time the old, known and traditional methods of solving 

engineering problems are not enough. Research problems are increasingly rarely solved employing only 

one nature of the field, e.g. mechanical field. This interdisciplinarity states the synthesis of fields 

of various origins, which has become the subject of consideration of an increasing number of dynamical 

systems researchers. The paper presents a system consisting of the pair of oscillators coupled by the 

electromagnetic field. A system contains two permanent neodymium magnets hung up on the two 

vertical springs and vibrating in the hollows of two coils. The coils are connected in series, what makes 

the oscillators coupled enabling the transfer of energy from one oscillator to another. It should 

be emphasized that this paper is the authors’ first approach to the problem and it should be treated 

as an introduction to the further considerations. Such a system covers investigations in the subjects 

as follows: coupled oscillators, the electromagnetic field modelling and identification, energy 

harvesting and real non-linear stiffness elements. 

Modelling of the magnetic field in electromagnetic spherical actuators has been presented in Yan 

et al. [1]. The authors proposed a novel approach based on an equivalent energized coil and Biot-Savart 

law to formulate a complex magnetic field distribution in three-dimensional space. The energized coil 

model has been used to replace the poles of a cylindrical permanent magnet. Generally, this method 
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can be employed for both electromagnets and permanent magnets modelling. Another non-linear 

system with magnets has been presented in Eissa et al. [2]. The isolation of horizontal vibrations of the 

magnetically levitating body has been achieved by using the time delayed non-linear saturation 

controller. The body is exposed to both external and modulated forces. Wei et al. [3] deal with 

disturbance rejection in magnetic levitation system. A time-varying active disturbance rejection 

solution is proposed and validated in both numerical and experimental results. A synthesis of analytical 

calculations of magnetic parameters (field, force, torque, stiffness) in cylindrical magnets and coils 

is demonstrated in Ravaud et al. [4]. They show that a thin coil or a cylindrical magnet axially 

magnetized have the same mathematical model. The paper deals also with the analytical calculation 

of the force and the stiffness between thin coils or ring permanent magnets. The analytical expressions 

are based on elliptic integrals. A novel approach for calculating the torque between two filamentary 

circular coils with inclined axes whose centres are at the same plane is proposed by Babic and Akyel 

in [5]. The filament method is applied to the combination including a filamentary circular coil and a thin 

wall solenoid. The same authors in [6,7] derive new semi-analytical expressions for calculating the 

electromagnetic torque between inclined circular coils in air. The torque calculation has been obtained 

from the corresponding mutual inductance between inclined circular coils using the filament method. 

Robertson et al. [8] publish a variety of analytical methods for calculating the axial force between 

a cylindrical magnet and a solenoid that consists of many turns both radially and axially. 

Dolisy et al. [9] propose three-dimensional analytical method for modelling a permanent magnets axial 

field magnetic coupling. The magnetic field calculation allows the determination of global quantities 

like axial force and torque. 

The considered in this paper system can be easily applicable. One of the potential use in the field 

of energy harvesting is scavenging the energy from ocean waves. Thank to electromagnetic coupling 

the oscillators can be separated by a huge distance and can operate in severe conditions. Harvesting the 

energy from similar system is still state-of-the-art solution. However, there are papers where their work 

and promising future prospects have been published. Repulsive magnetic scavenger is considered 

by Masoumi and Wang in [10]. The paper studies a magnetic levitation characteristic used in a vibration 

based energy harvester, which is capable of harvesting ocean wave energy with a unique repulsive 

permanent magnets stack. The authors demonstrate a procedure to find the restoring force applied to the 

levitating magnet stack. Additionally, the Duffing vibration equation of the harvester is solved and the 

frequency response function is calculated for various force amplitudes and electrical damping 

so as to investigate the effect of these parameters on the response of the system. Another ocean wave 

energy harvester is shown in [11]. The research introduces a development of a novel and efficient 

pitching harvester with capacity of frequency conversion and force magnification to convert the low-

frequency ocean wave energy to usable electricity based on the piezoelectric effect. The advantages 

516



of the proposed harvester over existing ocean wave energy harvesters are the characteristics of its 

minimized components and space, which are vital for the survivability and sustainability on harsh ocean 

conditions. The energy harvesting system, based on magnetic levitation, is presented 

in Kecik et al. [12]. The system based on the relative movement of the magnet to the electromagnetic 

coil is considered. The novelty of the model lies on the definition of the coupling coefficient, called 

inductive coefficient, which links the mechanical and electrical parts of the system together. It has been 

proven that the parameter has a non-linear structure and depends on the mutual configuration of the 

pair magnet – coil. A multi-stable electromagnetic-induction energy harvesting system by magnetic 

levitation oscillation is proposed in Gao et al. [13]. Thanks to its non-linear stiffness characteristic it has 

a wide range of its frequency response. The system exhibits such phenomena as dynamical bifurcation, 

escape from potential wells, high energy orbits and chaos. Commonly cited paper (Mann and Sims 

[14]) investigates the design and analysis of a novel energy harvesting device that uses magnetic 

levitation to produce an oscillator with a tunable resonance. Mann and Owens in [15] demonstrate 

an electromagnetic-induction energy harvester that directly powers an electrical load. It consists of one 

suspended magnet and few stationary outer permanent magnets. 

The authors of this work have been dealing with magneto-electro-mechanical systems for some 

time. The result of this work are articles presented in scientific journals [16-21]. 

The paper is organized in the following way. Firstly the experimental rig is described. Section 3 

is devoted to derivation of the governing equations of motion. Section 4 discusses some of the 

experimental studies and numerical predictions. Concluding remarks are presented in section 5. 

2. Experimental rig 

The test stand consists of two identical mass – spring oscillators mounted on a common base and 

separated from each other a considerable distance. The physical model is shown in Fig. 1. The moving 

masses 𝑚𝑖 are two cylindrical neodymium permanent magnets with dimensions of 22mm x 10mm. 

They interact with two single-layer electromagnetic coils with 20 turns each and move in their axes. 

The coils are made of enamelled copper wire with a diameter of 1.15mm. The radius of particular coil 

is 𝑎𝑖 and its height is 𝐿𝑖. Coils of both oscillators are connected in series with each other. It enables the 

transfer of energy in the system and makes a system electromagnetically coupled. The magnets are 

supported by springs with stiffness 𝑘𝑖. The system with both, linear and non-linear springs has been 

considered and studied. The movement of the magnet causes the appearance of induced currents in the 

closed electrical circuit of the coils and results in the occurrence of a force acting on the magnet of the 

second oscillator. The equilibrium position for both oscillators is 𝑏𝑖. As mentioned above, the distance 

between the oscillators is considerable (about 1.2m) in order to avoid direct interaction between the 

magnets. 
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Figure 1.   Physical model of a system. 

The oscillators are assumed to be identical. Real pictures of the one oscillator is shown in Fig 2.  

The construction of each of the oscillators consists of a base 1 on which are mounted other components. 

The walls consist of a rear wall 2 and side walls 3’ and 3’’. A laser linear displacement sensor 4 is also 

attached directly to the base. Element 5 is a shelf with a 20-turns single-layer coil. On a shelf 6 is fixed 

coil setting the positional initial conditions. 

a) b) 

  
Figure 2.   The construction of a single oscillator: a front (a) and a rear view (b)  

(components identification is mentioned in the text). 
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At the beginning of motion recording, the coil forcing initial conditions is energized and pulls 

magnet 10 inside its hollow. Then the coil circuit is broken and the magnet falls down freely starting 

its movement. The magnet 10 is the oscillator’s bob and is supported vertically by the spring 9. The 

upper end of the spring is mounted in the axial hole of the bolt 8, which is screwed into the shelf 7. 

Only linear displacements along the magnet axis are examined in the experiments. In order to prevent 

magnets from moving in other directions, in some cases it was necessary to use guides in the form 

of transparent tubes 11 made of plexiglass. The whole mechanical construction of the experimental rig 

has been made of non-magnetic materials. The main elements are made of POM-C polyacetal, which 

possesses good strength properties, rigidity and high temperature resistance. All threaded connections 

have been made with brass bolts. 

3. System modelling 

The physical model of the coupled oscillator system shown in Fig. 1 contains the parameters:  

𝑚𝑖 – oscillator mass (the magnet mass and its spring clamp), 𝑘𝑖 – spring stiffness, 𝐿𝑖 – coil height (𝐿𝑖 =

𝑁𝑖 ∙ 𝑑𝑖 where 𝑁𝑖 – number of turns, 𝑑𝑖 – wire diameter), 𝑎𝑖 – winding radius of the coil, 𝑏𝑖 – distance 

of the coil face from the equilibrium position of the magnet, 𝑧𝑖(𝑡) – variable determining the elongation 

of the spring measured from the equilibrium position along the axis of the magnet and coil. One of the 

assumptions of the system is the uniformity of the oscillators, i.e. the oscillators have been constructed 

so that their individual components have the same properties and parameters. Then the quantities 

describing the features of specific elements can be entered without indexing them (e.g., 𝑘1 = 𝑘2 = 𝑘). 

Assume that the resistances of particular coils are 𝑅1 and 𝑅2 respectively, then 𝜀1, 𝜀2 define the 

electromotive forces generated in the circuit by moving magnets. The 𝜇 is the magnet dipole moment 

and 𝐵𝜌 is the radial component of the magnetic field (which can be governed by magnetic dipole 

approximation [22, 23]). 

The elementary length of the coil along the vertical axis d𝑧 meets the relationship d𝑁 = (𝑁 𝐿⁄ )d𝑧. 

The formula governs the electromotive force is as follows 

𝜀𝑖 =  
𝑁

𝐿
(2𝜋𝑎2)𝜇𝑣 [

1

(𝑎2+𝑏2)3 2⁄ −
1

(𝑎2+(𝑏+𝐿)2)3 2⁄ ]. (1) 

According to Faraday's law, the elementary force d𝐹 acting on the elementary length of the coil 

d𝑧 conducting the current d𝑖 = (𝑁𝑖 𝐿⁄ )d𝑧 stands as follows 

𝑑𝐹 = 𝑑𝑖(2𝜋𝑎)𝐵𝜌 = (
𝑁𝑖

𝐿
) (2𝜋𝑎)

3𝜇𝑎𝑧 𝑑𝑧

(𝑎2+𝑧2)5 2⁄ , (2) 

and finally after integration the force 𝐹 is described in the following way 

𝐹 = (
𝑁𝑖

𝐿
) (2𝜋𝑎)𝜇𝑎 [

1

(𝑎2+𝑏2)3 2⁄ −
1

(𝑎2+(𝑏+𝐿)2)3 2⁄ ]. (3) 
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Since the current induced in an 𝑁-turns coil is described as 𝑖 = 𝜀𝑖 𝑅⁄ , the Eq. 3 can be rewritten as 

𝐹 = (
𝑁

𝐿
2𝜋𝑎2𝜇)

2 𝑣

𝑅
[

1

(𝑎2+𝑏2)3 2⁄ −
1

(𝑎2+(𝑏+𝐿)2)3 2⁄ ]
2

. (4) 

Electromotive forces 𝜀1(𝑡), 𝜀2(𝑡) generated in the circuit by moving magnets with positional 

variables 𝑧1(𝑡), 𝑧2(𝑡) respectively can be govern as (e.g. for 𝜀1(𝑡)) 

𝜀1(𝑡) =
𝑁

𝐿
(2𝜋𝑎2)𝜇�̇�1 [

1

[(𝑎2+(𝑏1−𝑧1)2)]3 2⁄ −
1

[(𝑎2+(𝑏1−𝑧1+𝐿)2)]3 2⁄ ]. (5) 

The current flowing in the coil circuit can be described on the basis of Kirchhoff's law in the 

following way 

𝑖(𝑡) =
𝜀1(𝑡)−𝜀2(𝑡)

𝑅1+𝑅2
, (6) 

assuming small displacements 𝑧𝑖(𝑡) and system symmetry we have 

𝑖 =
(2𝜋𝑎2)𝑁

𝐿
𝜇 [

1

(𝑎2+𝑏2)3 2⁄ −
1

(𝑎2+(𝑏+𝐿)2)3 2⁄ ] (
�̇�1−�̇�2

𝑅1+𝑅2
). (7) 

Then, based on Eq. 4, the magnetic force in considered system can be described as follows 

𝐹 = (
𝑁

𝐿
2𝜋𝑎2𝜇)

2
[

1

(𝑎2+𝑏2)3 2⁄ −
1

(𝑎2+(𝑏+𝐿)2)3 2⁄ ]
2

(
�̇�1−�̇�2

𝑅1+𝑅2
). (8) 

It is worth noting that the right side of the above equation, except for the velocities difference  

�̇�1 − �̇�2, contains only constant parameters. Let us write the collapsed form of the expression for the 

magnetic force by entering the constant 𝐶 [1 𝑠⁄ ] 

𝐹 = 𝑚𝐶(�̇�1 − �̇�2). (9) 

Thus the equation of motion of one oscillator can be presented as follows 

𝑚�̈�1 = −𝑘𝑧1 − 𝑚𝐶(�̇�1 − �̇�2), (10) 

and using the relationship of the natural frequency 𝜔0 = √
𝑘

𝑚
, we can write the system of equations of 

motion of the system with springs with linear characteristics and linear stiffness 𝑘 in the following way 

{
�̈�1 + 𝐶�̇�1 + 𝜔0

2𝑧1 = 𝐶�̇�2

�̈�2 + 𝐶�̇�2 + 𝜔0
2𝑧2 = 𝐶�̇�1

. (11) 

In the case of a system with non-linear spring characteristics, approximation of this characteristic 

employs two components: a linear stiffness component (𝛽 coefficient from the Duffing equation) and 

a non-linear stiffness component (𝛼 coefficient from the Duffing equation). 
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4. Numerical simulations and experimental data 

The experimental study carried out on the constructed stand can be divided into two groups according 

to the type of springs used to support the magnets. The time series of the positions of both magnets and 

the voltage caused by the occurrence of induced current in the electric circuit of the coils have been 

recorded. In all considered tests both magnets are oriented in the same way, i.e. in both magnets the 

north pole N is on the magnet clamping side, and the S pole outside – facing the coil. 

Fig. 3 presents time series of a system consisting the linear springs in a case when one of the 

magnet initial position is pre-set. 

 

Figure 3.   Time series of the magnets positions (ℎ1, ℎ2) and corresponding induced voltage signal 

(𝑢𝑅𝑑) in a case when magnet indexed 1 is initial positioned – linear spring case 

Motion recording has been taken for 90 seconds. After these 90 seconds, the oscillation amplitudes 

of both oscillators were still a few mm each. Fig. 4 shows fragments of the graph from Fig. 3 describing 

the first stage of the motion, the middle segment and the last 10 seconds of recording. In the first 10 

seconds it can be seen how oscillator 1 begins to vibrate with a large amplitude associated with the 

predetermined initial conditions. These vibrations are damped. At the same time, oscillator 2 is excited 

by the flow of energy in the coil circuit. The force origins in electromotive induction is alternately 

dragging or retarding. The maximum vibration amplitude of the excited oscillator is around 10 mm. 

Oscillators vibrate in counter-phase from the very beginning. It takes about 5 minutes for the magnets 

to stop completely in the current configuration of the test stand components. At the beginning of the 

motion, the series of induced voltage has the most interesting character and reaches the highest values. 

According to Eq. 7, the value of induced current depends directly on the relative velocity of the magnets. 

Firstly, it is not a sine wave but a curve with many inflection points. In the next seconds of motion, the 

vibrations gradually fade out and the series of induced voltage changes almost periodically. 
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a) 

 
b) 

 
c) 

 
Figure 4.   Fragments of the time series of magnets positions (ℎ1, ℎ2) and the induced voltage (𝑢𝑅𝑑) 

in the coil circuit: first 10s of recording (a), range 30 – 40s (b), final 10s (c) 
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The non-linear springs used have non-linear characteristics only under compression. Therefore, 

it was decided to turn the whole stand upwards so that the magnet was constantly above the spring. 

To avoid moving the magnet in directions other than axial, it was necessary to use axial guidance in the 

form of plexiglass tubes. Fig. 5 presents the exemplary time series. 

 

Figure 5.   Time series of the magnets positions(ℎ1, ℎ2) and corresponding induced voltage signal 

(𝑢𝑅𝑑) in a case when magnet indexed 1 is initial positioned – non-linear spring case 

Due to the high stiffness and occurring resistance to motion (mainly friction) on the contact 

surfaces of the magnet clamping and the tube, the recorded movement is quite short. The fragment 

containing excitation of oscillator 2 is shown in Fig. 6. It can be seen that the current induced by the 

moving magnet 1 affects the second oscillator, but in a slight way. 

 

Figure 6.   Fragments of the beginning of time series of magnets positions and the induced voltage 
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The reason for this is the high friction value on the guide elements present in the system. Work 

is currently underway on a modernized stand construction. The stand is to be augmented by very precise 

linear aerostatic bearings of the authors project. This type of solution can ensure both the elimination 

of undesirable friction and also guarantee perfect axial guidance of moving masses. 

5. Concluding remarks 

The paper covers the first approach to the system of a pair of oscillators coupled by the electromagnetic 

field. The introduction of the article indicates the direction in which the authors would like to further 

consider this system, i.e. advanced modelling using magnetic field theory based on the dynamics 

of magneto-electro-mechanical systems. Another interesting and potential application of this system 

is the study of electromagnetic energy harvester. 

The construction of the experimental rig presented in section 2 is an example of a universal 

research stand. Elements with both linear and non-linear characteristics have been used. It is also 

possible to test springs such as purely magnetic springs. The presented experimental data shows that 

even linear system can provide many suppositions. An thought-provoking finding seems to be the time 

series of the induced current in the coils system, as a curve with many inflection points. 

Presented in the paper mathematical model provides a possibility to confirm the experimental 

studies through numerical simulations. Such an analysis will be a subject of further investigations and 

future authors’ papers. The plans also develop the dynamics of the system with harmonic excitation 

of the one of the oscillators and investigate how efficiently the system works as an energy scavenger. 
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Effect of the rotor support elements lubricated by magnetic fluids 

on chaotic and regular vibration of rotors during rubbing 

 

Jaroslav Zapoměl, Petr Ferfecki, Jan Kozánek 

Abstract: The change of the damping in the rotor support elements makes it possible 

to achieve a compromise between the vibration attenuation and minimizing the forces 

transmitted between the rotor and the stationary part. To do this a new design variant 

of a support element has been proposed. It consists of a squeeze film bearing 

lubricated by magnetically sensitive oil and of a hydrodynamic bearing inserted in it. 

The damping is controlled by changing the magnetic field passing through the layer of 

magnetic fluid. This paper deals with influence of the proposed support element on 

character of the rotor vibration during rubbing. The system is excited by the rotor 

unbalance and by impact forces caused by the collisions. The pressure distribution in 

the oil films is governed by the modified Reynolds equations. The dry friction is 

considered in the contact areas. The goal of the study was to investigate the effect of  

a magnetic field on regularity of the rotor vibration. The results of the computational 

simulations show that in cases when the collisions occurr (i) character of the induced 

vibration depends on speed of the rotor rotation and (ii) application of the magnetic 

field can change irregular oscillation into regular one. The performed study 

contributed to learning more on the effect of magnetically controlable fluids 

lubricating the rotor bearings on character of the rotor vibration.  

1. Introduction  

The rotors are often mounted in hydrodynamic bearings. To enable their operation at high angular 

velocity, the bearings are inserted in squeeze film dampers. This increases damping in the rotor 

supports and suppresses vibration of large amplitude. A simple dynamical analysis reported in [1] 

shows that to achieve optimum performance of the damping devices in a wide interval of running 

velocities their damping must be adaptable to the rotor operating speed. 

 This arrived at the development of a number of semiactive controllable damping devices 

working on different physical principles. The design utilizing the mechanical and hydraulic 

phenomena to control the damping force is reported in [2], [3]. Electromagnetic damping devices of a 

reluctance type in combination with rolling element bearings are discussed in [4]. The further 

possibility is offered by smart liquid materials, sensitive to electric or magnetic fields [5], [6]. 

This paper deals with the proposal of a new controllable support element intended for rotors 

working in a wide range of running velocities. The element is composed of a hydrodynamic bearing 

inserted in a magnetorheological squeeze film damper. Its effect on vibration attenuation of rigid 
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rotors working at normal operation conditions was studied in [7]. This paper is focused on its 

influence on the motion of flexible rotors in the case when collisions between the disc and the 

stationary part occur. The results of computational simulations show that character of the rotor 

vibration depends on speed of the rotor rotation and that in some cases increased damping in the rotor 

supports makes it possible to change the oscillation from chaotic to regular. 

Semiactive damping devices in the rotor supports become a source of nonlinear properties of 

rotating machines and may induce their irrgegular oscillation. The tools for its identification and 

qauntification can be found e.g. in [8].  

2. The studied support element 

The studied support element (Fig. 1) consists of a hydrodynamic bearing and a squeeze film damper, 

the main parts of which are two concentric rings, between which there is a thin layer of 

magnetorheological oil. In the damper housing there is embedded an electric coil, which generates 

magnetic flux passing through the magnetically sensitive lubricant. The hydrodynamic bearing is 

inserted in the inner ring, which is connected with the housing by a cage spring. Lateral vibration of 

the shaft squeezes the oil film, which produces the damping force. As resistance agains the flow of 

magnetic fluids depends on magnetic induction, the change of the applied current can be used to 

control the damping effect. 

 

 

 

 

 

 

 

 

Figure 1.   The studied support element. 

The pressure distribution in the individual oil layer is governed by the Reynolds equations. The 

one related to the magnetically sensitive oil was adapteded to bilinear material. More details on 

derivation and solutions of the Reynolds equations can be found in [9], [10]. In cavitated regions it is 

assumed that pressure of the medium remains constant. Components the hydraulic forces are 

calculated by integration of the pressure distribution along the length and around the circumference of 

the individual oil layers. The pressure profile in the layer of magnetorheological oil depends of the 

yielding shear stress, which can be changed by means of magnetic induction. This manipulation 

makes it possible to control the damping force. More details can be found in [9], [11].  
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3. The investigated rotor system 

The properties of the studied support element and its influence on the rotor vibration and its 

attenuation was investigated by means of computer simulations. 

 The drawing of the examined rotor is depicted in Fig. 2. The disc is placed in an opening of a 

square shape. The rotor rotates at constant angular speed, is loaded by its weight, and is excited by the 

disc unbalance and by the impact forces, if collisions between the disc and the stationary part occur. 

The cage springs of both dampers are prestressed to eliminate their deflection due to the rotor weight.  

 

 

 

 

 

 

 

 

Figure 2.   The investigated rotor system. 

In the computational model the rotor is represented by a Jeffcott one, the support elements by 

springs and hydraulic forces, and the collisions by impact forces. Material damping and the damping 

caused by the environment are considered to be viscous. Because of the system symmetry, lateral 

vibration of the rotor is described by a set of six nonlinear differential equations 

  conyTJMDMJSDSJMDMPD Fmezbzbykykybybbym   cos2  (1) 

  conzTJMDMJSDSJMDMPD Fmgmeybybzkzkzbzbbzm   sin2  (2) 

hdyJMDMJSDSJMDM Fzbzbykykybyb     (3) 

hdzJMDMJSDSJMDM Fybybzkzkzbzb     (4) 

psymryhdyRR FFFyk   (5) 

pszmrzhdzRR FFFzk   (6) 

m is the disc mass, bP is the coefficient of viscous damping caused by the environment, bM is the 

coefficient of viscous damping caused by the shaft material, kS is the shaft bending stiffness, kR is the 

cage spring bending stiffness of one damper, eT is the eccentricity of the disc center of gravity, g is the 

gravity acceleration, yD, zD, yJ, zJ, yR, zR are the displacements of the disc, journal, inner damper ring 

centers in the y and z directions, respectively,  is the angle of the rotor rotation, Fhdy, Fhdz are the y 

and z components of the hydraulic force acting on the rotor journal, Fmry, Fmrz are the y and z 
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components of the magnetorheological damper force acting on the inner damper ring, Fpsy, Fpsz are the 

y and z components of the prestress force, Fcony, Fconz are the y and z components of the impact force 

acting on the disc, and (.), (..) denote the first and second derivatives with respect to time, respectively.  

The impact forces have two components, normal and tangential. The normal component is 

induced by the elastic deformation and damping of material in the vicinity of the impact point   

 
conconconn bkF   (7) 

Δ is the penetration of the disc in the stationary part and is calculated as the difference between the 

displacement of the disc towards the stationary part and the width of gap, kcon is the contact stiffness, 

and bcom is the coefficient of damping in material in the contact area. 

The normal component of the impact force can be only compressive and is always directed 

towards the disc. If it should be tensile, its value is considered to be zero. 

The tangential component of the impact force is induced by dry friction in the contact area and is 

always oriented against the disc rotation 

connconcont FfF   (8) 

fcon is the coefficient of friction between the disc and the stationary part.  

The Adams-Moulton method was chosen to solve the set of governing equations (1) - (6).  

4. The investigated rotor system 

The main technological parameters of the studied rotor system are: the mass of the rotor 450 kg, the 

bending stiffness of the staft 20 MN/m, the stiffness of one cage spring 5 MN/m, the hydrodynamic 

bearing diameter/length 110/60 mm, the bearing clearance 0.2 mm, the bearing oil dynamic viscosity 

0.01 Pas, the damper diameter/length 150/40 mm, the damper clearance 0.8 mm, the 

magnetorheological oil dynamic viscosity when not effected by a magnetic field 0.3 Pas, eccentricity 

of the disc center of gravity 50 μm, the contact stiffness 1 GN/m, and the friction coefficient in the 

contact area 0.2. 

Fig. 3 and 4 show the steady state trajectories of the disc center for rising the rotor angular 

velocity from 100 to 400 rad/s and the regime when no current is applied. The change of their 

character and size is evident. The steady state orbits related to speeds of 200 and 300 rad/s are 

periodic (or very close to periodic) while trajectories corresponding to velocities 100 and 400 rad/s 

have a chaotic character. This is confirmed by the band Fourier spectra depicted in Fig. 5, which is a 

characteristic feature for a chaotic motion. The excitation frequencies corresponding to the speed of 

the rotor rotation are dominant in the spectra.  
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Figure 3.   Trajectory of the disc center (speed 100, 200 rad/s, current 0.0 A). 

 

 

 

 

 

 

 

 

 

 

Figure 4.   Trajectory of the disc center (speed 300, 400 rad/s, current 0.0 A). 

 

 

 

 

 

 

 

 

 

 

Figure 5.   Fourier transform - disc center displacement y (current 0.0 A). 
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The bifurcation diagram is drawn in Fig. 6. It shows that the rotor exhibits irregular motion in the 

vicinity of angular speeds of 100 and 400 rad/s. In other speed intervals its character remains regular.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.   Bifurcation diagram (current 0.0 A). 

Fig. 7 shows the change of the steady state trajectory of the rotor rotating at angular speed of 

100 rad/s after application of the current. The size of the orbit goes down and for the current of 4.0 A 

the motion character changes from irregular to periodic. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.   Trajectory of the disc center (speed 100 rad/s, current 1.0, 4.0 A). 

The trajectory depicted in Fig. 8 gives evidence that increase of damping in the rotor supports by 

application of the current does not arrive at both reduction of the size nor to irregular character of the 

rotor vibration. 
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Figure 8.   Trajectory of the disc center (speed 400 rad/s, current 4.0 A). 

5. Conclusions 

The rotors of high speed turbomachinery are often coupled with the stationary part by hydrodynamic 

bearings inserted in squeeze film dampers. This paper deals with properties of a new semiactive 

support element consisting of a magnetorheological squeeze film damper and a hydrodynamic bearing 

and with its effect on the rotor behavior during rubbing. The results of the computational simulations 

show that (i) collisions between the disc and the stationary part can induce both regular and chaotic 

vibrations depending on speed of the rotor rotation and amount of damping in the rotor supports, and 

that (ii) increase of damping can in some cases convert chaotic vibration in regular. The proposed 

support element makes it possible to utilize all advantages of hydrodynamic bearings. The control of 

the damping effect is very simple as the damper works only in the on/off regime. The performed 

study contributes to learning more on undesirable phenomena induced by the rotor rubbing and on the 

possible ways of their suppression. 
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Structure and control strategies of exoskeletons for fatigue 
limitation of a healthy man 

 

Adam Zawadzki, Tomasz Mirosław, Jakub Deda, Zbigniew Żebrowski 

Abstract: During last few years an idea of exoskeletons amplifying human force and 

reducing body effort during activities turned to be a real solution. Because of many 

interdisciplinary problems – medical, mechanical and mechatronics – and individual 

features of human body, designs are still looking for better and better solutions. A lot 

of money is spent for research, especially when we take into account almost unlimited 

application of such an equipment. Some designers are following the leaders in this 

domain and don’t see other efficient solutions which are well known for many years. 

In this paper authors present overview of solutions and applications of exoskeletons 

for healthy men with oriented on ergonomics and energy management aspects. For 

energy management aspects authors present analyses of typical movement and energy 

conversion in human body. The mechanic, electric and hydraulic drive solutions are 

presented and characterized by their possibilities to follow the human body. The new 

hybrid solution with energy saving and recuperation is presented. Authors of this 

paper aim on providing a concise comparison between most commonly used control 

strategies for exoskeletons for healthy persons. The paper will focus on reviewing 

most common strategies and analyzing them in terms of utilizing in products for the 

rescue services and the army. The conclusions for each solution will be backed up 

with authors experiences on this field coming from developing own solution of a 

lower limb exoskeleton for soldiers and rescue services. 

1. Overview of the current exoskeleton solutions for healthy persons 

During last ten years exoskeletons became popular thanks to big projects like Lockheed Martin’s 

HULC [1] or Berkley University of Technology’s BLEEX [2]. Exoskeletons appear in headlines of 

magazines and build excitement. The major division in exoskeletons is on target users: medical 

patients and elderly or healthy people. This paper considers the second group and the discussion is 

only about such solutions even though some parts are common for both applications. 

Exoskeleton solutions for healthy people can be divided on three categories: active, semipassive, 

passive (see Fig. 1). It is not possible to build an inexpensive active exoskeleton (with motors and 

power source) that is why some of the market players focused on passive exoskeletons (static 

unloading by utilizing springs, brakes etc. in the construction). Each of the current solutions is based 

on springs and the structure that is locked in working position allowing springs to transfer load to the 

ground. Such an approach is elegant, simple and reliable. The biggest disadvantage is that it can use 

its full potential only in stationary applications. Semipassive solutions are somewhere in between i.e. 

they utilize powered actuators, but they are low power, only used for changing working 

characteristics of load bearing, passive elements like springs. 
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Figure 1.   Exoskeletons classification. 

Such wide diversity of solutions utilizes broad spectrum of energy sources. A model of energy 

transformation in a human body including the change cycles is given in Fig. 2a. 

a)  b)  

Figure 2.   a) Energy transformation graphs for a human body (a), an exoskeleton (b). 

The chemical energy coming from food goes to the muscles. They contact and extend moving the 

body. When there is a resistance, the muscle tension accumulates the elasticity energy. It is 

problematic to keep this tension for a longer time that is why this energy is converted into heat (this 

happens e.g. during walking downstairs). Unfortunately, there is no biological mechanism for 

converting mechanical energy into chemical energy in a human body. 
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When muscles overcome external resistance forces the body moves changing the position of the 

center of gravity. This causes change in potential and kinetic energy according to the energy 

conservation law. This is a repeatable process during the gait cycle. The energy loses coming from 

movement resistance (wind, friction etc.) are covered by muscles work. 

The energy of an exoskeleton is strictly mechanical, that is why only potential and kinetic energy 

is considered for calculations. Logically the exoskeleton shall support itself, that is why energy must 

be delivered to the system in order to overcome mechanical and thermal losses (see Fig. 2b). 

Depending on eigen gait cycle of an individual the control pattern changes. It can be observed in 

Fig. 4 where gait cycles with short and long steps are compared. 

 

 

Figure 3.   Gait cycle a) short steps b) long steps 

It causes problems in active and semipassive exoskeleton solutions but does not influence purely 

mechanical control of passive exoskeletons. 

There are many publications describing specific solutions of control algorithms. For active 

exoskeletons they were reviewed by Anam, and Al-Jumaily [3] and divided in four groups: model 

based control systems, hierarchy based controls Systems, physical parameters based control system, 

usage based Control systems. 

 In most cases either a fine model of the system is needed or large number of sensors. I the first 

case there are methods for obtaining equations of motion for such complex systems like matrix 
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method [4], ending with control algorithms based on inverse kinematics [5, 6]. In the second case the 

demanded position is estimated and predicted based on multiple sensors data [7, 8, 9]. 

There is no paper that would analyze generally control strategies for passive exoskeletons 

therefore authors give such a review in this paper. 

2. Possible control strategies for passive exoskeletons 

Since only strictly passive solutions are analyzed, not semi passive that can be controlled using 

similar algorithms and methods as active exoskeletons, authors consider possibilities of controlling 

the machine without external power source – using only mechanisms. Since human body requires 

varying supporting force/moment during gait cycle, changing characteristics of passive elements must 

be utilized. Typically, in passive solutions helical springs are used in order to support a user during 

stationary actions (heavy tool manipulations, heavy weights lifting). Elements like brakes and 

clutches are used to change the mode of operations and allow a user to e.g. move from one working 

position to another or to move with the load to another area. 

In Fig. 4 force characteristics for knee and ankle joints are provided. It can be noted that 

depending on angle range they are either progressive, linear or degressive. At 180 degrees these 

forces are zero or near zero because static unloading occurs and only a small fraction of forces are 

transferred by actuators (depending on mounting geometry). 

   

Figure 4.   Forces in actuators during crouching for different joints’ rotation angles. 

Such behavior of the system indicates using different kinds of springs (as actuators) depending 

on movement range: for progressive part gas or conical springs, for linear part cylindrical springs, for 

degressive part Belleville springs. It is not possible to base the design only on one kind of springs for 

the designs where an exoskeleton shall walk, run etc. There are couple of ways to expanding the 

working range of a spring in this application (Fig. 5): 
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1. limiting usage of the exoskeleton to walking – crouching, running not possible, 

2. adding a damper to get a hysteresis – for bigger damping factors progressive-degressive 

characteristic is possible to obtain, 

3. utilizing brakes or clutches in order to engage or to disengage sets of spring depending on 

working mode or range, 

4. changing stiffness of the spring by setting preload, 

5. using oleo-pneumatic shock absorbers. 

 

a b c d e 

 
  

 
 

Figure 5.   Control strategies for passive exoskeletons. 

Each of mentioned ways is correct for specific applications. The simplest method is to restrict the 

movement range. Such an approach is valid for industrial exoskeletons that are used in repeatable 

scenarios like moving packs in a warehouse or manipulating heavy power tools. A user does not need 

movement freedom due to the job profile. 

When more dynamic procedures are performed, and heavy loads are in use typically a damper 

must be used. It regulates the velocity of the expanding or contracting spring allowing higher 

precision of movement. 

For applications where high movement range is a must, another approach is needed. One way out 

is to use a set of springs that can act parallelly on mounting points but are engaged or disengaged 

using brake or clutch in specific moments allowing for more natural loads transfer (compare Fig. 4). 

This solution is much more complicated because special elements must be designed in order to meet 

packaging requirements. What is more using more springs and brakes increases weight of the system. 

Simple solutions mentioned above are not able to copy complex movement characteristics of 

human body. That is why they need to be joined with other mechanical elements that will assure 

correct forces transfer in time. 

Two main strategies can be mentioned here: angular strategy and time strategy. In the first one 

(Fig. 6a) user’s body has full control over spring element. There is a direct relationship between 

human joint rotation angle and spring displacement. In order to support a user uniformly an additional 

transmission must be used (Fig. 6b). One approach is to use a cam for controllable conversion of a 

force into a moment in reference to joint’s rotation angle. It allows for manipulation of output 

characteristics during spring expansion and even constant moment can be achieved using reasonable 
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dimensions of a cam. To obtain even better results using a simple spring element a clutch (or a brake) 

can be used to disengage the system when very small support is needed or when the system actually 

disturbs a user (situation depicted in Fig. 6c). Such situation occurs when stiff springs are used to 

support crouching and standing up. 

a)  b)  c)  

Figure 6.   Angular control strategy: a) moment occurring in a knee joint, b) a cam-spring mechanism, 

c) moment generated by a spring. 

The second strategy allows for energy accumulation. During some usage scenarios when a very 

dynamic movement comes into play (e.g. running) it is possible to harvest energy from exoskeleton 

and human body inertia. As depicted in Fig. 7a the energy is accumulated in one phase of the 

movement and then released in a controlled manner in time in the second phase. Such approach uses 

dampers in layouts like in Fig. 5b or 5e. The more complex 5e system changes the damping factor 

with direction of travel. It means it allows for accumulation of energy in one direction but it can 

release it only when triggered. 

a)  b)   

Figure 7.   Time control strategy: a) energy accumulation, b) example of simulated time characteristic 

for an oleo-pneumatic shock absorber. 

Depending on system complexity the energy releasing might not occur just after accumulating 

but can be shifted in time by utilizing logic switches. For a case described above (ankle joint) only 
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two logic switches would be needed to control releasing the energy – one in front and one on the back 

of the shoe sole. 

Such a strategy although more complex, allows for support in the whole range of movement. 

What is more there are already commercially available systems that can be utilized to passive 

exoskeletons after minor modifications – shock absorbers. Authors conducted experiments to find 

working characteristics of a double chamber oleo-pneumatic shock absorber (Fig. 8). Such systems 

are already provided with regulation valves for control of energy accumulating and releasing. Authors 

of this publication have already conducted ad-hoc experiments with CO2 cartridges for manual 

changing working characteristics during use. The results are promising and research in this field is 

continued.  

 

 

Figure 8.   Force in function of a displacement dependent on air pressures (psi) in work chambers for 

an oleo-pneumatic shock absorber. 

3. Conclusions 

Authors analyzed possibilities of controlling passive exoskeletons without using any external power 

supply. A full review on passive elements utilization for exoskeletons propelling is provided starting 

from simple spring and ending on adapted oleo-pneumatic shock absorbers. Also the problem of 

energy accumulations was discussed with a feasibility study. Authors proposed two kinds of control 
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strategies: angular control and time control. Both of them have weaknesses but the second one can be 

used for a whole range of movement. 

In addition to the time control strategy authors proposed a solution – utilizing commercially available 

double chamber oleo-pneumatic shock absorbers with modifications – for precise manual control of 

exoskeleton’s supporting force characteristic. 
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Numerical analysis of phase change during solidification 

 

S. Zermout, F. Mokhtari, F.Haddad, A.Merah, I.Lasloudji 

Abstract: In this paper, a transient model is used to investigate the evolution of the 

liquid-solid interface during solidification. Internal radiation in semi-transparent solid 

is modelled with the discrete ordinates model (DO) and the phase change with the 

enthalpy method. During crystallization, the maximum convexity of the m-c interface 

coincides with the development of an angle on the m-c interface near the free surface 

leading to the appearance of re-melting zone that affects the solid quality and reduces 

significantly its diameter.  

1. Introduction  

During solidification, the crucible transfers heat for melting the feedstock. This heat arises from 

three zones: upper, side and bottom heaters. In order to prevent heat loss from the furnace, insulation 

shields are surrounding the crucible walls and heaters.  

In this work, we propose to use the finite volume method to perform a time-dependant analysis of 

the solidification interface shape and the crystal length during KY growth process. The formation 

mechanism of the re-melting zone at the shoulder stage and its effect on crystal quality are discussed. 

2. Modelling 

The melt is assumed to be laminar incompressible and Newtonian fluid satisfying the Boussinesq 

approximation. The governing equations can be expressed as follows: 

Continuity 

. 0,u  (1) 

Momentum 

    . . ,m p u

u
u u p u g T T C S

t
    


        


(2) 

Energy 

 . . . ,p p rad T
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t
 


      


(3) 

Where u , T , P and t are velocity, temperature, pressure and time.  ,  ,  , pC , k and g

representdensity, dynamic viscosity, thermal expansion coefficient, specific heat, thermal conductivity 
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and gravitational acceleration vector,respectively. ,  and .u T radS S q are source terms which will be 

defined below. 

The model adopted for describing the heat transfer in the phase change is based on the enthalpy 

formulation proposed by V.R.Voller [4-6]. 

In this approach, the m-c interface is considered to be a porous region having a porosity equal to 

the liquid fraction fl.  

The term source uS is added to the momentum equations:  1u mush lS A f u  . It serve to block 

the velocities in solid cells. The mushy zone constant (Amush) is a characteristic constant of the growth 

interface quantifiying the loss of speed in the zone where the phase change occurs.  

During the phase change, the enthalpy method [5,6] takes into account the latent heat of solidification 

corresponding to the cell temperature that is adjusted to reflect its evolution, this adjustment is included 

in a source term added to the energy equation. In the case of the growth of a pure material, Brent et al. 

[6] proposed the following formula for the source term, 

. . ,l
T p

df
S C L

dt
  (5) 

Where L is the latent heat of solidification 

To simulate the internal radiation in oxide crystals, several models are used, both the Rosseland 

approximation [7] and differential approximation P1 [8] are valid for optically thick materials and 

discrete ordinates method DO [9,10] that gives a relatively high accuracy and low computational cost. 

In our case, the crystal has an intermediate optical thickness, so the internal radiation is solved with the 

DO method. 

The DO model solves the radiative transfer equation for a finite number of solid angles, each 

associated with a fixed direction vector in the global cartesian system (x, y and z). 

For the semi-transparent solid, radiative heat transfer is evaluated by the divergence of radiation 

flux defined by Eq. (6) along a particular direction s : 

     2. , , ,bI r s s aI r s an I   (6) 

Where I is the radiation intensity at position r in direction s , a is the absorption coefficient, n is 

the refractive index and bI  is the black body intensity given by Planck function. The 4π solid angle 

domain is divided into10x10 discrete, nonoverlapping solid angles and the partial differential equation 

for the radiative intensity in the discrete direction spanning the solid angle is obtained in Eq. (7). 

Consequently, the radiative heat flux radq can be written as follows : 
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 . . rad m m m

m

q n I (7) 

where m  is the angular quadrature weight which sums to the surface area of the unit sphere of the 

unit sphere, mI is the radiative intensity for the discrete directionm and  n  is the unite normal vector. 

Concerning the boundary conditions for radiation intensity, all walls are considered as opaque diffuse-

gray boundaries. 

3. Results and  discussion 

During the solidification process, it is very important to follow the evolution of m-c interface 

because it has a direct impact on the quality of grown crystal.The advancement of the solidification 

front over time is shown in Fig.1. 

 

 

            

           (a)                     (b)                     (c)                       (d)                     (e)                      (f)                      

 

Fig. 1. Evolution of melt-crystal interface shape at different growth stages: Time interval 

between two successive cases is 2 hours. 

 

The morphology of the m-c interface at the early stageis conical downwards (Fig.1a); the growth 

occurs in the vertical direction (z).While the crystal advances in the melt during shouldering stage,  the 

interface shape becomes hemispherical (Fig.1b); the growth occurs in the radial direction (r) and 

vertical direction (z).Fig. 1(c) shows that the interface has lost its hemispherical shape where appears 

an obtuse angle (θ = 96º) directed towards the side wall of the crucible. This stage of the growth 

corresponds to a reduction in melt height and thus an increase in crystal length. 

Figs.1(d-f) show that θ angle on the m-c interface decreases over time (90º, 81º, 74º) and orients 

its tip slightly toward the crucible wall up θ = 63º (Fig.1g).As a result, the origin of the re-melting zones 

phenomenon and then the irregular ingot shape may be explained by the formation of this angle during 

the shouldering growth  stage. When the remelting-zone occurs excessively, a significant portion of the 
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ingot has a strong possibility of having microscopic and macroscopic defects that affect the crystal 

quality and subsequently translate into a loss of mass and energy. 

The convexity is one of the most important parameters affecting the crystal quality. Indeed, a small 

convexity of the m-c interface is required to obtain good quality crystals. The convexity of the m-c 

interface defined by C = max Zh -minZh, 

Where Zh is the height of the m-c interface in the z direction. 

Fig. 2 shows the evolution of the convexity of the m-c interface over time. During the growth 

process, one can clearly see that the convexity of m-c interface increases from C = 14 mm to C = 43.27 

mm corresponding to conical and hemispherical shape respectively. Then this convexity reaches its 

maximum value Cmax = 87.12mm (Fig.2).At this growth stage, m-c interface has a wavy shape which 

can cause the formation of defects in crystal. Then the convexity decreases significantly until C = 

53.63mm, it continues to decrease until C = 8.53 mm. In this step, convexity remains almost constant 

then m-c interface shape becomes flat. The convexity increases to C = 25.25 mm corresponding to the 

presence of fluid stagnation region at the corner of the crucible. During the last growth stages, the 

interface convexity decreases gradually until its suppression where the liquid portion was completely 

transformed into crystal. 
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Fig. 2.The convexity of m-c interface vs time during the whole growth process. 

 

Crystal length evolution over time 

 

Fig. 3 presents the crystal length evolution over time. We can see that the growth process can be 

divided into three zones A, B and C following the different curve slopes. Zone A corresponds to the 

Shouldering growth stage where the crystal length increases rapidly. At the atomic scale, such growth 

rate could prevent the atoms to reorganize in ordered atomic lattice. This causes dislocations in the 
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crystal inducing then a poor crystal quality. However, a break of slope is detected to go from zone (A) 

to zone B so-called equal diameter stage where the crystal grows in radial and vertical directions.  

 

 

 

Fig.3.Crystal length evolution versus time at different growth stages, (A) Shouldring, (B) Equal 

diameter, (C) Ending growth.  

 

It is found that the length of the crystal increases linearly up to H = 308 mm following the formula: 

H = 4.1964 t + 126.11 with slight growth rate dH/dt = 4.19 mm/h allowing the atoms to arrange regularly 

following well-defined crystalline lattice.and therefore this stage of growth is characterized by less 

defects. In the last growth stage corresponding to the zone C, a linear increase in length was registered 

before it approaches the crucible bottom. At the ending growth, the resulting ingot is about 344 mm. 

4. Conclusions 

(1) Convexity of the m-c interface has a significant impact on crystal quality and seems an essential 

parameter in view of the interesting information it provides. This interface takes a conical and 

hemispherical shape at the early growth stages then an irregular shape at the shoulder stage. The 

gradual decrease of the convexity leads to a flat interface. 

(2) Angle appearance on the m-c interface causes the development of a wavy interface shape and 

leads to re-melting zone. 

(3) Due to the large growth rate and angle formation at the first stage of the growth process, defects 

in crystal are higher. The numerical simulation results show that more than 45% of crystal was 

grown with average rate about 4.19 mm/h. 
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Synchronicity phenomenon of circular cylindrical shell under 
random excitation 

 
 

Antonio Zippo, Francesco Pellicano, Giovanni Iarriccio 

 

Abstract: In the present paper is deeply described an experimental campaign focused 
on the random vibrations of circular cylindrical shells under thermal gradients across 
the shell thickness and broadband random loading. Many engineering fields are 
involved in this subject and in real environments, the excitations are likely non-
deterministic, moreover, extreme thermal conditions can cause differences of the 
temperature inside and outside the shell, as in thermal ex-changers. Due to the 
importance of the subject the literature on shell vibration is extremely wide, it is not 
analyzed here for the sake of brevity; however, it is to note that the number of papers 
containing experimental results is not large. Under a random forcing, a system generally 
expects a random response, however, in some particular conditions (e.g. internal 
resonances, parametric resonances, ...) the presence of nonlinearity in the systems can 
give rise to a surprising phenomenon: the synchronization of non-linear oscillators 
subjected to random forcing that has been partially studied in the literature for its 
remarkable characteristic of conveying the spectral energy of a random forcing over 
specific frequencies. This work takes advantage of previous setup and experimental 
techniques developed by the present research team. The phenomenon of synchronicity 
is clearly observed for some particular thermal conditions: a strong transfer of energy 
from a broadband excitation signal to an almost harmonic response is experimentally 
observed. 

 

1. Introduction  

Thin walled structures have a central function in several engineering fields from aerospace to civil 

and automotive, for example storage tower, bodywork panels, fuselage or aircraft and satellite panels.  

A critical circumstance in thin structures, of significant attention for many engineering fields, is 

the performance of these structures subjected to random forcing whose dynamics, characterized by 

strong non-linearity, leads to the rise of complex phenomena that cannot be predicted with current 

design tools, as finite element modeling. It is well known that when a chain of non-linear oscillators, 

used to model physical or biological structures, is subjected to intense periodic forcing, could presents 

a "mode-locking" phenomenon that synchronizes the forcing load with the system response. 
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A similar phenomenon, but much less known and studied, can occur in the case of broadband 

random forcing [1] if certain conditions occurs of internal resonance the random motions are found to 

be quasi-stationary, with steady oscillatory terms in the response moments. This suggests the possibility 

of entrainment of regular harmonic responses by the system.  

This phenomenon, called synchronization of non-linear oscillators subjected to random forcing 

[2,7], has been partially studied in the literature for its remarkable characteristic of conveying the 

spectral energy of a random forcing over specific frequencies, determining remarkable vibration 

amplitudes: Jansen et alt. showed that a single, nonresonant periodic forcing is insufficient to activate 

the  mode-locking phenomenon, but the supplement of a reasonable quantity of broadband noise allows 

transient mode-locking to the original periodic drive to occur. 

In literature could be found some experimental studies on thin structures like circular cylindrical 

shells, that presents often a strong nonlinear dynamic behavior, that leads designers and engineers to 

deal with it conditions to be able to forecast as accurate as possible the structure response due to external 

loadings, in [3] Zippo et. alt studied experimentally the behavior of the response of a thin circular 

cylindrical shell, it was shown that in tests performed with a sinusoidal axial forcing load clarify the 

role of the preload in enlarging the instability regions and the coexistence of more than one stable states 

when the shell is pre-loaded and excited with a moderately large sinusoidal excitation: the dynamic 

scenario is completely different if the frequency step is reduced from 1 Hz to 0.1 Hz. 

In a study published on Nonlinear Dynamics [4] is shown that the effect of temperature strongly 

affects the instability regions and the magnitude of the measured kinematic quantity and has been 

pointed out that high environmental temperature leads to a more complex shell dynamic, also in other 

fields novel techniques [5] are useful to identify intricate behaviors of complex systems that lead to 

unpredictable circumstances of systems under different conditions, one of this condition that could 

certainly be critical is the occurrence of thermal gradients. 

The possible condition of critical temperature  and thermal gradients through the thickness of shells 

lead to a change in the mechanical properties of the structure with a consequent complexity in predicting 

the behavior of the structures; from a deep analysis of the scientific literature it is possible to observe 

that there is a gap in the experimental studies and in the dynamic vibrational modeling of thin walled 

structures subject to strong thermal gradients, which presents only a few publications in this field: the 

effect of temperature has been deeply studied in [6] where is clarified the role of thermal gradients, in 

particular the damping and stiffness properties of the shell shown a complex behavior that imply that 

using linear modelling could underestimate the dynamic response of the structure, in contrast only 

theoretical studies are present about the mechanism that induce an energy transfer, under noise or 

random loading, to other modes of a structure.  
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Similar studies involve the synchronization of chaos [8] referred to a process in which several 

chaotic systems adapt a certain property of their dynamics to a common behavior due to a coupling or 

a periodic or random forcing and analytical and numerical work [9] has been presented showing the 

synchronization induced by noise in chaotic systems. Cicek and Ertas [10] conducted a sets of 

experiments on a beam tip mass and pendulum system subjected to random excitation to determine the 

autoparametric interaction between the two modes of the system in the neighborhood of the 

autoparametric region, in particular the response behaves as ultra-narrowband process in the 

neighborhood of exact internal resonance that converge into a periodic response. Some experimental 

studies on very simple systems can be found in the literature, Ibrahim [11] presented a review article 

on experimental investigations of random excitation of dynamic systems; A study carried out [12] by 

Roberts presents an analytical and experimental comparison with the broad band random excitation of 

a two degree of freedom vibratory system with non-linear coupling of autoparametric type which 

consists of a cantilever beam with at tip clamped another cantilever beam;  attached to a primary 

vibratory system in such a way that response of the primary system imposes an axial motion on the 

cantilever. The system is a common structural arrangement, representing the fuselage-tail plane 

coupling in aircraft structures.  

2. Setup  

In the present work a random broadband loading has been applied at the base of a circular cylindrical 

shell with a top disk fixed at a electrodynamic shaker: the role of the disk is to impose a rigid body 

displacement at the top end of the shell and to exert an inertial axial load to the shell when a motion is 

imposed. 

The shell under investigation has been 3d printed to avoid any geometrical imperfection and to allow 

the repeatability of the experimental campaign without geometrical errors: the specimen is made of 

Polyethylene terephthalate (P.E.T.) a thermoplastic polymer. The cylindrical sample present at the top 

end a rigid thick disk (the top disk) glued with special epoxy glue, resistant to high temperature, and its 

base is clamped to the fixture by means of a shaft collar that guarantees a uniform connection to the 

vibration table adapter. 

In Table 1 are reported the geometrical and material parameters of the shell and the material properties 

of the fixture and top disk.  

The system description is completed by Figure 1 where a schematic representation of the system is 

shown: an accelerometer is located on the fixture, such accelerometer is used by the control system of 

the shaker when a closed loop strategy is selected, three triaxial accelerometers are located equally 

spaced on the top disk, they are used to measure all the six dofs of the rigid body, this allows to detect 

axisymmetric modes, asymmetric modes, beam-like modes and torsional modes.  
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Inside the shell a cartridge heater is present and is used to modify the temperature inside the shell and 

to create a thermal gradient across the shell wall, see figure 2; the specimen under investigation is 

mounted on a Es40 Dongling shaker coupled with a climate chamber that allow to set the outer 

temperature of the shell and hold it constant. The temperature ranges of the climate chamber are -70°C 

up to +180°C; the climate chamber is provided by an inspection hole from witch a laser vibrometer 

beam go through and is deflect by a mirror periscope to measure the velocity of a lateral point located 

on the opposite side respect to the hole, yellow circle in figure 2. Two thermocouples are used to 

measure the temperature, inside and outside the shell. Moreover, a laser telemeter measures the 

displacement of a point, green circle in figure 2, of the shell out of phase of about 135° respect to the 

vibrometer measurement point. 

 

 
Figure 1.   schematic view of experimental setup 

 
Table 1. Geometrical and material parameters of the shell, the fixture and top disk 

Fixture and Top disk 

Material  Aluminium Alloy 

General Mass Density 2700 kg/m3 

Stress 
Young's Modulus 68.9 GPa 

Poisson's Ratio 0.33  

Shell 

accelerometer

telemeter

vibrometer

computer and controller
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Material P.E.T. 

General Mass Density 1366 kg/m3 

Stress 
Young's Modulus 3.05 GPa at 30°C 

Poisson's Ratio 0.417 

Dimension 

Diameter 80 mm 

Thickness 0.35 mm 

Height 160 mm 

 

 
Figure 2.   Picture of the specimen inside the climate chamber, highlighted the vibrometer spot light 

(yellow circle) and telemeter (green circle) 

 

The experimental test campaign consists of a random forcing load applied through the 

electrodynamic shaker at the specimen, the Siemens LMS Scadas mobile has been used to generate a 

random signal that is controlled by means of the accelerometer placed at the base of the shell, for each 

test different increasing rms amplitude levels have been applied consecutively. 
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On the first, temperature is set for the climatic chamber and an adequate amount of time has been 

waited to stabilize the external temperature for about 1 hour, after the inner temperature is raised slowly 

to reach the desired gradient, the system is left for another hour to reach a thermic stability. 

When the temperature is stable a forcing random load is applied together with the thermal gradient 

across the shell thickness; such gradient will induce a continuous variation of elastic and dissipative 

properties through the thickness of the shell.  

The test campaigns were carried out at different level of rms amplitude and at different bandwidth, 

in figure 3 is shown the experimental measured controlled base acceleration of one of the test. 

Afterwards, data was saved and imported into MATLAB where each level was analyzed 

computing spectrum, power spectral density, and spectrogram.  

Several tests have been performed changing the temperature parameter, inside and outside the 

shell, testing homogenous temperature and gradients and different frequency broadband at different 

amplitudes. 

 
Figure 3.   time history of base acceleration, test case 24°C outer temperature - 74°C inner temperature 

3. RESULTS 

In linear condition as homogenous temperature at 20°C and with a bandwidth of random signal between 

50 hz and 2000hz what ones can normally expect is that the system response is linear and is amplified 
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due to the first axial-symmetric mode at about 467hz, in figure 4 is shown the random forcing load at 

the base of the shell with a flat PSD, and in figure 5 the linear response of the structure with his natural 

amplification due to the resonance at 467Hz.  

 
Figure 4.   PSD of driven base forcing load, random broadband between 50Hz and 2000Hz 

 
Figure 5.   PSD of top acceleration response  

The scenario changes considerably in particular condition of thermal gradient and frequency 

forcing band: to sake of brevity only one test case will be shown in the following paragraph: a 

broadband random signal between 900 Hz and 1500 Hz has been applied at the specimen with a 28°C 

thermal gradient from 48°C in the inner surface and 20°C in the outer surface. In figures from 6 to 9 is 

shown the Power Spectral Density of, respectively, the base acceleration, top acceleration, lateral 

displacement and lateral velocity;  it is clearly visible that respect to the uniform frequency band of the 
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base, the top acceleration and the lateral vibration of the shell show an energy transfer in particular to 

the first axial-symmetric mode at 467Hz,  

 

 
Figure 6.   PSD of random forcing load 

 

 
Figure 7.   PSD of response of top acceleration 

0 1 2 3 4 5
Frequency (kHz)

-50

-40

-30

-20

-10

0

10

20

ba
se

  Z
 - 

[(m
/s

2 )2 /H
z]

Power Spectral Density - log

0 1 2 3 4 5
Frequency (kHz)

-60

-50

-40

-30

-20

-10

0

10

to
p 

1 
 Z

 - 
[(m

/s
2 )2 /H

z]

Power Spectral Density - log

556



 

 

 
Figure 8.   PSD of lateral displacement  

 

 
Figure 9.   PSD of lateral velocity 

 

4. Conclusions  

In the presented experimental study, a thin cylindrical shell has been driven with a random base 

excitation and the response has been analyzed, the excitation is random with a flat spectrum between 

900 Hz and 1500Hz. In the response is present an energy transfer to the first axial symmetric mode, 

that is 450Hz far from the excitation band, and this phenomena is more visible in the top acceleration 

response, respect to the lateral vibration, that however show an articulated spectrum, more complex 

respect to the flat spectrum of the base acceleration. 
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Non-smooth nonlinear model of suspension based on piecewise 

linear luz(…) and tar(…) projections 

 

 

Dariusz Żardecki 

Abstract: Strong nonlinear phenomena are attributes of suspension systems of vehicles 

operated at high dynamic loads and high speeds. The causes of these phenomena are 

dry friction and clearance in the mechanisms, detachment of the wheel from the 

roadway, impact on the bumper element, etc. Therefore detailed descriptions of vehicle 

“vertical dynamics” should express these non-smooth nonlinearities, even their 

structural physical models are discrete mechanical systems with only several masses. 

Modeling of strong nonlinear phenomena can be based on a piecewise linear approach. 

For simplification mathematical description of such phenomena special piecewise 

linear luz(…) and tar(…) projections have been proposed and elaborated by Żardecki. 

These projections have surprisingly simple mathematical apparatus which enable 

analytical operations (eg. reductions) for differential and algebraic equations and 

inclusions with non-smooth nonlinearities and simplify numerical simulations. 

Applications of this method due to modeling of car steering systems with inclusion 

freeplay and stick-slip processes have been reported in several authors’ papers. This 

paper presents examples due to suspension systems. 

1. Introduction 

Non-smooth nonlinearities apply to processes characterized by abruptly changing properties. In 

mechanical systems this is primarily due to the occurrence of backlash, dry friction and collisions. 

A rapid change in the mechanical structure of the object may be the reason for its peculiar behavior - 

non-linear vibrations, motion instability, etc. [2], which is also observed in road vehicles [1]. In the case 

of modeling the "vertical dynamics" of the car, the non-smooth nonlinearities result from dry friction 

and clearance in the suspension mechanisms, the action of active elements according to the sky-hook 

principle, detachment of the wheel from the roadway, impact on the bumper element, etc. They can 

manifest themselves both in the case of small interactions (e.g. in stick-slip processes) and large ones 

(e.g. in the operation of the stopper). Meanwhile, the analysis of numerous publications on the vertical 

dynamics of vehicles, in particular "state-of-the-art" papers [3], [8] indicate that non-smooth 

nonlinearities in mathematical models of suspension systems are considered quite rarely. Such models 

appear only in studies on suspension systems treated as Multi Body Systems (MBS). The analysis of 

publications shows that in the design of modern – semi-active and active suspension systems, very 

simplified "quarter car" models describing vibrations in a one-wheel independent suspension system 

modeled as a dual-mass linear system are adopted as control objects. The quarter car suspension models 
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are a very important category of models used by researchers and engineers in the description of the 

vehicle vertical dynamics (see review paper [5]). It seems that in the era of interest in such models it is 

worth undertaking research on quarter models considering non-smooth nonlinearities. 

Modeling and simulation of processes with non-smooth nonlinearities are generally quite difficult 

problems. Models of such processes are differential inclusions or equations with a variable structure 

with algebraic constraints, which is dramatically complicate, and thus lengthen simulation calculations. 

The method of solving Linear Complementary Problems (LCP) [7], or the formalism of so-called 

differential sequences [4] are used in simulation (but only off-line). However, the challenge remains 

real-time simulation (on-line), which requires simple, and therefore without complications, dynamic 

models. The method of modeling and simulation of systems dynamics with non-smooth nonlinearities 

developed by Żardecki (descriptions, among others, in [9], [10], [11]) using special piecewise linear 

luz(...) and tar (...) projections and their original mathematical apparatus seems to be an attractive 

research tool for simplification complicated models and simulation procedures. The method has already 

been used in several of works (e.g [6]), especially in analysis of the car lateral dynamics (taking into 

account the backlash in the gear box and dry friction in the king-pins of the steering system). This paper 

presents the method of usage piecewise linear luz(...) and tar(...) projections in modeling the dynamics 

of a one-wheel suspension system, and then of a MBS-type subsystem  

2. Piecewise linear luz(…) and tar(…) projections 

General theory of piecewise linear systems refers to modeling, static and dynamic analysis, 

numerical procedures, and so on. In the beginning (second half of the 20th century) this theory has been 

worked up together with the non-linear theory of electrical circuits, non-linear control theory, as well 

as non-linear multibody systems. This theory is based on piecewise linear models which are created by 

linear combinations of piecewise linear elementary functions, pseudofunctions as well as inclusions. 

Special piecewise linear projections can be built for specific applications. Piecewise linear luz(…) and 

tar(…) projections with their surprisingly simple mathematical apparatus have been elaborated 

especially for description contact mechanics in multibody systems. 

The piecewise linear luz(…) and tar(…) projections are defined as following: 

𝑙𝑢𝑧(𝑥, 𝑎) = 𝑥 +
|𝑥−𝑎|−|𝑥+𝑎|

2
              𝑡𝑎𝑟(𝑥, 𝑎) = 𝑥 + 𝑎 ⋅ 𝑠∗                                                (1), (2) 

                                                                      where  𝑠∗ ∈ [−1,1], 𝑎 ≥ 0. 

Note, that these projections are like inverse functions (see fig.1) 
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Figure 1. Topological interpretation of luz(…) and tar(…)  projections 

The luz(...) and tar(...) projections have surprisingly simple properties. Their formulas compose 

some mathematical apparatus. Here only example formulas are shown. Constants a, k,... appearing in 

the formulas are non-negative.  

𝑘 ⋅ 𝑙𝑢𝑧(𝑥, 𝑎) = 𝑙𝑢𝑧(𝑘 ⋅ 𝑥, 𝑘 ⋅ 𝑎)                                                                                                             (3) 

𝑘 ⋅ 𝑡𝑎𝑟(𝑥, 𝑎) = 𝑡𝑎𝑟(𝑘 ⋅ 𝑥, 𝑘 ⋅ 𝑎)                                                                                                            (4) 

𝑘1 ⋅ 𝑡𝑎𝑟(𝑥, 𝑎1) + 𝑘2 ⋅ 𝑡𝑎𝑟(𝑥, 𝑎2) = (𝑘1 + 𝑘2) ⋅ 𝑡𝑎𝑟 (𝑥,
𝑘1⋅𝑎1+𝑘2⋅𝑎2

𝑘1+𝑘2
)                                                     (5) 

If    𝑙𝑢𝑧(𝑦, 𝑏) = 𝑘 ⋅ 𝑙𝑢𝑧(𝑥 − 𝑦, 𝑎)    then     𝑙𝑢𝑧(𝑦, 𝑏) =
𝑘

𝑘+1
⋅ 𝑙𝑢𝑧(𝑥, 𝑎 + 𝑏)                                                   (6) 

Note: For a linear system (𝑎 = 𝑏 = 0) it means the well known dependence  𝑦 =
𝑘

𝑘+1
⋅ 𝑥    

If   𝜀 ⋅ �̇�(𝑡) ∈ 𝑦(𝑡) − 𝑏 ⋅ 𝑡𝑎𝑟(𝑥(𝑡), 𝑎)   and    𝜀 → 0   then    𝑥(𝑡) = 𝑙𝑢𝑧 (
𝑦(𝑡)

𝑏
, 𝑎)                                   (7) 

Extensive lists of mathematical theorems (with proofs) are described in the Żardecki’s papers.  

The luz(…)  and tar(…) projection can be used as basic projection for description different 

piecewise linear characteristics. More complicate dependences can be expressed also by projections’ 

series. Examples of such typical characteristics are presented (fig.2). 

 

Figure 2. Examples of piecewise linear characteristics basing on luz(…) or/and tar(…) 
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These examples concern characteristics with symmetry in relation to the point (0,0). When the 

symmetry deals with the shifted point the well-known rules of description of function with deflexed 

arguments should be applied. When characteristics has not any symmetries it can be treated as a part of 

full symmetrical characteristics having large deflection parameter. Description of non-linear 

characteristics with using the luz(…) and tar(…) projections depends on researcher’s inventions. 

Representative example of application luz(…) and tar(…) in description of piecewise linear 

characteristics is presented in p.3. 

The formulas of mathematical apparatus simplify analytic operations concerning piecewise linear 

models expressed by differential equations and inclusions with constrains. This is important for 

simulation studies especially when analytic transformations give the model without implicit forms. 

Application of ready-to-use formulas of the luz(...) and tar(...) apparatus in a formal synthesis of such 

models has appeared very useful and efficient. This is presented in p.4. 

3. Example 1 - Modeling of quarter-car suspension system 

A simplified model presented in this paper concerns an independent suspension system of 

a passenger car driving with constant speed on a straight uneven road. The substitute mechanical 

scheme of the system (fig.3) includes the most important suspension and tire attributes related to the 

description of vertical movement dynamics, i.e. piecewise linear suspension elasticity (including limiter 

action), viscous friction (damping) and dry friction in the shock absorber, as well as piecewise linear 

elasticity in the tire – road interactions, taking into account wheel detachment from the road surface 

(more detailed description of tire motion is not analyzed). 

 

Figure 3. Substitute mechanical scheme of suspension system with piecewise liner spring 

and dissipative characteristics 

z2-z1 

z1-z0 

z2-z1 

FS21 FD21 

FS10 

FS21 FD21 

FS10 
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Notation: 

t - time 

(0XZ) – global coordinate system  

Z0(t) - road profile as a function of time  

Z1(t) - vertical displacement of the wheel center  

Z2(t) - vertical displacement of the sprung mass  

ΔZ21L - maximum deformation of the suspension system without limiter’s action 

K10 - stiffness coefficient of the tire  

K21 - stiffness coefficient of the suspension 

K21L - stiffness coefficient of the suspension with limiter’s action  

C21 - damping coefficient of the shock absorber  

FD210 - maximum dry friction (we assume the same values for static and kinetic dry friction)  

M1 - unspring mass (of the wheel) 

M2 - sprung mass (of the quarter car body) 

g – gravitation acceleration  

Piecewise linear characteristics of spring and dissipative elements presented in fig. 1 can be 

described with using luz(…) and tar(…) projections, as follow: 

𝐹𝑆21(𝑧2 − 𝑧1) = 𝐾21(𝑧2 − 𝑧1) + (𝐾21𝐿 − 𝐾21)𝑙𝑢𝑧(𝑧2 − 𝑧1), Δ𝑧21𝐿)                                                          (8) 

𝐹𝑆10(𝑧1 − 𝑧0) = 𝐾10𝑙𝑢𝑧(𝑧1 − 𝑧0 − 𝑎, 𝑎)        𝑎 >> 0                                                                               (9) 

Note: Wheel detachment from the road surface means that in such state the force should be equal 

zero. This is described by specific characteristics type of kluz(x-a, a), where shift parameter 

a has a “big” value due to x. 

𝐹𝐷21(�̇�1 − �̇�2) = 𝐶21𝑡𝑎𝑟 ((�̇�1 − �̇�2),
𝐹𝐷210

𝐶21
)                                                                                            (10) 

Initial mathematical model describing motions in local coordinates is done by two differential 

inclusions (inclusions because of the dry friction action): 

𝑀1�̈�1(𝑡) + 𝐶21𝑡𝑎𝑟 ((�̇�1(𝑡) − �̇�2(𝑡)),
𝐹𝐷210

𝐶21
) + 𝐾21(𝑧1(𝑡) − 𝑧2(𝑡)) + 

+(𝐾21𝐿 − 𝐾21)𝑙𝑢𝑧(𝑧1(𝑡) − 𝑧2(𝑡), Δ𝑧21𝐿) + 𝐾10𝑙𝑢𝑧(𝑧1(𝑡) − 𝑧0(𝑡) − 𝑎, 𝑎) + 𝑀1𝑔 ∈ 0 
 

(11) 

𝑀2�̈�2(𝑡) + 𝐶21𝑡𝑎𝑟 ((�̇�2(𝑡) − �̇�1(𝑡)),
𝐹𝐷210

𝐶21
) + 𝐾21(𝑧2(𝑡) − 𝑧1(𝑡)) + 

+ + (𝐾21𝐿 − 𝐾21)𝑙𝑢𝑧(𝑧2(𝑡) − 𝑧1(𝑡), Δ𝑧21𝐿) + 𝑀2𝑔 ∈ 0                                                          

(12) 

Using methodology presented in [11], these differential inclusions create the model in differential 

equation form (here with variable structure). 
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𝑀1�̈�1(𝑡) = {
−𝐹𝐷210 𝑠𝑔𝑛(�̇�1(𝑡) − �̇�2(𝑡)) + 𝐹1(𝑡) 𝑖𝑓 �̇�1(𝑡) ≠ �̇�2(𝑡)

𝑀1(𝐹1(𝑡)+𝐹2(𝑡))

𝑀1+𝑀2
+ 𝑙𝑢𝑧 (

𝑀2𝐹1(𝑡)−𝑀1𝐹2(𝑡)

𝑀1+𝑀2
, 𝐹𝐷210) 𝑖𝑓 �̇�1(𝑡) = �̇�2(𝑡)

                                 (13) 

𝑀2�̈�2(𝑡) = {
𝐹𝐷210 𝑠𝑔𝑛(�̇�1(𝑡) − �̇�2(𝑡)) + 𝐹2(𝑡) 𝑖𝑓 �̇�1(𝑡) ≠ �̇�2(𝑡)

𝑀2(𝐹1(𝑡)+𝐹2(𝑡))

𝑀1+𝑀2
− 𝑙𝑢𝑧 (

𝑀2𝐹1(𝑡)−𝑀1𝐹2(𝑡)

𝑀1+𝑀2
, 𝐹𝐷210) 𝑖𝑓 �̇�1(𝑡) = �̇�2(𝑡)

                                (14) 

where:  

𝐹1(𝑡) = −𝐶21(�̇�1(𝑡) − �̇�2(𝑡)) − 𝐾21(𝑧1(𝑡) − 𝑧2(𝑡)) + 

− − (𝐾21𝐿 − 𝐾21)𝑙𝑢𝑧((𝑧1(𝑡) − 𝑧2(𝑡)), Δ𝑧21𝐿) − 𝐾10𝑙𝑢𝑧(𝑧1(𝑡) − 𝑧0(𝑡) − 𝑎, 𝑎) − 𝑀1𝑔                      
(15) 

𝐹2(𝑡) = −𝐹1(𝑡) + 𝐾10𝑙𝑢𝑧(𝑧1(𝑡) − 𝑧0(𝑡) − 𝑎, 𝑎) + 𝑀1𝑔 − 𝑀2𝑔                                                           (16) 

In the case of small road unnevennesses, the model non-linearities relate practically only to the 

friction description. When dry fiction effects are neglected the piecewise linear model taking into 

account also for big unevennesses is as follow: 

𝑀1�̈�1(𝑡) + 𝐶21(�̇�1(𝑡) − �̇�2(𝑡)) + 𝐾21(𝑧1(𝑡) − 𝑧2(𝑡)) + (𝐾21𝐿 − 𝐾21)𝑙𝑢𝑧(𝑧1(𝑡) − 𝑧2(𝑡), Δ𝑧21𝐿)

+ 𝐾10𝑙𝑢𝑧(𝑧1(𝑡) − 𝑧0(𝑡) − 𝑎, 𝑎) + 𝑀1𝑔 = 0 
(17) 

𝑀2�̈�2(𝑡) + 𝐶21(�̇�2(𝑡) − �̇�1(𝑡)) + 𝐾21(𝑧2(𝑡) − 𝑧1(𝑡)) + 

+(𝐾21𝐿 − 𝐾21)𝑙𝑢𝑧(𝑧2(𝑡) − 𝑧1(𝑡), Δ𝑧21𝐿) + 𝑀2𝑔 = 0                                                                        
(18) 

The time course of the road profile is an excitation in the model. With the given profile z0(x (t)), 

an appropriate transformation of the variables should be performed. When the vehicle is traveling at a 

constant speed V, then z0(x (t)) = z0(Vt), which means that the parameter V is a time scaling factor. For 

a random, polyharmonic or sinusoidal course of variable z0(Vt)), one obtains a slow-changing 

waveform - for small speeds, and a fast-changing waveform - for large speeds. In a similar way, we can 

treat input signal constituting by half of sinusoid period (mapping of a single hummock). As the speed 

increases, the excitation takes the shape of a single pulse. 

4. Example 2 - Modeling of MBS-type suspension subsystem 

The luz(…) and tar(…) mathematical apparatus is very useful in formal synthesis MBS-type non-

smooth systems. Representative example expressing the method of modeling corresponds with models 

of suspension system having clearances and limiters of the movements. 

This system (fig.4) is a combination of four solid elements through elastic elements. There is a 

clearance between elements 2 and 3. Solid elements 2 and 3 have very low masses. The stiffness 

between elements 2 and 3 is very high. We will assume that dynamic excitations are small enough to 

justify not including plastic collisions in the physical model. 
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Figure 4. Substitute mechanical scheme of MBS-type suspension subsystem  

Notation and assumptions:  

𝑧1, 𝑧2, 𝑧3, 𝑧4 – replacements of solid elements,  

𝐹2, 𝐹2, 𝐹3, 𝐹4 – external forces; we will assume that 𝐹2 = 0, 𝐹3 = 0, 

𝑡 – time, 

𝑀1, 𝑀2, 𝑀3, 𝑀4 – masses,  𝑀1, 𝑀4 >> 𝑀2, 𝑀3; we will assume that  𝑀2 = 0,  𝑀3 = 0, 

𝑘12, 𝑘23, 𝑘34 – stiffness coefficients,  𝑘23 >> 𝑘12 , 𝑘34; we will assume that  𝑘23 → ∞, 

(𝑧3 − 𝑧4)0 – clearance parameter, 

Using Lagrange second type equations of motion one obtains initial form of the model: 

𝑀1 ⋅ �̈�1(𝑡) + 𝑘12 ⋅ (𝑧1(𝑡) − 𝑧2(𝑡)) = 𝐹1(𝑡)                                                                                          (19) 

𝑀2 ⋅ �̈�2(𝑡) − 𝑘12 ⋅ (𝑧1(𝑡) − 𝑧2(𝑡)) + 𝑘23 ⋅ 𝑙𝑢𝑧((𝑧2(𝑡) − 𝑧3(𝑡)), (𝑧2 − 𝑧3)0) = 0                                (20) 

𝑀3 ⋅ �̈�3(𝑡) − 𝑘23 ⋅ 𝑙𝑢𝑧((𝑧2(𝑡) − 𝑧3(𝑡)), (𝑧2 − 𝑧3)0) + 𝑘34 ⋅ (𝑧3(𝑡) − 𝑧4(𝑡)) = 0                                  (21) 

𝑀4 ⋅ �̂�4(𝑡) − 𝑘34 ⋅ (𝑧3(𝑡) − 𝑧4(𝑡)) = 𝐹4(𝑡).                                                                                         (22) 

When 𝑀2 = 0, 𝑀3 = 0 the model is reduced to the differential - algebraic form. Algebraic non-

linear constraints equations are:  

−𝑘12 ⋅ (𝑧1(𝑡) − 𝑧2(𝑡)) + 𝑘23 ⋅ 𝑙𝑢𝑧((𝑧2(𝑡) − 𝑧3(𝑡)), (𝑧2 − 𝑧3)0) = 0                                                  (23) 

−𝑘23 ⋅ 𝑙𝑢𝑧((𝑧2(𝑡) − 𝑧3(𝑡)), (𝑧2 − 𝑧3)0) + 𝑘34 ⋅ (𝑧3(𝑡) − 𝑧4(𝑡)) = 0.                                                    (24) 
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Release from these equations and elimination of z2, z3 will be here made using basic formulas of 

luz(...) and tar(...) mathematical apparatus. These mathematical operations are following: 

- Firstly, in order to reduce, we determine 𝑧3(𝑡) from the first equation of constraints (23): 

𝑧3(𝑡) = 𝑧2(𝑡) − 𝑡𝑎𝑟 ((
𝑘12

𝑘23
(𝑧1(𝑡) − 𝑧2(𝑡))) , (𝑧2 − 𝑧3)0).                                                                 (25) 

- Then, after setting to the second equation (24), we have  

𝑘34 ⋅ (
1

𝑝
(𝑧2(𝑡) − 𝑡𝑎𝑟 ((

𝑘12

𝑘23
(𝑧1(𝑡) − 𝑧2(𝑡))) , (𝑧2 − 𝑧3)0)) − 𝑧4(𝑡)) = 𝑘12(𝑧1(𝑡) − 𝑧2(𝑡))       (26) 

- Hence we obtain successively: 

𝑧2(𝑡) − 𝑧4(𝑡) =
𝑘12

𝑘34
(𝑧1(𝑡) − 𝑧2(𝑡)) + 𝑡𝑎𝑟 ((

𝑘12

𝑘23
(𝑧1(𝑡) − 𝑧2(𝑡))) , (𝑧1 − 𝑧2)0),                                   (27) 

𝑧2(𝑡) − 𝑧4(𝑡) =
𝑘12

𝑘34
(𝑧1(𝑡) − 𝑧2(𝑡)) +

𝑘12

𝑘23
𝑡𝑎𝑟 ((𝑧1(𝑡) − 𝑧2(𝑡)),

(𝑧2−𝑧3)0
𝑘12
𝑘23

),                                      (28) 

𝑧2(𝑡) − 𝑧4(𝑡) =
𝑘12

𝑘34
𝑡𝑎𝑟((𝑧1(𝑡) − 𝑧2(𝑡)), 0) +

𝑘12

𝑘23
𝑡𝑎𝑟 ((𝑧1(𝑡) − 𝑧2(𝑡)),

(𝑧2−𝑧3)0
𝑘12
𝑘23

).                           (29) 

- Using the formulas (5) we have: 

𝑧2(𝑡) − 𝑧4(𝑡) = (
𝑘12

𝑘34
+

𝑘12

𝑘23
) 𝑡𝑎𝑟 ((𝑧1(𝑡) − 𝑧2(𝑡)), (

(𝑧2−𝑧3)0
𝑘12
𝑘34

+
𝑘12
𝑘23

)).                                                        (30) 

And then   

𝑧1(𝑡) − 𝑧2(𝑡) =
1

𝑘12
𝑘34

+
𝑘12
𝑘23

𝑙𝑢𝑧((𝑧1(𝑡) − 𝑧4(𝑡)), (𝑧2 − 𝑧3)0),                                                                 (31) 

𝑧1(𝑡) − 𝑧2(𝑡) =
1

𝑘12
𝑘34

+
𝑘12
𝑘23

𝑙𝑢𝑧(𝑧1(𝑡) − 𝑧2(𝑡) − (𝑧1(𝑡) − 𝑧4(𝑡)), (𝑧2 − 𝑧3)0),                                 (32) 

i.e. 

𝑙𝑢𝑧((𝑧1(𝑡) − 𝑧2(𝑡)), 0) =
1

𝑘12
𝑘34

+
𝑘12
𝑘23

𝑙𝑢𝑧(𝑧1(𝑡) − 𝑧2(𝑡) − (𝑧1(𝑡) − 𝑧4(𝑡)), (𝑧2 − 𝑧3)0).        (33) 

Using formulas (6) we obtain an uninvolved form  

𝑧1(𝑡) − 𝑧2(𝑡) =

1
𝑘12
𝑘34

+
𝑘12
𝑘23

1
𝑘12
𝑘34

+
𝑘12
𝑘23

+1
𝑙𝑢𝑧((𝑧1(𝑡) − 𝑧4(𝑡)), (𝑧2 − 𝑧3)0).                                                              (34) 

By combination of the constraints equations (23), (24) we receive  

𝑧1(𝑡) − 𝑧2(𝑡) =
𝑘34

𝑘12
⋅ (𝑧3(𝑡) − 𝑧4(𝑡)),                                                                                                 (35) 

Then 

𝑧3(𝑡) − 𝑧4(𝑡) =
𝑘12

𝑘34

1
𝑘12
𝑘34

+
𝑘12
𝑘23

1
𝑘12
𝑘34

+
𝑘12
𝑘23

+1
𝑙𝑢𝑧((𝑧1(𝑡) − 𝑧4(𝑡)), (𝑧2 − 𝑧3)0).                                                        (36) 
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Finally, assuming a substitute stiffness parameter  

𝑘14 =
1

1

𝑘12
+

1

𝑘23
+

1

𝑘34

,                                                                                                                                 (37) 

we obtain the model without constraints equations, and without variables 𝑧2(𝑡) i 𝑧3(𝑡): 

𝑀1 ⋅ �̈�1(𝑡) + 𝑘14 ⋅ 𝑙𝑢𝑧((𝑧1(𝑡) − 𝑧4(𝑡)), (𝑧2 − 𝑧3)0) = 𝐹1(𝑡)                                                               (38) 

𝑀4 ⋅ �̈�4(𝑡) − 𝑘14 ⋅ 𝑙𝑢𝑧((𝑧1(𝑡) − 𝑧4(𝑡)), (𝑧2 − 𝑧3)0) = 𝐹4(𝑡)                                                              (39) 

Note that      𝑘14 =
1

1

𝑘12
+

1

𝑘23
+

1

𝑘34

    →    
1

1

𝑘12
+

1

𝑘34

, when        𝑘23 → ∞                                                    (40) 

This model describes the dynamics of the system in the presence of play and infinitely high stiffness 

(i.e. limiter) in meshing. 

5. Conclusion 

The presented method of modeling strong non-linearities in vehicle suspension and non-linear 

vertical dynamics of a vehicle, the method based on piecewise linear luz(…) and tar(…) projections is 

very effective. It can be quite easily applied to more sophisticated models of suspension systems, also 

to 3D models. In this case, it is necessary to enter vector dependencies, which will result in a more 

complex non-linear description. This also applies to the spatial description of the tire - road interaction. 
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