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NOISY ON-OFT INTERMITTENCY

Al éenys
Semiconducter Physics Institute, Vilnius LT 2600, Lithuania

Abstract: Statistical properties of the laminar lengths for the noisy on-off intermit-
tency are studied analytically. The universal distribution of the lJaminar phases is
obtained at the critical point. Ft can be well approximaled by the power taw with

the exponent —3/2 and the exponential Jaw describing fast falloff.

1. Introduction

Recently aparticulartype of intermittent bursting [Pikovsky, 1984, Fujisaka & Yamada 1985],
called on-off intermittency [Platt ef al., 1993], have attracted wide attention. On-off intermit-
tency differs essentially from the well known Pomeau-Manneville and crisis induced chaos-to-
chaos intermittencies, although having common features with both of them. In dynamical sys-
tems it 1s related with a local bifurcation called blowouwt bifurcation [Ott & Sommerer, 1994].
This bifurcation defines the loss of stability of the smooth invariant manifold in phase space
which exists due to the symmetry and contatns the chaotic attractor. On-off intermittency can
be defined as Pomeau-Manneville type 111 intermittency with an irregularly driven bifurcation
parameter. Scaling properties of both intermittencies are similar [Heagy et al., 1994, Cenys
& Lustfeld, 1996]. Although exhibiting the same main statistical properties, the corresponding
time dependent signals are essentially different. The laminar phases in the Pomeau-Manneville
case represent regular dynamics for any choice of variables. For on-off intermittency the shape
of the time dependent signal essentially depends on the measured variable and usually looks like
chaos-to-chaos intermittency. To detect on-off intermittency in the experimental situation one
has to look for chaos-to-chaos intermittency with the characteristic exponents of the Pomeau-
Manneville type Il intermittency.

Like other critical phenomena, the on-off intermittency is sensitive to the presence of ex-
ternal random noise unavoidable in experimental systems. The most prominent one is the ap-
pearance of a shoulder in the distribution of the Jaminar lengths. The shoulder above power law
—3/2 curve precedes an exponent falloff at Targe lengths. It wag predicted numerically [Platt ef
al., 1994] and observed experimentally in electronic circuits [Hammer et al., 1994, éenys et al.,

1996] also ferromagnetic resonance [Rodelsperger ¢t al., 1995]. Platt et ¢l in their numerical
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study have defined three regions of different behaviour in the distribution of the laminar lengths
for noisy on-off intermittency, namely power law region, shoulder region and region of the ex-
ponential falloff. In this paper we show both analyticzlly, exploiting Focker-Planck equation,
and numerically that the shoulder and the exponential falloff are described by an unanimous ex-
ponential faw.
2. Analytical model

The simplest mode] exhibiting the on-off intermittency in the presence of noise can be written

as an one-dimensional map with external driving
. S 2
Tnt1 :al717n+7?n+.f(7n)ﬂ (1)

where random additive noise 7 is assumed to be small and function f{r2) represents nonlinear
terms. For the dynamical systems the driving signal z,, is determined by the chaotic dynamics on
the invariant manifold, while for the random maps it is determined by an external random force.
In the later case both the driving signal z,, and the additive noise 7, can be of the same origin.
The only difference is that multiplicative noise z,, should be of large amplitude'as compared with
the additive noise 1,.. '

The above model allows further-simplifications. As it was shown earlier, the influence of
both the additive noise , and the nonlinear term f(72} can be modeled by two reflecting bound-
aries at ry and r, correspondingly. Morecover, diffusion defined by the linear term in Eq.(1) rather
than nonlinearity, is responsible for the reinjection in this systems. As a result statistical prop-
erties of the first passage times, i.e. the time necessary for the system to pass the threshold ryp,
starting at some initial level rg < ry; coincides with that of the laminar lengths.

Modeling both the additive noise and the nonlinear terms by the reflecting boundaries and

introducing the logarithmic variable y, = In | 7, |, Eq.(1) can be rewritten as
Yat1 = Yn TV + 2Zn. (2)

The new driving variable z, = In | z,, | — < ln { @, |> has zero mean value < 2, >= 0
by definition (< ... > denotes the time average). The new control parameter v = {a — a.)/a.
defines the deviation from the critical point e, and it is assumed to be small v « 1. Noise free
critical. point a. corresponds to the onset of the on-off intermittency in Eq.(1) without additive
noise. It depends on the statistical properties of the driving signal z., and can be estimated from
the following relationship In | ac |=< In | z, |>.

Map (2) represents a biaéed “chaotic” walk, when driving signal z,, is generated by the chaotic
system [Heagy et al.,1994]. However, long time behaviour of this map is well approximated by
the usual random walk which assumes variable z, to be Gaussian and é-correlated. This approx-

imation was extensively used in the previous analytical studies. For the uncorrelated Gaussian
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driving, the probability density [ of the variable y satisfies the Focker-Planck equation
af of DO
5= v 4 2o 3)
i dy 2 dy?

where the diffusion coefficient D is given by

N =}

— 1 ;= - 2
D, f\ll_]}ilj N« (”;U )¢ > . (4)

Expression (4) takes into account short lime correlations present in the driving signal z,,.

To calculate the distribution of the first passage times, Eq.(3} should be solved with the initial

condition
J(t=0,y) =y —m), (5)
where o = Inrg, and with absorbing boundary condition at the threshold defining laminar
phases
fty =yu)=0. (6)

The distribution P(7,1p) of the first passage times 7 then is proportional to the time depend-
ent flow at the absorbing boundary J(7,y = wu), where J(t,y) = —vf + %% The second
boundary condition

is determined by the additive noise. It corresponds to zero flow at the reflecting barrier at ) =
lory.

In the noise free case with the second boundary condition at infinity (y; — —oo), an ana-
Iytical solution of Eq.(3) is easily derived. It gives for the distribution of the first passage times

P(r,y3) the following expression

P(r,y5) = (8)

where y§ = ln(ru /7o)
For the dominating diffusional reinjection we assume y; <« 1 and can neglect the second
term in the exponent in the distribution (8). Then integration with the reinjection probability is

trivial and for the distribution of the laminar lengths one obtaing

P 7312 vir 9
(T)&mex})[—zD], (9)

This noise free distribution has the same power law scaling and the exponential falloff as that

obtained from the more complicated analysis of the random walk [Heagy, 1994].



In the presence of noise corresponding to the reflecting boundary at finite level ¥, Eq.(3) is
solved using eigenfunctions and eigenvalues of the Focker-Planck operator. The straightforward
application of the method gives following result for the distribution of the first passage times in

the form of the infinite sum

_ 2. hF i sin{fhi) T
— 2 ! ():ﬁ - l:___ 2 ] 2
P( Td Z 2[1 — sin ‘7,’11 exp 27}1(& + ¥ ) ) (10)
where o =| v | D7 a(rw/r) 3 = yg In™ (/7)) and eigenvalues h; satisfy equation
atanh = —h. (a1

The parameter § depends on the ratio between reinjection r and additive noise ry. For small
noise and diffusional reinjection, assumed in our inodel, # < 1. Parameter « defines which pro-
cess - diffusion or drift, is a dominating one. It can be presented as aratio o = 74/7, between the
diffusion time 7y = D~* In®(ry, /) and the drift time 7, =] v |~ In{re /). The characteristic
times 73 and 7, intreduced here define the time needed for the system to reach threshold from
the noise Ievel due to diffusion and drift correspondingly.

The noise free critical point & = 0 (v = 0) corresponds to the absence of the drift when the
first passage time 1s completely determined by the diffusion process. In this case the transcend-
ental equation (11) can be solved analytically and, taking into account 3 < 1, the distribution
of the first passage times P(r, ﬁ) at the critical point is'given by
{21 4+ 1)21727"]

ST}g

2 a5
P{r,B) = %;;—Z(?i—i—])?cxp [— (12)
4 =0

Like in the noise free case, only the norm of the distribution depends on the reinjection y, via
parameter 5. Therefore integration with the reinjection probability only eliminates the depend-
ence on J and the distribution of the laminar lengths P(7) is defined by the same function as
the distribution of the first passage times P{7, ). Moreover, the shape of the distribution (12) .
is universal, since it does not depend on the system's parameters if 7 is measured in the units
of the diffusion time ;. The universal distribution of the first passage times (12) at the critical
point v = 0 1s our main analytical result. It is shown in Fig. 1.

For small and large 7 distribution(12) is well approximated by the power law and ex ponential

behaviour correspondingly:

P(r) { ﬁTl/z("”)“” -3z if 1<,
'r =

13
Br*(dra)texp [——] , i T > Ty, (13)

As it can be easily seen in Fig. 1 the asymptotical curves approximate very well the range of

both small and large laminar lengths. Moreover, the exponentiat asymptotic describes nearly
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Figure 1: Universal distribution of the laminar iengths 7 for noisy on-off intermittency (dots). |

- exponential asymptotic for large 7; 2 - power law asymptotic for small 7.

whole shoulder region above power law straight line and transition between the two asymptotic
is narrow. This result demonstrate that there are only two regions corresponding to the different
behaviour in the universal distribution.

In the drift controﬂed region | a |3 1 the exponential asymptotic of the distribution (3)
for the large 7 coincides with the results obtained by Ott er al. [1994a] For v > 0 it posses
the same exponential falloff as in the noise-free case (9). This result corresponds to the fact
that for v > 1 system reaches the threshold without reaching the noise level r; and an as a
result additive noise influence is negligible. For v < 0 on the contrary, drift controlled region
corresponds to the case when the system reaches fast noise level and stays close to this level
for a long time. The rare bursts, during which the system can reach the threshold, are related
with the tail in the Gaussian distribution and correspond to the pure imaginary eigenvalue of the
Eq. (11)existing for @ < —1. The rare bursts cause the exponential falloff in the distribution
P(7) with a very large characteristic time 1/4a™? exp(—2a) (e < 0,] @ |3» 1). This result
has the same scaling as that obtained by Otter al. [1994a] and in addition allows to estimate the
proportionality constant. However, this scaling is not universal for the all systems exhibiting
on-off intermittency. It is related to the Gaussian approximation of the tails in the probability
distribution which does not hold for all chaotic systems [éenys & Lustfeld, 1996].

3. Conclusions
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An analytical expression for the distribution of the laminar lengths for the noisy on-off in-
termittency is obtained from the analysis of the Focker-Planck equation, At the critical point
of the onset of noise free on-off intermittency, it provides universal distribution independent on
the parameters of a particular system. The distribution has only two regions corresponding to
the different behaviour. These are power law region with the exponent —3/2 for the moderate
laminar lengths and exponential law region describing fast falloff for the large lengths with the
narrow transition region between them. The whole shoulder above power law straight line is
described by the same exponenlial asymptotic.
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THE HIGHER MODES FOR THE CHAOTIC
OSCILLATIONS OF A BUCKLED BEAM
Tatiana Reynolds!, Earl H. Dowell?
Duke University, Durham, North Carolina 27708-0300

Abstract

‘We explore the use of the generalized Melnikov's method for determining the onset of
chaos for a buckied beam with an external excitation. 1t is shown that the critical function of
damping, forcing amplitude, and frequency for the first component of the Melnikov vector
for the system of higher modal approximations and that for a single modal Duffing’s equation
are related, though not identical. Higher Melnikov vector components are also shown to be

generally less critical.

Introduction

Obtalning the necessary conditions for chaos in Duffing-like equations from the inter-
section of unstable and stable manifolds is not new. The analysis of a single Dufing equation
with small damping and periodic forcing is a classical example in standard texts (see, for
example, (1]). In the last few years the analysis of a multi-dimensional Duffing’s system has
become a subject of intense discussion [2]. A series of works developed the Melnikov algo-
rithm to show that chaotic motion may occur in systems similar to that which is analyzed in
the present work. However, all results published to date are based upon the assumption that
the second and higher order modal contributions to the chaotic motion are small. Therefore,
all systems were effectively simplified to the one-dimensional case of a perturbed Hamilto-
nian system. Our analysis does not assume the amplitudes of the higher modes to be small
perturbations. This fact makes the analysis mdre difficult and more interesting.

The physical system consists of a beam with ends which are simply supported. The
beam is externally excited by the periodic force P coswt. In addition, an inplane load R, is
applied to the beam. This load will be always compressive and its value will vary above the

critical buckling load, ie., the beam is buckled.

1Post-graduate Research Assoclate, Department of Mechanical Engineering and Materials Science.
2J. A. Jones Professor and Dean, School of Engineering, Fellow ASME.
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A partial differential equation of the beam vibration is simpified using Galerkin’s
method [3]. It is assumed that the beam deflection takes the form of a summation of
eigenmodes. Using the orthogonality of eigenmodes, we obtain the system of the ordinary

differential equations:

4>z, 2 2 2 AN 2
2 (R—mYzm + fmiz., Y (1z:)
i=1
€ ot (5d$m
= m COSWE — §——
Tm © at
form=1,.,N (1)

where the beam deflection, w(z, ), is given by the modal exapnsion w(z,t) = 2¥_, 2., (t) sin e

mrx

and Y, = %fn‘r‘ Psin ®%dzx. R, 6, v are nondimentional in-plane load, damping, and exter-
nal excitation respectively. @ is the excitation frequency. All parameters and variables are

nondimensionalized (see, [3, 4]).

Homoclinic Manifold

The question of integrability of the unperturbed system, i. e. (1) with e = 0, does
not have a clear analytical answer. The set of N invariant functions is not obvious. and
cannot be found in the family of elementary functions. There is only one first integral — the

Hamiltonian

=

Hay) = 5% Lo+ x (D)

B D
-
Il

)=

(R - ?‘l‘z):z:2 (2)

r

-
]
—

which is easy to establish for system (1). However, using the theorem proven by Poincare (see
[5]) and the fact of the existence of the NV homiclinic orbits, one can draw a conclusion about
the existence of the homoclinic manifold and the integrability of the unpertubed system.

In general, calculation of the homoclinic manifold is a boundary value problem. We
study the unperturbed system that is symmetrical about the subspace y = 0, i. e, if
(z(t),y(t)) is a solution of equation (1) then (z(—t), —y(—1)) is a solution also. Hence, if the

positive branch (z,y) crosses the y = 0 subspace the corresponding negative (z, —y) one has
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to cross it at the same point. Therefore, a boundary value problem can be replaced by an

initial value problem with the initial condition
z(-T) =y(-T) =0 (3)

where 1/T < 1. By integrating the system forward until 3; = 0 for 1 < 7 < N simultaneously,
one obtains an unstable half of the manifold.

An interesting property of the phase plane projections of the homoclinic manifolds
is the shifted repeatability of the shapes of the projections. The projection of the manifold
on the coordinate plane x; — y; changes its size for systems with different dimensions. But
qualitatively it is always a single loop in one of the half-planes. One can observe that
whenever the number of modes increases by one, a new shape of the projections appears.
The first mode repeats itself and all other modes shift their numbers from 7 to § + 1. The

complete picture of the behavior of the manifold can be presented by a right isosceles triangle

CP

@.
@.@
O.@@
@@@

(see the sketch).

Energy Component of the Melnikov Vector

The second step of the multi-dimensional Melnikov algorithm is to calculate the vector
which represents the distance between the stable and the unstable manifolds. However,
only one of the integrals of motion has an analytical expression; thus we can follow the

Melnikov algorithm by substituting the numerical data into the equation for the first or
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Figure 1: The influence of the second and third modes on the critical Melnikov curve, for
R=11.

energy component of the Melnikov vector, We will refer to this analytical technique involving
some numerical data as semi — analytical.

After extensive computations for a broad range of parameter R, we have concluded
that the critical curve obtained for the higher mode system is somewhat different from
the similar curve calculated for the one-dimensional system (see, for example, Fig. 1). In
order to include the effect of all modes into the analysis, we suggest the critical function be
empirically approximated by a linear combination of terms whose form is suggested by the

one mode result.
o

)
—< Y coeff————r—. (4)
T opeN cosh o o=w
The influence of a particular mode is measured by the value of the corresponding
coefficient in comparison to others. To make that comparison easier we rescale the vector of

all coefficients cogff to make its length equal to 1,1. e.

NormC ff:ie_.fj— S
ormCoe oo /] (5)

The normalized coeflicients for R between 10 and 33 are shown in Fig. 2. The coefficients
reach an asymptote for large R: NormCoef fi =~ 0.475, NormCoef fo = —0.79, NormCoef f3 a2
0.365. The fourth coefficient is very small (= 0.04) but clearly distinct from zero. The fifth
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Figure 2: The mode influence evolution with respect to the axial load R.

coefficient 1s virtually zero (= 0.005). For R < 10, only the first mode component is signifi-

cant.

Higher Components of the Melnikov Vector

The critical condtions for all components of the Melnikov vector can be obtained
by numerically iterating the set of the dynamical parameters of the system until a certain
component. of the modified vector changes its sign. The condition for the possibility of
a chaotic motion is for /v to be in a region below the critical curve for each and every
component. The results for the first component of the vector are known from the semi-
analytical technique described above.

Let us begin with the simplest higher-dimensional system, N = 2, (see Fig. 3). One
can conclude that the critical ratio for the second Melnikov component ~ 0.3 and that it can
be approximated by a horizontal lire. Note the second compouent of the modified Melnikov
vector begins to have zeros at much higher ¢/ ratios than the first component. This means
that for an /N = 2 system chaos may occur when ratio 6/ is below the critical curve for the
energy component,

Now we turn to higher dimensional dynamical structures hoping to show that the

process for obtaining the critical condition for the system can be reduced to the search for
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Figure 4: The critical relations of §/+ for the components of the three-dimensional Melnikov
vector. D1 = Dy, D2 = Dy, D3 = D3.,.. R=17

the critical condition for the first component of the Melnikov vector only. Calculations were

done for the N = 3 case. The results are given in Fig. 4. Reviewing these figures, one

can reach the important conclusion that the critical curves for the higher components lie

significantly above (= 0.3, = 0.5) the critical curve (< 0.1) for the first component. Hence,

the necessary condition for chaos can be based on the critical condition for the energy

component only. One does not have to do the expensive and time consuming calculation of

the manifold intersections. The only calculation required is the semi-analytical algorithm
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decribed in the previous section.

Conclusions

A system of the Duffing's equations represents a buckeled plate with external excita-
tion. After showing the existence of the N-dimensional homoclinic manifold analytically, for
this system of Duffing’s equations, we calculated its components numerically. The inductive
structure of the homoclinic manifold was discovered and described. The homoclinic manifold
was then used in the calculation of the first or energy component of the Melnikov vector.

Subsequently the distance between the manifolds in each coordinate plane of the
higher dimensional phase space was determined. The critical condition for the higher com-
ponents of the Melnikov vector are satisfied for a smaller excitation or higher damping than
the first component. This allowed us to establish that the universal necessary condition for

onset of chaos is defined by the critical condition for first or energy component ronly.
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Controlling Complex Systems
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Abstract - The dynamical properties of a simple mechanical system,
which is found to possess a large number of coexisting periodic
attractors, is studied, It is found that the system exhibits a rich
dynamical behavior when it is subjected to small amplitude noise.
This dynamical behavior is of great utility, and this is demonstrated
by using small perturbations to gear and influence the dynamics
toward a specific periodic behavior.

The study of nonlinear dynamical systems have yielded many rich and varied behaviors.
While great strides have been made in the study of low-dimensional dynamics where only
one or two attractors dominate the system’s behavior, much less is known about dynamical
systems where a multitude of coexisting attractors is the norm. In this paper, we examine a
simple mechanical model that possesses a large number of coexisting periodic attractors for
wide parameter ranges.- We study the effects such a large number of coexisting attractors
have on the global dynamics of the system and show how a small amount of noise can alter
the qualitative behavior of the system. Furthermore, we show that small perturbations, if
chosen judiciously, can control the dynamics of the system.

The dynamical system we are inte;ested in models a kicked double rotor. The kicked
double rotor consists of two connected massless rods (length [, and ;) where one end of the
first rod pivots about a fixed point while the other end is attached to and pivots about the
middle of the second rod. A mass in, is placed at the end of the first rod and two masses
ma/2 are placed at each end of the second rod. The coeflicients of friction at the pivots are
denoted 1 and 1. [Kicks of constant strength p is applied to one end of the second rod
at periodic intervals. The state of the system after each kick is described by the angular
displacements and velocities of the rods (9[,92,91,92). For more details about the double

rotor map, please consult Grebogi et ol {1987] and Romeiras et al. [1992].

22



For simplicity, we set the two values of the coefficient of friction to be the same, that is,
1y = iy = 1v. The behavior of the system is therefore dependent on two factors: damping
as indicated by the coefficient of friction » and forcing as indicated by the strength of the
periodic kick p. Without damping (» = 0), the double rotor map is a volume preserving
map, and the system is known as a Hamiltonian system. In this case, the svstem is believed
to possess infinitely many stable but nonattracting periodic orbits. There exists regular mo-
tion around these stable periodic orbits on the invariant Kolmogorov-Arnold-Moser (I{AM)
surfaces. Interspersed with these islands of stability in phase space are regions where orbits
experienced persistent chaotic motion. -

As small dissipation is introduced into the system (0 < v <« 1), all the stable periodic
orbits become attracting sinks [Lieberman & Tsang, 1985]. While it is Lelieved that the
number of periodic orbits in the Hamiltonian limit is infinite, there exist only finitely many
coexisting periodic sinks when damping is nonzero. This is because many periodic orbits
{especially the higher periodic orbits) lose their stability rapidly with increasing damping for
a given value of forcing [Feudel et al, 1996]. Nonetheless, the number of attractors can in
principle be arbitrarily high if the damping is chosen small enough. Thus, the weakly dissi-
pative double rotor system exhibits a rich dynamical behavior dominated by the appearance
and disappearance of a multitude of periodic attractors as one varies damping and forcing
|[Poon et al., 1996). This interesting and less understood case is very important because, in
practice, many systems are neither without dissipation nor strongly dissipative, but they are
weakly dissipative.

Along with the conversion of stable periodic orbits into sinks, the region of chaos sur-
rounding these islands of stability also plays a major ré)le in the system’s dynamics as small
dissipation is introduced into the Hamiltonian double rotor system. While almost all orbits
of the system eventually settle into one of the periodic sinks (the set that cio not approach
a periodic sink hag measure zero and include points on the boundaries between the different
sinks), they experience periods of long chaotic transients bklef-ovrevfalling into the sinks. In fact,
except for small open neighborhoods around the periodic attractors, the majority of phase

space in the double rotor system is occupied by heavily entangled fractal basin boundaries
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Figure 1: Tiine series of a typical noisy trajectory.

whose dimension is very close to the dimension of phase space [Poon & Grebogi, 1995]. The
tong chaotic transients can thus be attributed to the unstable chaotic sets embedded in the
fractal basin boundaries {Grebogi et al, 1988; Grebogi, ei al., 1983]. Even if every orbit’s
eventual behavior is periodic, the gsystem is still very sensitive to initial conditions due to
the fractal nature of the basin boundaries. Thus, a slight change in the initial condition will
result in a2n orbit that is attracted to a totally different sink.

As aresult, the system is extremely sensitive to noise, and the addition of small amplitude
noise, typical of many physical systems, prevents the orbits from settling into any of the
stable periodic behavior. What happens instead is that an orbit will come close to one of the
periodic attractors and stay in its neighborhood for some time. This nearly periodic motion,
however, is transitory, and noise will eventually move the orbit out of this state into the
fractal boundary region. The orbit will then spend some amount of time within the massive
basin boundary region executing an apparently chaotic motion before approaching the same
or another periodic attractor. Hence, a typical noisy orbif alternates between intervals of
chaotic motion and intervals of nearly periodic behavior near the “metastable” states (the
former stable periodic attractors which are destabilized by noise} as shown in Fig. 1.

Hence, the dynamics of the noisy double rotor system tends to alternate among these
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different behaviors and which of them are observed at a given time are often sensitive to
minor perturbations. These two key attributes, accessibility to many states and sensitivity,
present us with an opportunity to influence and manipulate the svstem’s dynamics. Unlike
low-dimensional chaotic systems that are commonly controlled using the ideas introduced
in Ott et al. [1990], the weakly dissipative double rotor system is not characterized by the
existence of one large chaotic attractor but by the coexistence of many attractors. While the
existence of a large chaotic attractor is critical to those control schemes in Shinbrot ef al
[1993], we show that the unstable chaotic sets in the boundaries of the double rotor system
provide us with the necessary sensitivity and flexibility to gear the dynamics toward a specific
periodic behavior using small perturbations. We can elect to stabilize an unstable periodic
orbit embedded within a chaotic saddle in the boundary [Kovécs et al., 1994] or stabilize one
of the (metastable) attracting sets as we show next.

Employing a simple feedback control scheme [Poon & Grebogi, 1995], we are able to
control the dynamics of the noisy double rotor system. In Fig. 2, we folldw a typical noisy
orbit until it lands in a neighborhood of the desired metastable attractor we wish to control,
then we turn on the control and let the system evolve further in the neighborhood of the
desired attractor. Turning the control on means we add a small controlling term whose
amplitude is a fraction (about 1/3) of the maximum noise amplitude at each step of the
map. Hence, the controlling perturbation has a smaller amplitude than the case for the
standard controlling chaos techniques [Shinbrot et al., 1993]. After two thousand iterates,
control is turned off, and we let the orbit wander until it falls near the next desired metastable
attractor. In this fashion, we stabilize, say, four of the metastable attractors in the order
we desire as demonstrated in Fig. 2. Furthermore, if‘the orbit is caught in the vicinity of
a metastable state that is undesirable, we can destabilize it by applying small appropriate
kicks (here too the magnitude of the kicks is about 1/3 of the maximum noise amplitude).

We have shown that a simple mechanical system with a small arnoﬁnt of dissipation
can digplay the rich dynamical behavior where a multitude of coexisting periodic attractors
appear and disappear over wide parameter ranges. In addition to these large number of

sinks, the rest of phase space is filled with heavily intertwined fractal basin boundaries which
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Figure 2: Tine series showing the result of applying the siinple feedback control schieine to successively

control 4 different inetastable states.

has twb appreciable effects on the system: long chaotic transient behavior and final state
sensitivity. Thus, small amounts of noise at each step of the dynamics can result in orbits
that alternate between intervals of chaotic motion and intervals of nearly periodic behavior.
In fact, the ability of the system to access many different states, combined with its sensitivity,
offers great flexibility in controlling its dynamics. Using small perturbations (smaller than
the maximum noise amplitude), we were able to stabilize the system about selected periodic

behavior,
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Stochastic Bifurcation: Concept and Examples
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Abstract: We present a concept to extend bifurcation theory from deterministic
to stochastic models in dynamical systems and give reasons why this should be
the natural way to deal with structural stability problems in random situations.
In particular we present examples which show the naturality and strength of
our approach.

1 Bifurcations

Bifurcation theory is concerned with gualitative changes in parametrized families o, of
dynamical systems, e.g. those generated by a family of ordinary differential equations

& = folz).

Of main interest are qualitative changes concerning the structural stability which describes
the essential part of the dynamics. A parameter «g where structural stability is lost is
called a bifurcation point.

In dimensions 1 and 2 there exists a well known classification of bifurcation scenarios
into saddle-node, transcritical, pitchfork and Hopf bifurcations according to the changes
in stability and types of equilibria. In normal form the corresponding families of ordinary
differential equations can be presented as follows:

b = o — ¢ (saddle-node), & = az — z* (transcritical), Z = az — z® (pitchfork),

in polar coordinates in R : @ =c#0, 7=oar—7r" (Hopf).

s

transcritical pilchfork Hopf bifurcation

Figure 1: Bifurcation diagrams of above equations.
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Moreover there exists a necessary condition for bifurcation: the linearized system has
to become non-hyperbaolic at the bifurcation point. For sufficient conditions the nonlinear
part of the system has to be considered.

2 Random Dynamical Systems

In particular engineers often have to consider the situation that a system underlies a
permanent influence of noise. Such a stochastic perturbation can have various effects
on the system. A good way to describe such systems is the use of the concept random
dynamical systems (RDS) (cf. Arnold [1]). It allows to embed stochastically perturbed
systems in the standard theory of dynamical systems. Given a model for the noise in
terms of a flow (9,)er of measure-preserving transformations ¥; on a probability space
(Q, F,P), the situation that a system evolves under this influence of (¥;);cg on a phase
space X can be described by a flow (©y),er on £2x X which due to the independence of the
noise process on the dynamics on X should split as ©;(w, z) = (Yw, ¢(t,w)z). Because of
this structure (©,) is called a skew-product flow, while o generates a cocyle, i.e. a mapping
(t,w, z) — (t,w)z satisfying p(t+s,w) = (t, Y;w)ew(s,w). Of interest for the dynamics
is only this cocyle ¢ and therefore it is also called a random dynamical system on X over
(9, )ier. While in the case of discrete time an RDS is given by applications of products of
random mappings, for continuous time (which is the case we are considering exclusively
here), there exist two ways to generate an RDS:

1. random differential equations # = f(&, ) representing the so-called real noise case,
where (&;) is a stationary stochastic process modelling noise,

2. (Stratonovich} stochastic differential equations dz = f(z)dt+G(z)odW representing
the so-called white noise case, where W is standard Brownian motion.

Under rather mild conditions on the vector fields f the flow of such differential equations
can be seen to define indeed a random dynamical system (cf. Arnold [1]). For the descrip-
tion of RDS invariant measures play a crucial role. These are probability measures on
{1 x X which are invariant under the skew product low © and have marginal P on {2 in
order to be in agreement with the noise model. Analogously to the dynamics one can also
split the invariant measures into parts corresponding to realizations of the noise process,
i.e, we can consider so called invariant random probability measures 1, w € £2 which
are shifted in the same stationary way as the noise-trajectories, namely @(t, w)it, = lsw-
These are the so-called disintegrations of the invariant measure p.

We will be interested in one-parameter families of RDS corresponding to simple
stochastic or random differential equations, in particular to noisy versions of the dif-
ferential equations in normal form for bifurcations in dimension 1 and 2, and consider
phenomena which could be called bifurcations.

3 Phenomenological Approach

The first main problem for stochastic bifurcation theory lies in the introduction of the
right notion of structural stability. As orbits heavily underlie the influence of noise,
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the concept of fixed or periodic points loses its importance and has to be replaced by
a different one. An approach introduced by physicists (¢f. Horsthemke and Lefever [5])
suggests to study in the white noise case qualitative changes on the level of invariant
probability densities p,. The latter are usually constructed as steady state solutions of
the Fokker-Planck equation. They are in one-to-one correspondence with expectations
Ey, of invariant random measures i, w € § which are adapted to the past of the noise
process.

Bifurcations can be associated with qualitative changes of the probability densities like
transitions from one-peak to two-peak (see Fig. 2 below) to crater-like densities. Such

Pa Pa Pa

o < Qg o = Qp o> Qp

Figure 2: Qualitative change of probability densities

a bifurcation concept can be made rigorous, if we use an idea of Zeeman [7] and let
structural stability for the stochastic systems be determined by smooth conjugation of
the densities. The corresponding loss in structural stability is called a phenomenological
or P-bifurcation.

This concept has the drawback to describe a static situation, as the invariant density
measures the asymptotic proportion of time the system spends in a volume element. Also
it does not pay any tribute to the stability of the system. Finally the concept of invariant
probability densities is rather restrictive, as only Markovian situations can be considered
and not all interesting and important dynamic phenomena are seized by such densities.

4 Dynamical Approach

For a description of structural stability taking care of dynamic aspects stationarity is the
key to the solution of the problem. While in the deterministic situation stationarity can
be expressed in terms of fixed or periodic points, in the stochastic situation this role is
played by invariant measures in the sense above. For example, the random Dirac measure
e = Og(wy, where z : @ — X is a random variable, is the stochastic analogue of a fixed
point in a deterministic system, if this measure is invariant, i.e. ©(t, w)z(w) = z(Jw).

Thus, if ¢,, @ € R is a family of RDS with invariant measures g, then (o, fg,) is
called a dynamical or D-bifurcation point, if for each « in a neighbourhood of oy there
exists a (p,-invariant measure v, # p, for which v, converges weakly to p,, as o goes
to ag. So a dynamical bifurcation in random dynamical systems is associated with the
appearance of new Invariant measures.

This concept of bifurcation is much richer and closer to the one for deterministic
systems. It is also possible to associate a stability notion with it. Namely for any invariant
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measure u, the stability of the system ¢, can be characterized in terms of the Lyapuonv-
exponents A;(u,) for the linearization of ©,, if multiplicative ergodic theory can be applied.
Then a D-bifurcalion is necessarily accompanied by the vanishing of a Lyapunov-exponent
(see Arnold and Xu [2] which underlines that D-bifurcation is a concept concerning the
dynamics of the system.

In the following we will demonstrate by two examples the applications of that concept
and the differences between P- and D-bifurcations.

5 Stochastic Transcritical Bifurcation
The white noise version of the normal form for transcritical bifurcations is given by

dz = (ox — 2 )dt + oz o dW

where « € R and ¢ > 0. This stochastic differential equation can be explicitly solved to
give a family of RDS ¢,

zexplat + oWy)
I = t,w)r =
palt ) 1+ [fexp(as + oW,)ds

with the only invariant measures given by
1. g =4 for all a € R,
2. Vo = Oua(wy With se{w) = —(f5exp(as + oW, )ds)! for a < 0,
3. Vow = Onafw)y With kalw) = (f_ooo exp{as + cW;)ds)™! for & > 0,
while the only invariant probability densities are given by

1. py=dg for all o € R,

2. galz) = N&zf‘c’f’_l exp(—2£) for z > 0 with a normalizing factor N, and g.{z) = 0

a?

for z = 0 provided o > 0.

As Mus) = @ and A{v,) = ~a, we can conclude that a D-bifurcation takes place at
g = 0. where the invariant measures exchange their stability. Thus we obtain the same
bifurcation diagram as in the deterministic case {see Fig. 1), if we replace fixed points by
invariant measures in that diagram. It is also easy to see that the density g, undergoes
a qualitative change at o = ¢?/2 so that we have a P-bifurcation point at this parameter
value. It was shown by Baxendale [3] that this point is characterized as a large deviations
phenomenon in contrast to the stability phenomenon at the D-bifurcation point.

6 Stochastic Hopf Bifurcation

A far more difficult problem than the stochastic bifurcations in dimensions 1 presents the
Hopf-bifurcation for stochastic systems. At the moment there does not exist a complete
mathematical description of this phenomenon, though there exist extensive simulations
which give us a very good impression of what seems to happen. We will try to illustrate
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this by the example of the noisy Duffing-van der Po! oscillator (for a presentation of
various bifurcation scenarios in this system see Schenk [6])given by

i1=$2

T2 = (a+ o)z + Boy — 13 — z°39

where (&) denotes a real or white noise process and «, § present two bifurcation parame-
ters. It is known that the deterministic system obtained for o = 0 and a < 0 held constant
undergoes a Hopf bifurcation at # = 0. In the stochastic case ¢ > 0 simulations of the
solution of the Fokker-Planck equation yielding invariant densities suggest the following
P-bifurcation scenario {cf. Ebeling et al. [4]): there is a probability density gz which arises
at some f; < 0 which undergoes a P-bifurcation at § = Sp to get the structure of a crater.
In order to draw a picture of the respective D-bifurcation scenario exhaustive simula-
tions of invariant measures u, are necessary. They lead us to believe in the following:

1. While in the deterministic case one finds for § = 0 a pair of complex-conjugate
eigenvalues for the linearization, the respective Lyapunov-exponents A;(0) and A»(0)
are different, i.e. noise splits the pair of complex conjugate eigenvalues. This is only
possible with A2(0) < 0 < A;{0) and if there exists 8, < 0 with A;{81) = 0 so that
a first D-bifurcation occurs earlier than in the deterministic case.

2. At [ the top Lyapunov-exponent A, {3 ) vanishes and we have a first D-bifurcation
from the stable Dirac-measure dy to a stable measure u( ) = ‘(5m£1)(w) + 5_I(1](w))
which is a convex combination of two Dirac measures and is the boundary of the

unstable manifold of the saddle point z = 0.

3. At B > [ the second Lyapunov-exponent A»(f2) vanishes and a second D-
bifurcation from dq takes place. A new measure .v(z'i, = %(5'&(”(&») + 6_2y(,)) arises
which is again a convex combination of two Dirac measures which correspond to

random saddle points, while é; has becomne unstable. The stable measure uéli is the

boundary of the unstable manifold corresponding to 1/(2’2,. Both measures sit on an

invariant random limit cycle which is stable and where the dynamics are hyperbolic.

These observations underline that P-bifurcation description only seize one part of the
phenomenon, but leaves out the dynamical part (here the dynamics of the invariant
circle). In the bifurcation diagram below we have put together P- and D-bifurcation
scenarios obtained numerically.

References

[1] Arnold, L. [1995] Six lectures on randorn dynamical systems, Dynamical Systems (ed.
Johnson, R.), Lecture Notes in Mathematics 1609, Springer-Verlag, Berlin pp. 1-43.

[2] Arnold, L. & Xu Kedai [1994] “Invariant measures for random dynamical systems,
and a necessary condition for stochastic bifurcation from a fixed point”, Random &
Computational Dynamics 2, 165-182.

32



L stable

Vv saddle

13] Baxendale, P. [1994] “A stochastic Hopf bifurcation”, Probability Theory and Related
Fields 99, 581-616. .

|4] Ebeling, W. & Herzel, H. & Richtert, W. & Schimansky-Geier, L. [1986] “Influence of

noise on Duffing-Van der Pol oscillators”, Zeitschrift f. Angew. Math. u. Mechanik 66,
141-146.

[5] Horsthemke, W. & Lefever, R. [1984] Noise-induced transitions Springer-Verlag,
Berlin, Heidelberg, New York.

[6] Schenk-Hoppé, K.R. [1996] “Bifurcation scenarios of the noisy Duffing-van der Pol
oscillator”, Nonlinear Dynamics to appear.

[7] Zeeman, E.C. [1988] “Stability of dynamical systems”, Nonlinearity 1, 115-155,



SPECTRAL PROPERTIES OF QUANTUM SYSTEMS
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Abstract: Spectral properties of quantum systems which are chaotic in the classical limit
are discussed. Theoretical predictions are confronted with results of experiments involving
"macroscopic” models of quantum chaotic systems - microwave billiards.

1. Introduction

The quantitative distinction between regular and chaotic motion in classical mechan-
ics uses extensively phase-space concepts, as it is best exemplified by the definition of
Lyapunov exponent [Lichtenberg & Lieberman, 1992]. The strength of chaos in the sys-
tem is characterized by its sensitivity to changes of initial conditions, i.e. the rate of
temporal divergence of neighboring phase-space trajectories.

The straightforward translation of such concepts into tlie field of quantum systems is
not possible due to the lack of the notion of the phase space in quantum mechanics. In
the most obvious approach we could consider two initial wavefunctions ¥(0) and ¢(0) and
try to measure the sensitivity to initial conditions by the fate of their overlap d,(t) =
{(¢(t)|¥(t)). The overlap, however, remains constant in time due to the unitarity of the
quantum evolution.

The above argument does not imply that in quantum mechanics the distinction be-
tween chaotic and regular evolution in not possible. It seems natural to try to differentiate
between regular and chaotic motion using the most obvious quantum mechanical features
of quantum systems, namely their spectral properties. Let us thus consider a quantum
systern with a well defined classical limit. Is it possible to predict whether the corre-
sponding classical evolution is regular or chaotic by investigating simple features of the
quantum spectrum of the system ?

It should be in fact not very astonishing that quantum systems share some of their
spectral properties with other types of physical phenomena which can be described in
terms of waves. In the last part of my talk I will describe some recent experiments in
which some simple quantum mechanical chaotic systems are modeled by electromagnetic

resonators.
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2. Statistical Properties of Spectra

Intuitively we expect that spectra of systems which are chantic on the quantum level
should be "more complicated” then those of systems which are classically fully integrable.
Closer examination of known solvable quantum problems reveals that, among systems
which have classical counterparts, only for these, which are classically integrable we are
able to find analytically their (energy) spectra. For all other systems we must invoke
various perturbation techniques or numerical methods. As an obvious example we may
consider quantum systems with many degrees of freedom like heavy atomic nuclei. For
such systems the alternative method of description was proposed many years ago by
Wigner [1951]. Borrowing ideas from classical statistical physics we embed their Hamil-
tonians in an statistical ensemble of random matrices, sharing only general features (like
the total spin and the time reversal symmetry) with the system in question [Mehta,
1967]. Obviously the method does not allow us to find the spectrum, nevertheless it gives
astonishingly good predictions concerning various statistical properties of energy levels,
The perhaps most celebrated of such statistical characteristics is the probability density
P(s) of finding two neighboring energy level at the distance s one from the other on the
energy scale. The Random Matrix Theory (RMT) predicts, for small s, P(s) ~ s?, with
the exponent 3 depeﬁding on the symmetries and spin of the system. The result can be
interpreted as tendency of energy levels of "complicated” systems to repel each other,
revealing strong correlations between individual levels. As mentioned, the strength of
repelling measured by the exponent 5 depends on symmetries of the system, with the
most important distinction between systems invariant under time reversal with § = 1
and those which do not possess time reversal symrﬁetry for which # = 2 (in the simplest
case of absence of spatial symmetries and integer spin).

It was a fruitful idea of Bohigas, Giannoni, and Schmit [1984] and Berry & Tabor
[1977) to use RMT in order to find criteria discriminating between classically regular and
chaotic dynamics on the quantum level. They conjectured that, like systems with many
degrees of freedom, classically chaotic systems are characterized by the repulsion of levels.
On the other hand, spectra of classically regular ones reveal no correlations which results
in level clustering: P(s) ~ exp(—s). The conjecture has been since then supported by

overwhelming numerical and empirical evidence.
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The interesting ideas aiming at giving the Bohigas-Giannoni-Schmit conjecture some-
what more firm ground were developed by Pechukas [1983] and Yukawa [1983, 1986].
They consider a quantum evolution described by a parameter dependent Hamiltonian
H{A) = Hy + AV. We should think about Hy as corresponding to a classically regular
part and V' as a integrability breaking perturbation, strength of which is controlled by
the parameter A. Now we can ask about the fate of the energy eigenvalues g,(A) of H(A)
when the parameter A is changed. After a short calculation we find a nonlinear set of
equations connecting the rates of change of the eigenvalues to various matrix elements of
the perturbation V' in the eigenbasis of H()), namely p,(A) := (. (A}|V |9, (A)) and

The resulting equatibns can be interpreted as describing the (Hamiltonian) dynamics
of a one-dimensional gas of interacting particles with the eigenvalues g, playing the roles
of positions of particles an A a fictitious time. The stationary canonical distribution gives
then, to our satisfaction, results which are in complete agreement with predictions of
RMT (also concerning the infiuence of symmetries) [[{u$ et al., 1987; Haake, 1991;].

This rather rough reasoning can be refined to be treated more seriously. [Kus, 1988,
Haake, 1991; Mnich, 1993; Dietz, 1994]. It can also be extended to the case of quantum
systems which are periodically time-dependent or (what will be important in the next
part of my lecture) dissipative [Huckleberry et al., 1996].
3.Microwave Billiards as Testing Ground for Random Matrix Theory

Although experiments involving genuine quantum systems are of the main interest
in support of conjectures I invoked in the previous sections, it 1s amusing to observe in
macroscopic settings some of the intriguing properties characteristic for quantum chaotic
systems. -

First let me recall a paradigmatic example studied in classical dynamical systems,
namely this of a planar billiard. A billiard is a connected region of a plane surrounded
by impenetrable walls. A particle moves freely inside the region and bounces elastically
from the walls respecting the classical laws of reflection.

It is known that integrability properties of billiards are determined by their shapes. In
the most simple case of a rectangular billiard the evolution is fully integrable, whereas for
more complicated shapes (e.g. the Sinai billiard i.e. a rectangular billiard with a circular

hole inside - see Fig. 1a) can enjoy a fully chaotic motion.
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Figure 1: a) Chaotic Sinai billiard. In order to eliminate the obvious reflection symmetries
with respect to the axis z and y we restrict the motion to one quarter of the full billiard
(shaded area). b) Microwave resonator in the form of the Sinai billiard with an attached
one-way waveguide breaking the time reversal invariance of the system.

The corresponding quantum problem is described by the free Schrédinger equation

with appropriate boundary conditions

ﬁ? 82 62
- (@ + 5@}-) (z3) = BY(z,y), Yls =0, 1)

where S5 denotes the boundary of the billiard.

Consider now a quasi-two-dimensional metallic resonator of the shape of the billiard.
The quasi-two-dimensionality means that the vertical dimension (the height) of the res-
onator is small enough. In the resonator we excite standing electromagnetic waves by
injecting a microwave field through an attached waveguide. If the height of the resonator
is smaller than the half wavelength of the microwaves we use in our experiment, only the
ground modes in the vertical direction can be excited. The electromagnetic field in the
resonator can be in this case described by a single scalar function ¢(z,y) (proportional

to the vertical component of the electric field) fulfilling the Helmholtz equation

82 0?

(éﬁ + a—yg) ¢(z,y) + k*¢(z,y) =0, (2)
which should be supplemented by the known boundary conditions, ¢|s = @, at a metallic
boundary . It is thus obvious, that the quantum problem (1) and the electromagnetic
one (2) are exactly equivalent after appropriate scaling of the variables.

The experiment consists thus of injecting microwaves to the resonator and observing at

which frequencies of the incident field the electromagnetic field inside is excited, revealing
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thus the eigen-frequencies of the boundary-value problem (2). Such experiments were
performed by Stéckmann and Stein [1990] and, indeed, a clear distinction between the
integrable (rectangular) and non-integrable (Sinai) billiards was observed. The measured
eigen-frequencies of the first resonator tend to cluster together whereas in the second case
linear repulsion (i.e. P(s) ~ s) was noticed.

As already mentioned the strength of repulsion between neighboring levels is changed
to a quadratic one (P(s) ~ s%) when the time reversal symmetry is broken. To observe it
the chaotic microwave resonator was modified by attaching a so-called microwave isolator
in the form of a one-directional waveguide as indicated in Fig. 1b [Stoffregen et al., 1995].

In the ideal situation, such a one-way device should transmit perfectly microwaves
propagating in one direction and absorb cnes going in the opposite direction. The fact
that energy is absorbed by the system invalidates the previous approach which uses the
Helmbholtz equation (2). Instead we can describe the system in terms of scattering theory
(treating the waveguide through which microwaves enter the system as an incoming
channel and the antenna which we use to measure the field inside the resonator as an
outgoing one). The resonant eigenmodes of the resonator can be then characterized
by their frequencies and lifetimes (which are finite due to the energy dissipation). As
long as the lifetimes are long we can resolve individual resonant frequencies and measure
their tendency to cluster or repel each other. It is intuitively obvious, and also easy
to show, that unidirectionality of the attached waveguide leads to the breaking of the
time reversal invariance of the system [Stoffregen et al, 1995]. The careful analysis of
the scattering process reveals that we should then really expect the nonlinear repulsion
between eigenvalues [Haake et al., 1996; Albeverio et al., 1996]. These findings were fully
confirmed by experiments [Stoffregen et al., 1995].
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Turbulence and Coherent Structures in Subsonic
Jets. Control of the Turbulence

P. S. Landa
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Abstract

The onset of turbulence and formation of large scale patterns (coherent structures) in
subsonic jets is considered from oscillation theoretical standpoint. It is hypothesized that
these phenomena are results of a noise-induced nonequilibrium phase transition of the second
Iind. It is shown by the example of noise-induced oscillations of a pendulum with a randomly
vibrating suspension axis that such a transition can be controlled by an additional harmonic
action. The known possibility of notable attenuation or intensification of turbulence in jets
by means of a slight acoustic action at one or another frequency can be attributable to such
control.

It 15 known that because of the Kelvin-Helmholtz instability hydrodynamic waves
are excited and amplified in the jet’s boundary layer. These waves can propagate oniy
downstream with a velocity of order of the flow velocity. The distinctive feature of hydro-
dynamic waves 1s their random character. Nevertheless, against the background of this
randomness there are comparatively regular large scale patterns (the concentrations of
vorticity) called coherent structures.

Excitation of coherent structures, as noted above, is caused by the Kelvin-Helmholtz
mstability, but in their formation nonlinear effects play a dominant role. This i1s associated
with the fact that in jet flows there is non-linear feedback resulting in the occurrence of
the so called pairing of vortices observed experimentally in the jet's mixing layer {see, for
example, [Vlasov & Ginevsky, 1986]).

Today there 1s an extensive literature devoted to the instability of the boundary layer of
jets and wakes resulting in their turbulization and in the formation of large-scale coherent
structures (see, e.g., [Michalke, 1984; Vlasov & Ginevsky, 1986]}. The theory of these
phenomena 1s based mainly on views fully formed in response to either direct numerical
simulation or simulation by the so called discrete vortez technigue [Belotserkovsky &
Ginevsky, 1995]. When the latter is used it is assumed that vortices are already formed,
and only their interaction is considered. The problem of vortex excitation in itself is
studied in a very small number of works. Among them the first work carried out by

Rayleigh as early as 1879 [Rayleigh, 1879] should be noted. In the last three tens of
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years these problems were studied primarily by Michalke, Crighton, Gaster, and Plaschko
(see, for example, [Crighton & Gaster, 1976; Michalke, 1984; Plaschko, 1979]). In these
works a profile of the mean flow velocity was given and the linearized Euler equations
for deviations were approximately solved. Because the coefficients of these equations
depend on the coordinates, an exact analytical solution cannot be obtained. Numerical
calculations performed by the authors indicated above are in reasonably good agreement
with experimenta! data.

Issuing from a nozzle, a fluid jet always noticeably diverges. This is associated with
the fact that owing to viscosity increasingly more neighboring fluid layers are involved in
the motion. The profile of mean flow velocity changes essentially in the process. At the
nozzle exit it is near rectangular, whereas away from the nozzle it becomes bell-shaped,

see Fig. 1. The fluid layer within which the mean velocity changes significantly is called

Figure 1: Schematic image of a free jet illustrating change of its mean velocity profile
and widening the mixing layer. The curves labelled 1 and 2 correspond to internal and
external boundaries of the mixing layer respectively.

the boundary layer or the mizring layer. It is interesting that the coherent structures are
formed just in this layer. It is seen from Fig. 1 that the mixing layer’s thickness increases
approximately linearly with distance from the nozzle. At a certain distance away from
the nozzle z = z;, the thickness of the internal part of the mixing layer §;, becomes equal
to the half-width of the nozzle's outlet for a plane jet or the nozzle’s radius for a circular
jet, whereupon a continuous boundary layer is formed. The jet’s part for z < zj, called
the wnitial part.

Owing to its strong instability a fluid jét 1s an amplifier with a sufficiently high spatial
gain factor [Landa, 1996]. A small acoustic disturbance at some frequency f, lying in the
region of resonance, being given near the nozzle, turns into an amplifying hydrodynamic
wave, This is evidenced by experimental results of Crow and Champagne [1971]. It follows
from these results that, from a certain value of the acoustic wave amplitude onward, the
dependence of the relative root-mean-square pulsation of the longitudinal component

172 /Uy on the acoustic wave frequency f,,

of the hydrodynamic velocity ¢, =< u? >
measured in terms of Stroubal numbers St = f,D/Uy, where D is the nozzle’s diameter
and {/y'is the mean fluid velocity on the jet axis, turns out to be resonant. For €,, =<
u? >/ [ = 0.02, where u, is the acoustic velocity, this dependence is shown in Fig. 2 a.
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Figure 2: (a) The dependence of ¢, on St for ¢,, = 0.02, /D = 4, where x is the distance
from the jet nozzle, D is the nozzle’s diameter; () the dependence of ?1/2 on w, for
¢ = 0.5. When the additional disturbance is absent, e, ~ 0.04 and @2 2 0.0317.

We see that ¢, is maximal for St = (.3.

One of the interesting manifestations of nonlinear effects in a jet is the possibility
of notable attenuation or intensification of hydrodynamic waves by a slight acoustic ac-
tion at one or another frequency. The attenuation of hydrodynamic pulsations occurs if
the frequency of the acoustic action is rather high, whereas the intensification occurs if
the frequency of the acoustic action is rather low. The experimental dependence of the
relative root-mean-square pulsation of the longitudinal component of the hydrodynamic
velocity €, on the acoustic pressure for St = 2.35 is shown in Fig. 3 a. We see that the
turbulent pulsations first decrease as the amplitude of acoustic wave increases and then
they increase.

As for the reasons of the appearance of turbulence and coherent structures in a jet, we
hold to the idea that this appearance is caused by a noise-induced phase transition. Such
transitions are known for certain systems (see, for example, [Van den Broeck et al., 1994].
A simple example is excitation of oscillations of a pendulum with a randomly vibrating
suspension axis [Landa & Zaikin, 1896]. Surprisingly, this process has much in common
with turbulent processes.

We studied, both analytically and numerically, the following equation:

b+ 28 (14 cg®) ¢ +wp (1 +£(1))sing = 0, (1)

where ¢ is the pendulum’s angular deviation from the equilibrium position, 28 (1 + ap®) @
is the value proportional to the moment of the friction force which is assumed to be
nonlinear, wp is the natural frequency of small pendulum’s oscillations, and £(¢) is the
acceleration of the suspension axis that is assumed to be a comparatively wide-band
random process with nonzero power spectrum density at the frequency 2wy.

When the intensity of the suspension axis vibration is in excess of a certain critical
value proportional to the friction factor 8, the excitation of pendulum’s oscillations oc-
curs that makes itself evident in the fact that the variance of the pendulum’s angular

deviation becomes nonzero. It follows from the results obtained that close to the excita-
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Figure 3: (a) The experimental dependence of €, on the relative amplitude of acoustic

pressure p, measured in decibels for St = 2.35, z/D = 8; the dependencies of ?1/2 on a

forwe =1, A =01, a =100, x(2)/x. (2) = 5.6, (§) wa = 3.5, (¢) wa =6, (d) w, =11, (¢)
we = 19.75.

tion threshold the pendulum’s oscillations possess the property of intermittency, i.e. over
prolonged periods the pendulum oscillates in the immediate vicinity of its equilibrium
position (so called ‘laminar’ phases); these slight oscillations alternate with short splashes
(‘turbulent’ phases), Away from the threshold the duration of laminar phases decreases
and of turbulent increases, and laminar phases ultimately disappear. The variance of the
pendulum’s angular deviation increases in the process. We emphasize that turbulence
for transient Reynolds numbers exhibit also this property. It is no chance that the first
theoretical works concerning the intermittency phenomenon were made by the specialists
in the field of turbulence [Pomeau & Manneville, 1980].

If the intensity of the suspension axis random vibration is under its threshold value
then the excitation of pendulum’s oscillations can be initiated by small additional low-
frequency vibration of the suspension axis. The inclusion of this vibration can be carried
out by substitution into Eq. (1) of £ + acosw,t in place of £, where a and w, are,
respectively, the amplitude and frequency of the additional vibration of the suspension

axis. The results of numerical simulation of Eq. (1) for different values of a are represented
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in Fig 4 a. We see that the excitation of oscillations, as the amplitude @ increases,
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Figure 4: The dependence of ;51/2 onaforwg=1,8=01,a=100, (a) s(2)/c(2) =

0.51, w, = 0.318 (the straight line 9?1/2 = 0.48(a — 1.1) is shown as a solid line), (d)
#(2)/ ke, (2) = 2.23, w, = 1.5.

is of a threshold character. For w, = 0.318 the threshold value of a is equal to 1.1.
The dependence of \/_(;7 on the difference between the amplitude a and its threshold
value is found to be approkimately linear. For a > a., the oscillations excited are not
distinguished from those excited due to random vibration only. The oscillation intensity
is the greater, the larger a. By this is meant that the low-frequency vibration initiates
the noise-induced phase transition and the birth of the induced attractor. If for a = 0
noise-induced pendulum’s oscillations exist then low-frequency vibration intensifies these
oscillations. An example of such intensification is shown in Fig. 4 b.

Now let us consider a possibility of depressing noise-induced pendulum’s oscillations
by high-frequency harmonic action. Numerical simulation of Eq. (1) with £ + a cosw,i
in place of £, where w, > 2, shows that such depression do occur. The results of the
simulation are represented in Fig. 3 b, ¢, d, e. It is seen from these figures that, for small
amplitudes of the high-frequency action, this action has little or no effect on the noise-
induced oscillations existing. As the amplitude increases the intensity of the noise-induced
oscillations decreases to a certain minimal value which is the smaller the larger is the action
frequency. True, this minimal value is attained for the larger action amplitudes the higher
1s the frequency. For sufficiently high frequencies the oscillations can be depressed entirely.

So, we have shown that the profound parallels between such seemingly dissimular
phenomena as turbulence in jets and noise-induced pendulum'’s oscillations exist. It is of
interest that these parallels are founded not on the similarity of equations of motion but on
the generality of laws of oscillation theory. Undoubtedly, additional grave investigations
must be called on to be sure that these parallels are not illusory, but they adequately
depict the essence of the phenomena. Nevertheless, the mere presence of such the parallels
reinforce once again the known fact that the nature obeys unified laws. These unified laws

fall just into the subject of such universal science as oscillation theory.
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Abstract: We adjoin to an arbitrary Markov-Feller operator P a
function I which maps closed sets into closed sets. This function
has many properties of an iterated function system. In particular
the iterates I'™(A) converge (under appropriate assumptions) to the
support of a measure invariant with respect to P.

1. Introduction

Iterated function systems allow one to construct fractals in two different ways. Namely,
fractal can be obtained as the limit of a sequence of sets or as the support of an invariant
measure. The second approach is strongly related to the theory of Markov operators and
gives better analytical possibilities. However, even if a Markov operator P is asymptoti-
cally stable and for every choice of the initial measure p the sequence (P™u) converges to
a unique invariant measure p., the corresponding sequence of supports (supp P ) need
not converge to the support of p,.

To study this problem we introduce the notion of condensing Markov operators. For
these operators the convergene of the sequence (P"y) implies the convergence of supports.
We also show that the classical operators appearing in the fractal theory (Barnsley [1988])

are condensing.
2. Limiting properties of supports

Let (X, ) be a metric space. In what follows we assume that X is separable and this
assurnption will not be repeated in the statements of theorems. By K(z,r) we denote the
closed ball with center z and radius r. For a subset A of X, clA stands for the closure of
A. By Fq we denote the space of all closed subsets of X.

Let (An), n = 0,1,..., be a sequence of subsets of X. We define the lower bound
LiA, and the upper bound LsA, by the following conditions. A point z belongs to LiA,
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if for every ¢ > 0 there is an integer ng such that
ANK(z,e)# 0 (2.1)

for n > ng. A point z belongs to LisA,, if condition (2.1) is satisfied for infinitely many n.
Finally, if LiA, = LsA, we say that the sequence (A,) is convergent and we denote the
set LiA, = LsA, by LtA,. It is called the topological limit of the sequence A,.

By Bx we denote the o-algebra of Borel subsets of X and by M the family of all
finite Borel measures (nonnegative, o-additive) on X. By M, we denote the subset of
M such that p(X) =1 for p € M,. The elements of M, will be called distributions.

As usually by C(X} we denote the space of all bounded confinuous functions f : X —
IR with the norm

|1l = sup |f(z}].
zEX

For f € C(X) and p € M we write

(o = [ f@)u(da).

X

Given g € M we define the support of x by the formula
supp g =1{z € X : u(K(z,r)) >0 for every r > 0}.

Evidently supp g is a closed set and p(A) =0 for A C X\ supp g.
We say that a sequence (u.) C M converges weakly to a measure p € M (shortly
(w) lim gy = p) if
Him (f, pn) = (f, 1) for [ e C(X).

n— oo

We start this section with a version of the Alexandrov theorem for supports. Recall
that the classical Alexandrov theorem assures that for every open subset U of X the
limiting measure u(U) is smaller that the Bminf . (V). It is easy to prove a similar

property of supports.
Theorem 2.1. Assume that (u,), pn € M, converges weakly to p € M. Then

Li supp pin D supp p.

A family of measures {u,: t € T} C M is called condensed at a point z € X if for every
¢ > 0 there is n > 0 such that

inf{g(K{z,e)): teTy} >0
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where
T,={teT: K(z,n)Nsupp p #0}.

As usually we admit that the infimum of the empty set is equal +co. A family {g, : t € T')

is called condensed on X (or shortly condensed) if it is condensed at every point z € X,

Theorem 2.2. Assume that a sequence of measures (pg), pn € M, converges weakly
to a measure y € M. Then the following conditions are equivalent:

(1) (pn) is condensed on X,
(1) Lt supp p, = supp g.

3. Markov set function

An operator P : M — M is called a Markov operator if it satisfies the following two

conditions:
P(Aqp1 + Aapa) = A Ppy + APy for A, Az € Ry and p,p2 € M,

Pu(X)=p(X) for pe M
A Markov operator P is called a [Feller operator if there is an operator
U:C(X)— C(X) such that
({Uf p) =/, Pp) (3.1)
for every f € C(X) and p € M. Operator U is called dual to P.

Using condition (3.1) it 1s easy to verify the following proposition.

Proposition 3.1. If P is a Feller operator and supp p1 = supp pa, then supp Py, =
supp Pps.

Let a Feller operator P : M — M be given. We adjoin to P a mapping I' : 75 — Fo
by the condition
T'(A) = supp Py, where A = supp . (3.2)

According to Proposition 3.1, condition (3.2) defines a function I' in a unique way.
Proposition 3.2, The function I' : Fo — Fo given by formula (3.2) has the following
properties:

() T(@) = 0;
(i1) T(el UT A)=d UTT‘(A,) for every family {Ai}ier of closed sets;
1€ te

(ii1) If T1 and T’y are generated by Feller operators Py and P, then Ty 0Ty s generated
by PPy,
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4. Stability results

Let P: M — M beaMarkov operator. A measure p is called invariant {or stationary)
with respect to P if Pu = p.

A Markov operator P is called asymptotically stable if there exists a stationary measure
e € M, such that

(w) nh—»rgo Pru = p. for every p € M. (4.1)

Obviously a measure p. satisfying condition (4.1) is unique.
Now we are going to study the behaviour of the iterates of the Markov set function I’

generated by an asymptotically stable Markov operator.

Theorem 4.1. Let P be o Feller operator and let I be the corresponding Markov set
function. Assume that P is asymptotically stable and denote by A. the support of the

probabilistic invariant measure y.. Then

LiT"(B) D A.  for Be€F\{0}.

Corollary 4.1. Let P,T' and A, be as in Theorem 4.2. Then

Lt T™(B) = A, for  Be F\ {0}, B C A..

This corollary shows that the support A, of the invariant measure for an asymptotically
stable operator has a regeneration property typical for semifractals [Lasota & Myjak 1996).
A stronger property characteristic for fractals requires additional assumptions concerning
the iterates (P™u). '

A Feller operator P will be called condensing if for every 4 € M with bounded support
the sequence { P*u) is condensed,

From Theorem 4.2 we obtain immediately the following corollary.

Corollary 4.2. Let P,T" and A, be as in Theorem 4.2. Assume moreover that P is

condensing. Then

Lt IT™(B) = A. for every bounded set B € Fp\ {0}.
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5. Applications to iterated function systems and fractals

We are going to apply our results to Markov operators generated by iterated function
systems. These systems under the name of "systems with a complete connection” were
studied by Onicescu and Mihoc [1935]. More recently they are studied because of the
close connection with fractals [Barnsley 1988, Lasota & Mackey 1994] and other areas of
applied mathematics.

An [terated Function System (shortly /FS) is given by a sequence of continuous trans-
formations

St X=X, i=1,...,N

1

and a probabilistic vector
pi: X = R, 1=1,..., N,

where p; are continuous functions satisfying
N
pi(z) >0, > opi(z)=1 for ze€ X.
=1

Such a system is shortly denoted by (S,p)n. Having IFS (S,p)~ we define the corre-
sponding Markov operator P : M — M by setting

N N
Pua) =3 [ m(e)uldz) = 3 [14(S5i=))pile)u(dz). (5.1)
=1 st =1y
It is easy to verify that P is a Feller operator.
The probabilistic interpretation of IFS (S,p)y can be described as follows. Let a
probabilistic space ({2, %, prob) be given. We consider a sequence of random elements
zy : 0 = X and a sequence of random variables ¢, : 8 — {1,...,N}, n=0,1,..., and

we assume that these sequences are related by conditions:
prob (¢, = kl|z, = ) = pi(z) for k=1,...,N, n=0,1,...,

and

Top1 = Se.(zq) for n=0,1,....
By un we denote the distribution of z,, i.e.

pn(A) = prob (z, € A) for AeByx, n=01,....

The operator P is a transition operator for the sequence (z,), l.e. pny1 = Pu, for all n.
The set function I corresponding to £ is given by the formula

[(4) = el (fj 5,-(,4)].

1=1
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Operators of the form (5.1) are used for the construction of fractals. In our terminology
the Barnsley definition of a fractal can be expressed as follows: A fractalis the support of
the unique invariant measure corresponding to an asymptotically stable and condensing
operator of the form (5.1).

Sufficient conditions for the asymptotic stability of Markov operators of the form (5.1)
are well known [Barnsley et al. 1988, Lasota & Yorke 1994]. Here we are going to show

a sufficient condition for the condensation.

Thecrem 5.1. Let an IFS (S, p)nv be given. Assume that
o(Si(z), Si(y)) < oz, vy) for zyeX, z#y, i=1,...,N, (5.2)
and that for every bounded set /{ there is a bounded set B O K such that
Si(B)C B.
Then the operator P given by (5.1) is condensing.

It should be noted that condition (5.2) does not imply asymptotic stability of the

operator P if the mappings p;, ¢t =1,..., N are only continuous.
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APPLICATIONS AND POTENTIAL OF THE VOLTERRA SERIES FOR
NONLINEAR STRUCTURAL DYNAMICS PROBLEMS

G. R. Tomlinson, Department of Mechanical Engineering,
The University of Sheffield, Mappin Street,
Sheffield, S1 3JD.

Abstract: From a mathematical point of view, the Volterra series provides a strong foundation
for studying particular classes of nonlinear systems. This paper presents some interesting ways
m which the Volterra series can be used as a basis for identifying and simulating the effects of

faults in engineering structures.

1. Introduction

Damage detection, condition monitoring and fault location in engineering structures is a
subject of considerable interest because it relates directly to cost and operational reliability.

Structural damage deterioration such as cracks, delaminations loose joints are normally
related to nonlinear phenomena, particularly when the structure/component is subject to
dynamic excitation [Chance, 1996, Natke and Yao, 1993]. Strictly speaking, the Volterra
series [Volterra, 1959] can only be applied to structures with nonlinear properties that are
analytic lLe. polynomial type functions. Thus faults such as cracks, which often appear as
bilinear functions, do not have a Volterra series representation but they can be approximated
over any interval, using a polynomial formulation as guaranteed by the Weierstrass
approximation theorem Simmons, 1963]. One principal advantage of using the Volterra series
1s that with many nonlinear problems only the first few terms in the series, (e.g. kernels up to
order 3) are needed to capture the principal dynamic characteristics of the response. A
disadvantage is that it is difficult to measure the kernels accurately in practice [Chance, 1996].
However, by estimating the kemels in the time domain or their equivalent, the Higher Order
Frequency Response Functions in the frequency domain, as a function of a controlled mput

level of excitation, the presence of faults can be detected. Conversely, in many applications
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where health/condition monitoring methods are employed to detect faults, validation of the
monitoring system cannot be carried out m-situ. A method of inducing ‘pseudo-faults’ into a
structure which produces the same dynamic characteristics as the real fault could prove
vafuable to the test engineer.

This paper describes the ways in which the Volterra series can be used as the basis for
detecting faults in engineermg structures, hence demonstrating the potential of the Volterra
series for nonlinear structures dynamics problems,

2. Representation of a Nonlinear System Response

2.1 Volterra series definition

Given that a single mput x(t) to a nonlinear system will produce an output y(t) it can be
shown [Wiener, 1942] that for a wide ciass of systems

y(O) =y1 () + ¥, () +y3(t)+.. Ay (O+... (L)
where, va®= [ [ drydt, (e, ,’cn)ﬁx(t—ti) (2)
e e i=1

The terms hy(t7),ha (21,79 ), s B (T1,..., T, ) are known as the first, second, third,

nth

ceey

-order Volterra kemels or impulse response functions of the time - invariant system

which can be shown to be symmetricie. h,(t;,T,)=h,(7,,Ty) etc.
As in the linear case, there exists a dual frequency-domain representation for nonlinear
systems hased on the higher-order FRFs or Volterra kernel transforms
H, (0., 0,) = j“ j‘” dty...dt h (..., Ty e (OEFF ) (3)
It can be shown that the kernel transforms are also symmetric i their arguments. In
addition, they satisfy a reflection property,
H(-0) = Hi(®),  Hy(-0y,-0;) = H (0, 0,), )
2.2 Frequency Response Representation

The frequency domain representation of the Volterra series is of the form

Y(o)= Yi(0) + Y () + Yz(w)+... Y (0)+... (5)
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Y(w) = Hy{o)X(w)
+ [z—l]f:’dcol Hy (@, o — o) X(0)) X(w — )

1 2 oo ptoo
+| — J- J' dodw, Hy(wq, 04,0 — 0y~ W)
ZTE —= —_—g

(6)
X Z(w)X(wp)X(w — w) — 3y)

1Y e oo
+o+ o _l-_m---J_“dml'-'dmn—lHn(c—Db---amn—l:m—031_---"'0)11—1)
x X(wy)... X{wp1)X(0 — 0y=..~0p_y)+...
where the o™ -order component of the response in the frequency domain may be
written

1 n—1 o oo
Y (w)=| — J '[ daw,...do_Hy(wy,..., 0, 1, @ — 0~ ~0 )
2n ==

X X(@q)... X{@p_)X(0 = -~y _1) @
iIf the leading diagonals are employed (®;+m,=..®) and a range of excitation
amplitude levels are used one can write [Chance, 1996, Ewan, 1980],
(Y} =[X][H]
Yi{w) Hy(w)

[Y{w)] = Y_z(m) , [Hann]= H:3(m,cn,—cn)

Yo(w) Hypq{@, 0,..—w)
with, (X, aX} bX) ]
3 5 3 5
[X]':- X2 RX2 bX2 ,a=—,b=—
PR
X, aXs bX3
and [Hapet] = [X]7 [Y(@)] (8)
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Y, (2w)

H, (0, 0)

[Y(2CD)] = :YZ (2&]) :[Hzn] = ;_{4(&7@7&1_(0)

Y, (20)

(X]=

Y (3w)

[Y(?)(D)] = YZ (30)) s [Hu+2] = H5(CD,U),CD,CD,—CD)

Y, (30)

[X]=

and

Hzn(m,m...,...m)
[oX? oX! ax§]
1 15
oxX? ox? dxé|l c=—.d=—
2 2 2 9 372
X3 cxt axt
-1
[Haop] =[X] Y (20)]
H; (0,0, o)
H o (w,w...,..—0)
—eX% X7 |
1 5
X3S |,e=—,f=—
s M2 4 16
LeX% fXg

[Hyso] =[X)7[Y(30)]

Equations (8) (9) and (10) provide a means of estimating the higher order FRFs wher

2.3 Impulse response representation

the state of the structure which may be related to a reduction in the integrity.

(9)

(10)

harmonic excitation 1s used with a series of controlled input levels. If a structure 1s tested in its
‘virgin' state, only the H(®) will be significant if the structure behaves in a linear manner.

However, if a fault occurs then the presence of the higher order FRFs can signify a ‘change' in

When the excitation is an impulse of magnitude A, ie. x (t) = Ad(t) the use of eq. (1)

and (2) leads to [Manson, 1996, Thomas, 1995]:

y(t) = Ahy () + A%h, (4. A% (D)+...

o=

e y(t) =y A'hy(t)

i=1

25
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If 2 range of N impulses of magnitude A=A (m=1...N) are used, eq. (12) can be

expressed as,

[v]=[Al[b]
where,
Y- yi(®) [h]_{hl:(t):l
) L

L A2 N
(Al AL A

[A]=|A} A] - AY

Al AN
AN AN

and provided that the matrix [A] is invertible,

-1
[b) = [A]"Ty] (13)
By utilising the concept of energy with the estirated kemels one can formulate a

nonlinear energy ratio [Thomas, 1995],

N
N Ay
p(A) = =2 ;= [yttt (14)
Z AZin,
i=l
This ratio provides an indicator function for the presence of nomlinearity and jts
dependence on the magnitude of the impulse. Figure (taken from [Thomas, 1995]) shows how

p(A) wvares for two different types of nonlinearity, whose nonlinear dominant characteristics

were quadratic and cubic respectively.

1 e
P& R
0.75 - K -
0.5 |- / .
025 | —_ T]1=l T12=0,02 113:0,002 i
=1 M,=0,01 =0,04
ol ] I |
0 2.5 5 7.5 A 10

Figure 1: Varation of the nonlinear energy ratio with magnitude of the impulse.
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3. Applications
3.1 Sine excitation

A cantilever beam incorporating a simulated crack shown in Fig. 2 was excited over the
frequency range 100-400 rad/s with a stepped sine excitation which encompassed only the

second flexural mode of vibration. The higher order FRFs were obtained from eqgs. (8), (9)
and (10).

Figure 2 | Experimental beam incorporating inserts to simulate a breathing crack.

Figure 3 shows Hj, (the linear frequency response function) for the faulted beam with
the resource ®, = 339 rad/s. Hy, displays an additional peak at w, /2 indicating a quadratic

effect. Hais has an additional peak at ®, /3 indicating a cubin effect. These clear results

demonstrate the presence of a general polynomial type nonlinearity which are indicative of a
bilinear stiffness function.
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3.2 Impulse excitation
These results are taken from [Thomas, 1995]. The resuits are from tests on an electric

Pylon with and without a loose joint. The force was applied using tensile (cable) loading and
release mechanism The transient response was recorded for a range of force levels (5.5, 7.5,
15kN) for the 'undamaged' pylon and repeated (5.5, 8, 10kN) with a loose joint in the pylon.
Using eqs. (13) and (14) the results shown in Fig. 4 were obtamed.

Accelerometers
/”" P - —_—
Dymamomerer Channei 1 10 9
0 8( unscrewed boh’ <
Recording and analvsing 06 Channel [ ta 9 J
control desk £EDI45 exniosi ' safe pylon l
i xpinsive
r[ij shackle
= o4
a2
Contred unii ]
Tensile loadi ° — ALY
e loading 0 5 10 15 2

Sysiem

Figure4: Tension release testing of pylon

4, Pseudo-fault method
This is a method which allows one to make a linear system behave as if it had a given

nonlinearity present at a prescribed location. The object is to allow experimental validation of
on-line fault detection systems.

The principle is as follows [Manson ef a/, 1996]. Consider a linear system S, excited
at a location labelled i with an input x® (t) as shown in Fig. 5a. The response at point j is
given by

=90 = [ dalf (e, 9Ot



Now suppose S, isreplaced byS,,, a nonlinear system but with the same linear part as

S, (Le. the same structure but with a fault). If the same wmput x(t) is applied, assuming the
Volterra series exists, the response at j is now given by, (Fig. 5b),
o0 =y )+ yFO () + ¥ ¥ 0+ AyEO (e
where

y$ ="

...J‘;d’tl...d’tn X hgj:i)(t_Tb---»t—Tn)x(i)(fl)...x(i)(’cn)

The object of the exercise is to produce y_,(t) the nonlinear response to x(i)(t) in the

Iinear system. This is accomplished by exciting with an auxiliary signal xgé)(t) at point k say

(Fig. 5¢).
If xg’é)(t) is applied in addition to x¥(t), by the prnciple of superposition (valid for
the linear S, ), the response at ] is
(0 =y 0 +yg
where
y9m = [ de e —tx{P(r)

(rD)

(1), it is required that

So, in order that yO)(t) be equal to the nonlinear response, y
Y9ty =y 1) +y I )+ Ay T 1)+
The Founer transforms of both sides of this equation leads to,

Opy=—— L
t() 270 () {
[ do@Ed (@, o - o)X (o)X V(@ - o)+
L
(2m) , .
X0 ()X (0)XD(0 - 0 —y)+...

+ (272 _[: J: dw,...dw,_; %

H%“)(OJI, sy Cl?n_l, O) - (Dl_‘ . .—(Dn_[) X
X‘ﬂ(wl)...xm(m}n_oxm(m—wl—---—wu_u
4.

r r dmldmzng”(ml,mz,w—m1~m2)x
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Suppose the excitation is harmonic i.e. x(i)(t) = X cos{Qt), the auxiliary input has the

form [Worden et af, 1993],

nse x| Prmn) (5) - (ji) -
SRS A(n’p)lﬂn Q... Q'Xcoslt(n——?.p)ﬂt-hj[Hﬂ Qa... Qm

K)oy - 7
me()= L) & = (2 - 2p)0)| HP (n - 2p)Q)
where
n-1
m(n) = > o odd
m(n) = — n even
! n
A(n,p) = (n—p)! p*3
a(n,p) = n! ==
P 2pl{n—p)! 2

and m the Hgf"‘)(Q,Q,,..,—Q) terms are p negative frequencies and (n-p) positive
frequencies.

The procedure was applied to a single degree of freedom experimental rig [Manson ef
al, 1996] where the objective was to inject an auxiliary input to the g (the linear system) in
order to produce an output which corresponded to the linear system plus a cubic stiffness
junction. Validation was carried out by connecting a nonlinear spring (a clamped beam) to the
linear system and the new response was measured. This was then compared to the linear
system plus the auxiliary input. Parametric models of the linear and nonlinear system were
obtained in order the HFRFs would be calculated and used to derive the auxiliary input for the
nonlinear system. Figure 6 shows a comparison between the experimental nonlinear system
response (due to a sinewave input) and that from the Linear rig with the auxiliary input. A

good comparison is clearly achieved.
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Conclusions

Three applications of methods for treating nonimear structures have been outlined, ail
based on the Volterra series. Although some of these applications are based on relatively
simple structures, they serve to show that the Volterra series offers potential for dealing with
real problems. Many aspects have not been discussed whick are important when one is
utilising the Volterra series such as truncation of the series, bounds on the excitation levels and
range of validity. In addition, the application of the pseudo-fault method should be evaimated
on continuous (MDOF) muliti-input muiti-output systems before it can be claimed to be fully
general

);om (0

(=)

=)
o
(®)
z ?r)
=%
¥t
(c}
x ?t}

Figure 5: Schematic illustrating the pseudo-fault
method.
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TIME-HIERARCHY AND BIFURCATIONS IN
BIOMOLECULAR SYSTEMS. DYNAMICAL AND NOISE

CONTROL OF PHASE TRANSITIONS.

G.Abgarian”, V.Kharkyauen and G.Weinreb
Division of Physiscs of Biological Systems of Institute for Physics NASci of Ukmaine,
Pr-t Nauki, 46, Kiev-22, 252650
*Erevan State Medical University, Erevan, Armenia

Abstract: Biomolecular systems such as DNA, RNA, proteins that construct
different type of functional structures (ion channels, photorcaction centers, etc.)
are very mobile dynamic and stochastic systems with a complex behavior. The
corresponding system of equations contain different time scales. External factors,
such as flows of charged particles, light or chemical rcagents can influence the
system behavior. Taking into account both time hierarchy and interactions
between biomolecule and flows of reagents we develop theoretical approach
describing real biomolecular systems such as ion channels of biomembranes,
photoreaction centers, etc. We show that self-organization effects could be
induced by both pumping as well noise in these systems.

Biological macromolecules play important role in the functioning of alive
systems. They provide important biological functions such as charge transfer
through the membrane, enzymatic functions and a lot of others. Dudng the
functioning they change their configurations. For example, ion channels of
biological membrane providing specific path for ion transport through membrane
have several conformations that determine the channel conductivity (open, closed
states) [Hille, 1992]. Photoreaction centers of bacteria change their conformations
and change the rates of electron tunneling in processes of photoreception [Parson
& Cogdel, 1975]. '

It is well known that proteins are characterised by time scales from
picoseconds to seconds [Carer, 1983]. We’ll consider a generalized two
dimensional molecular machine of charge transport as a non-linear stochastic
system of different time-scales. In this case the system Hamiltonian is reasonable
to represent in the form: H(X,r)=Hpo (%) T Heparge(r) + Hini(x,1). Here Hpypga(x) is
an energy of the macromolecule’s structural group with charges out of the system;
Hiparge(r) is the chamge energy in the system without taking into account the
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interaction with conformational degrees of freedom; Hiq(x,1) is the energy of the
charge-conformational interaction.

It is reasonable to introduce a set of distribution functions P;. These
functions determine the probability density of conformational coordinate x,
number of charges in the systern and the probability density of their iocalization
within macromolecule. For instance, if macromolecule has a single binding site
we can introduce functions Py(x,t) and P;(x,t) that determine distobution
densities of conformational variable x in the empty system (index 0) or in an

occupated one (index 1). We can write equations for these functions:

Py(x,t) 1 é‘[é’HO(x)

a7, x| o

5P‘g'” _ ] ;X [5’{;” P, + kT %EL} + Pykoy — Pikyg, | P
TX

Fo +kT‘_a;0]+ Pikig - PokmnW

-

where Ho(X)=Hmo(x), Hi(x)=Hpo(x) +Hini(x), '2’_‘_, fP;{x,tydx = 1. The
time-hierarchy in the system is manifssted in the fact that charge transport is
highly faster than the conformational motions. (In ion channels ion transfer lies
in time range ~10-7 sec, meanwhile gate processes (conformational motions) lies
in range ~10-3 sec). Using the Haken’s slaving psinciple [Haken, 1983] let us
determine equation for the distribution function of slow conformational variable
X:

p(x,1) = Fy(x,1) + A(x,1). ()
Thus, we suppose that Pik;p=Pgkg; and obtain

op(x,t) _ 1 7 [BV

ot T, OX
where
OV (x) FdH,, JH, N Wao+ N,W,, 5
5x B 5x 53(? W“) + W[z + NDWOI + N2W2| ( )

is the mean force with respect to the fast charge motion; V(x) is effective
conformational potential; N(x) is the probability that the channel is occupied by
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ion; W, =Ql.cxp{ d fj:l, k 1s the Bolizmann constant and T is the absolute

kT

temperature. Equation (2) is a generalized equation for biomolecular

A —

Er)

+
[]
T
1]
u

Er)=H g yrg (FHH,,, (1) r

Figure 1. Enerpy profile of ion channel with one
binding site (enemgy E;). Ny and N; are
proportional to the ion concentmations in  bath
solutions.

system with one binding site, of fast
charge transfer and slow conformational
degree of freedom. Let us suppose that
barrer Ei; 18 mobile (see Fig.1). The
extrema of the statiopary distrbution
function pg(x) are determined by
condition that its derivative is equal to
zero. In the case when Hpg(xX) = x(x-
Xg)%/2 (the system has a single
conformation without charge-

conformational interaction) and when

H;pi(X)=x.x we obtain a nonlinear equation:

4)

This equation could have several solutions that are determined by both dynamic

K(X-X0)=-XN(x).
P‘(l)+
N, =%
ui— / N2 =153
N, =227
@ :
[} 10 x

oo}

kT,

XT=A7
0.1

KT=5.4

>
x

b)

Figure 2. Self-organization in ion channel induced by pumping (N, fig. 2)) and by temperature
(KT, fig.b). Pamameters: x,=10, x=0.45, xg=12, Ng=0, W=0.001, W9,=0.1, W5=0.1, W0;=0.01,
Ey7=E% o+ Hin(x). All vahies are given in arbitrary umits,
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(Ng and N,) and stochastic (T) contro! parameters, In Figs.2 we show results of
computations. One can see that the distnibutiop function pg(X) could have one,
two or three extrema depending on control parameters Ng, N,, T. Thus, in these
molecular systems of time-hierarchy both the pumping (Ng and Nj) [Chinarov ef
al.,1992, Kharkyanen, Panchouk, & Weinreb, 1994] as well noise (T) can induce
self-organization effects. Using these parameters one can control phase transitions
and regulate the processes of charge transport in biomolecules.
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DETECTION OF STICK-SLIP CHAOTIC OSCILLATIONS
USING MELNIKOV’S METHOD

J. Awrejcewicz, M. M. Holicke

Technical University of 1.6dZ, Division of Control and Biomechanics (I-10},
1/15 Stefanowskiego St, 90-924 1.6dzZ, Poland

Abstract: In this paper we predict stick-slip chaotic dynamics in a one-degree-of-freedom
non-autonomous oscillator using the Melnikov’s technique. Numerical simulation confirms
a validity of our approach.

1. Introduction

Self-excited oscillations caused by friction are often observed in nature and belong to
one of the oldest problems of nonlinear mechanics [Stoker, 1950; Andronov et al., 1966].
A decreasing part of the friction coefficient versus a relative velocity between sliding
bodies is responsible for an occurrence of self-excited oscillations. When this relative
velocity equals zero then a static friction can occur (stick), otherwise we have a slip mode
corresponding to the dynamic friction. In this paper an attention is focused on analytical
prediction of stick-slip chaotic motion in a one-degree-of-freedom oscillator with friction
periodically driven using the Melnikov’s method. Chaotic stick-slip dynamics of coupled

oscillators has been reported earlier by simulation [Awrejcewicz & Delfs, 1990 a, b].

2. Analysed System, Melnikov's Method and Results
Stick-slip one-degree-of-freedom oscillations are governed by the following set of

first order ODE's

X=v,
v = ax - bx’ +5[;/ coswt — T(v—v.)], (1)
where
T(v—v.)zTosign(v—v.)—g(v_v_)_{_ﬂ(v_vb)a- (2)
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In Eq. (1) and Eq. (2) ¢>0 is the perturbation parameter and v corresponds 1o the
velocity of the belt on which the considered mechanical system lies. Ty, @, £ are friction
coefficients, a and & are stiffness’ coefficients, whereas y and @ are the amplitude and

frequency of excitation, respectively. For £ =0 we have the unperturbed system with the

foliowing Hamiltonian

H:l[vz-—ax2+lbx4], (3)
2 2

and there are three critical points for a, &> 0: two centres at [i,f %,0] and a hyperbolic

saddle at the origin with the homoclinic orbit satisfying the equation

2 bl
ﬁ:x,{a—bx—mﬁnh—é"—. (4)
dt 2 a?

Integrating Eq. ( 4 ) in respect to ¢ , we obtain

xo(t)z\/%secht, vg(t)=ia\/%sechttanhtj (5)

After some transformations the Melnikov’s function is obtained:

@

M(to) = —a\/%y sin fg I(scchrtanh 75in a)r}dr - Toa\/%«l ﬂsechrtanh T X

— —

4 ©
xsign(sec hztanh 7 - v.:|]dr} -4)6% jsec hrtanh? wr +
¥ - - e (6)
2 k) 3 2 1
+3fv.a’ ( ] _[sech Ttanh m’r++2(a 36 ) ; _[sech rtanh® dr +

v. a\[: _[sec hrtanh «dr,

where 7 =1{—1,.

The first integral of Eq. ( 6 ) can be calculated using the method of residues and it yields

2 ¥ . ,
a\/%}f sin {y I(sechrtanh 7S a)r)dr = 70a %}’ sin, sec h{%} . (7)

—

To calculate the second integral we use

Vo (r)sign[vu(f) - v.] = {_v‘}((f)’ Vo <V (8)

Vo T), VO > Ve

. 2
If 7., 7, arethe solutionsof v = vo(r) = a\/% sechrtanhr, then we have

1 l b 1 1 b
sechz. =.,|—— ! and sechty =,]—+ ———w forw <—— 9
' \/2 4 24 \jz 4 28 7 )

T2



Therefore, we have

TO”E Jsec hz tanh rsign[sec hrtanh 7 - v, ]a’r =
2| ¢
—TOan - Jsechrtanhra’r+ 'fsechrtanhm’f— Jsechrtanhra’r = (10)

=2Tga\/z l+ l—ivz— l— 1 4 v |,
b 2 4 202 2 4 2a2

Ifw >—C—7- then 7. ¢ R and

V2b

Toa\/% J-sechftanh rsign[sechrtanh T— }dr = Toa\E _[sechftanh dr=0. (11)

—

Calculating the rest of the integrals, we finally obtain

M(ro)= *aﬁwm sec h( a)] sinwig ~ ——gﬂi— i( - 3fvs )
b
el ——} fr e

a
_Jz_b.

Then, the Melnikov’s criterion of chaos is given by
) 16 4
NG RO ST
g4 35 bJ_ 5l -p )

[Eineadas

The obtained results are shown in the (y, v+ plane in Fig. 1.

} o v.<7%,m>

A

¥

Fig. 1. Chaotic threshold in the (}f, v.) plane.
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3. Concluding Remarks
In order to check a validity of our results we have taken a=b=1, a= =7, =03,
w=2, w =04 and we have obtained y.=0.64. The MATLAB-SIMULINK package has

been used to simulate the analysed system. The obtained results are shown in Fig. 2 and

illustrate a good agreement with the analytical method used.

Fig. 2. Phase portraits of the analysed system for different values
of y parameter.
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CHAOS IMPLIES EXTREMELY HIGH ORDER

1. Awrejcewicz, 7C.-H. Lamarque
Technical University of Léd%, Division of Control and Biomechanics (I-10)
1/15 Stefanowskiego St., 90-924 LédZ, POLAND
Tel: (4842) 312225; Fax: (4842) 361383
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Abstract. Chaotic and hyperchaotic behaviour of the Chossat-Golubitsky
map is analyzed.

1 Introduction

In this paper an attention is focused on exploring dynamical properties of aperiodic
behaviour displayed by two-dimensional maps. A key investigation is oriented on an
symmetry property analysis based on consideration of simple symraetric maps rather
than an artificial construction of a system of coupled oscillators with symmetry. The
Chossat-Golubitsky map [Chossat, Golubitsky 1988] (symmetric and non-invertible) is
used and it exhibits periodic, quasi-periodic, chaotic and hyperchaotic dynamics and
a great number of bifurcations. Among others, a sudden change of regular dynamics
has been explained via a saddle (period-8) - node (period-4) bifurcation occurring on
a boundary of the umbrella-shape set of saddles and a sudden route to infinity via the
crisis of two peculiar structures of saddles on the border of the period-4 unstable orbits

set are illustrated and analyzed.

2 Results and Conclusions

The numerical techniques applied are described in references [Nusse & Yorke, 1994,

Awrejcewicz 1991; Parker & Chua, 1989]. Consider the Chossat-Golubitsky map
Z— (A|2%|+ BRe(Z") +C) 2+ D(2), (1)

where: Z = X +1iY (i*=-1), Z° = X —i¥, A, B,C,D € R, I € I (integer) and
A=1.0,C=-1775, D=0.5 1= 5 For B =0.1 we have the umbrella-like attractor
and a set of period-4 orbits (Fig. 1a, b).
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Fig. 1: The umbrella hyperchaotic attractor with the Lyapunov numbers 1.48 and 1.25

(a} and a set of the period-4 orbits with marked eigenvectors (b}

In Fig. la one can see arcs intersecting each other and creating a star-like set of
points. These curves (invariant) are repeated again in Fig. 1b and it is seen that the
period-4 orbit (previously stable) has appeared and it lies in the five dashed leave-like
areas. Now these points are saddles with the eigenvalues ¢, = ~7.07 and ¢ = 6.12
and with the marked eigenvectors. In the case of the points lying on the star-like
spikes, they are also saddles with the same eigenvalues and marked eigenvectors with
one exception — in the right arm of the star there is another point with the very large,
approximately opposite situated eigenvectors (1.125-10°) and (1.17-10%). Note that the
eigenvectors of the three points described are tangent to the marked curve and their
directions indicate that the points cannot move ‘along this curve. (Note that here a
tangent is a generalization of the classical tangent).

Let us focus our attention on a tangency structure of 1 - set in JR? and divide an

original hyperchaotic set (Fig. 1) into two sets

s=US5. (2)
1=2

where S; =T corresponds to the extracted set of points presented in Fig. 1b. Approxi-
mating the umbrella-like set by infinitely many points, I becomes a continuous and com-
pact set. Because F': (X;, Y;} — IR? is a continuous map and F (X, V) # F (X, Y2),
then F[(X,, Y1), (X, Y3)] contains a curve joining F (X, ¥}) and F (X;, ¥3). On the
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basis of iterations we have a curve {the map is non-invertible). As a result of such an
approach we get a curve, which is a regular 1-set, and (S —I') which is an irregular,
so-called ”curve-free” set.

The points in Fig. la are mainly concentrated along the extracted curve T', and
the condition of ”all points” can be substituted by "almost all”. Regular curves are
characterized by tangents, and according to Besicovitch [Falconer 1985] our set in JR?

has a tangent at (X, Y) in a direction of the unit vector 1 (i, ) if

D (S, (X,Y)>0A N lim Dy (S0 (B, (X,7)\s (X, 1), ©))) =0, (3
w>0

where

o _ Dy(SNB.(X,Y
D° (S, (X, Y)) = lim # ( I’EQT)S( ))

and S ((X, Y, cp) denotes a double sector with the (X,Y") vertex and 2y angie (see

) (4)

Fig. 1a). (Note that here  is small enough in order to separate another branch of the
T curve). Such a description is intuitively true, because a tangent traces a direction
with significantly many more points than the rest of the points in the marked sector.

The most interesting phenomenon detected here is that the corresponding five vor-
texes of the star correspond to the period-4 saddle with the above mentioned eigenvalues
and eigenvectors. It means (from a topological point of view) that a regular subset of
the irregular strange attractor is controlled by the eigenvectors of particular periodic
orbits (here period-4). Because I" can be treated as the rectifiable curve, then it pos-
sesses a tangent at almost all its points, which implies its differentiability in almost sll
points. Increasing continuously the control parameter, we have observed that the star
spikes move towards the border of the limit points. The explosion takes place exactly
when these points touch the border. At this critical state we have observed a specially
organized structures of the eigenvectors (they are parallel correspondingly), whereas
two eigenvectors with a very high length become parallel reaching (probably) the plus
and minus infinity, which causes that the infinity becomes the attractor.

We have investigated the B parameter interval where only the 2-periodic orbit
has been found, this time looking for the unstable periodic orbits and we have found

infinitely many of them to form a non-attracting invariant chaotic saddle which exhibits
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the horseshoe-like dynamics. During the increase of B, a structure as well as stability
of this invariant set changes and also, correspondingly, a chaotic attractor suddenly
appears or vanishes as a result of an interior crisis (a collision between the chaotic
saddle with the stable period-14 orbit or vice-versa, i.e. a collision between the chaotic
attractor and the unstable period-14 orbit).

Note that a structure of the chaotic attractor is a result of extremely high or-
der (which has its limit in infinity) of infinitely many flip and regular saddle-type
periodic orbits. To exhibit and analyse this structure we limit our consideration to
B = —0.01592. During numerical simulations we have observed how the period-1 sad-
dles create a boundary of the bounded region of the phase space which then is more
strongly established by the period-3 and 6 orbits. Because it is easy to recognise (dur-
ing computer simulations) that the period-14 saddle orbit traces a shape of the chaotic
attractor, therefore, we have concluded that the chaotic strange attractor is a result
of the collision between the unstable pericd-14 saddle orbit and the stable period-14
orbit. Note also that during a further increase of B parameter, an activity of other

periodic saddles is invoked.
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Abstract. The method of controlling and improvement of stability of periodic orbits
of vibro-impact systems is proposed. This method is based on the feedback loop control
with a time delay.

1 Introduction

In this paper we consider control of steady-state vibro-impact motion with a possibility of its
stability improvement. The vibro-impact dynamics can be observed in hammer-like devices,
ball and race dynamics, a ball bearing assembly, and, depending on a purpose, stabilisation
or destabilisation of the vibro-impact periodic motion is needed. Although there are many
control methods (feedback control with a time delay, sliding mode contrel, repetitive control,
iterative learning control, adaptive control) an applied control usually proposed is on a basis on
the numerical observations of the required results by an introduction of the control coefficients
[Hara it et al., 1988; Arimoto, 1990; Slotine & Li, 1991; YoucefToumi & Wu, 1992). In this
paper we are focused on the vibro-impact dynamics control with 2 delay feedback supported by

an analytical prediction,

2 Delay Feedback Control
The analysed one-degree-of-freedom vibro-impact system is governed by the following equation
£+ ct+a’z= Pycoswt + Alz(t) — z(t - T + B &(t) — 2(t - T, (1)

where: Py = yok2/m, ¢ = c1/m, a® = (k1 + kz)/m, A = ksa/m, B = kzb/m, and T = 27 /w.
Above yp and w are the amplitude and the frequency cf kinematic excitation; ky, ks are the
stiffnesses coefficients; ¢, is the damping coefficient; m is the mass; a, & are control coefficients.
A key point of such a control is that a periodic solution possesses the same period as the
excitation, i.e. =z = zo(t — T), and z( is a particular solution of both the controlled and
uncontrolled system [Krodkiewski & Faragher, 1995).
We assume damping of the same order as ¢, and from (1) we obtain

i+ olz = Pycoswt+ eA[z(t) — z(t = T)] + B [(l - %) E(t) — z(t — T)} : (2)
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Introducing

77 coswh, (3)

we get

£+a23=6f(a,n,’qb), (4)

where:

PO PU
f(a,n;'ﬂb)‘:afi [Z-choswt—z(t—'r)—mcgsw(t_’r)}_|_
¢ . Pow . . Pyw ) ]
+£B[(l—§) (z—ag o2 smwt)—z(t——T)-i—a:,_u?smw(t—T) .

n=wt Y=al

Using the KBM method we have truncated the ¢ series up to the order O(e) and after integration
of the two first ordered ODE’s we get

7 cos(wt + @) + e (Ccos agt + D sin agt), (5)
— W

where:

a(t) = Coe™, w(t)=aot+8s, R= % {AsinaT —w(c— B(1 —cosaT)i},

A
g = @ — %(1 —cosaT)—}——?—gsinaT, C = Cycosby, D =-Cysindy, (6)
Co= V(024 D2,

3 Stability Control

Before the impact number [, the mnass possesses the velocity x;_. This causes the following

perturbation solution to occur
7+ 6z = R [(C + 6C)) cos apmy + (D + 6D;) sin agn] + acos(wn + @ + 1), (7)

A new time 7 is measured from the {-th impact m; = 7 + é7;. For example, the next impact
occurs for 13 = i}—” + 67}, where 8T} denotes the peribd T = 27 /w perturbation.
The following boundary conditions are introduced:

I: 1=0, én=0 6x=0 6% =06, (8)

2mk
I+1: 7= {—- +6n, =560, 6bxr=0 b= 5i(1+1)_.

After some calculations we have obtained the following equations

501 — 0,5(,0( sin Y= 0, (9)
" RO — apCte
R | (50141 - b)) O“’w 520 | 50y cos 28aq + 6D sin 2800 | — 6C1ay = 0,
2 ? — a3)C — 2R C't
R.e™ %\ (6111 — 61) (F"— o) " U tan fag + Ré6Cicos2fag + R6D;sin 2Bagp

—8Cagsin 28ag] + REC) 11 + apb Dy — {(Re + Dawbppicosp =0,
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where § = mk/w and R, <1 as usual denotes the restitution coefficient.

Assuming that
I

by = bpg + ZwéT,n, (10)

i=1
and introducing

50} = al'}r‘t, (5Dl = CL‘_),'YJ, 5(Pl = 0371 (11)

we get the following characteristic equation

bay® + b1y + b =0, (12)
where:
by = (_EMRRC — opC tan Bag + asingoj o,
w
by = R gin 28y [Rrezlm (R? — ag)C ~ 2RogC tan fog — (R, +1)awcosy
w

-—e4ﬁRRT RC - C!OC tan ﬁa{)

25r BC — apC tan Bag
w

— R, (Rsin28ap + ag cos 2fcg) — Rsin28ayg],

(Rg — a%)C — 2Ry tan Joy n

[

(R sin 2800 + apcos 28ap) +

— ae®PR

+age sin p [ag cos 2Bag+ (13)

bo = R,-e‘wR sin 2}80:0
ipr RC — apC tan Bag
w

+R.e
—aR.e®Rgin g [cos 28 ( Rsin 2Bag + ap cos 28ayg) +

(Rsin2Bag + apcos2Pap) +

+sin28ayg (R cos 2Pag — ag sin 20aq)] .

The problem of stability is reduced to consideration of the second order characteristic Eq.
(11). If the roots of Eq. (12) are |y1,2] < 1, then according to the assumed solutions (11) §Ci.

6Dy and &y approach zero for I — oo, and the solutions will be asymptotically stable.

4 Simulation Results and Conclusions

During numerical simulations we have used the MATLAB-Simulink package and the MATLAB-
model for equation (1) with the boundary conditions.
We have taken the following parammeters: m = 1lkg|, ky = 3[N/m|, k2 = 1[IV/m], ¢; =0
(Ns/m], o = 1[m], T = 0.4n[s], R, = 0.65, s = 0.01[m], & = ~0.01[V/m], b = —0.045[Ns/m].
For these parameters according to (6) we get B = —0.103, which shows that the delay
loop control coefficients A and B allow us to obtain quicker damping of free oscillations in the

solution (5) than without control (Fig. 1). Additionally, for the given parameters we have
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found from Eq. (12) that |y2| are lying closer to the origin for the system with the control
coefficients than without control (with the delay loop |v1,2| = 0.576, whereas without the loop
Im.z| = 0.63).

For the given parameters numerical simulations confirm analytical predictions.

x(2)-x2(1-T1)

x(1)-2(8-T}

® B m B w3 % v w m % @ m H m W% % @ W W
Tem {sacond) Toma {saecond)
Fig. 1: Difference between two transients z(t) — z(t — T} approaching periodic orbit for the system: (a)

without control and (b) with control (a = —0.01, b = —0.045)

It can be seen in Fig. 1, that with control the transients vanish guicker than in the case
without control. In the case presented above the periodic orbit is achieved after about 24.1
seconds for the system analysed without the delay loop and a.fte:r 21.8 seconds for the system
analysed with the delay loop (|u| € 107%), respectively. .
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Abstract : The purpose of this paper is to present some results on the synchronization and
anti-synchronization of chaotic systems. A new algorithmn is developed to recover a trajectory
of a chaotic piecewise linear system from its e—~trajectory. Such a problem may be applied to
the extraction of an information bearing signal from an input signal.

1 Introduction

Recently, there has been much interest in the chaotic synchronization and control of dy-
namical systems, following various methods leading to various applications, for example
encoding electronic messages for secure communications, [Pecora & Carroll, 1990 ; Ko-
carev et al, 1992 ; Lozi & Chua, 1993 ; Lozi & Aziz-Alaoui, 1994] and other references
given in the bibliography, theoritical results can be found in Wu & Chua [1994].

Chua's circuit, which is well known to exhibit a strong strange attractor [Chua 1992],
is often used as a basic model. One essential property of a chaotic signal is that it is
not asymptotically stable, for chaotic systems there is sensitive dependance on intial data
and every trajectory on the strange attractor is unstable. Synchronization of all corre-
sponding variables is possible only if there are control connections between the systems
which have to synchronize, thereby generating one new connected system. In the classical
methods, to prove synchronization, we require the computation of numerical quantities
as conditional Lyapunov exponents. But, if there are no control connections between the
systems then generally one cannot resolve by means of synchronization the problem of
extracting the information bearing signal s;,2=0,1--: from the input signal ; = z; + s;,
where z; is some unknown trajectory of one of the receiving systems. Let us note that
this problem is equivalent to the problem of recovering the trajectory z; of the system
from its e—trajectory x;, [Sharkovsky, 1995].

For these reasons the notion of anti-synchronization, which we give here, may be useful.

2 Synchronization and Anti-Synchronization

2.1 Definitions and main theorem

In this section we will define the notion of anti-synchronization in one or more dimension-
nal dynamical systems, and we will give the main result. Let us first give some necessary
definitions; most of them are done for discrete one-dimensional dynamical systems, but
they may be easily written for any dimension and also in continuous time,
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Definition 1. The sequence Zg,Z1,--+,in is an e—trajectory of a dynamical system
Tn+l = f(IEn), if |fﬁ{ - f(le < e fori = 0, 1, ,N— 1.

It has long been known that certain well-behaved maps exhibit shadowing property.
For example numerical computations can lead to spurious results because of finite floating
point arithmetic. Near a numerically computed orbit there exists a {rue orbit which,
however, may be the orbit of a different initial value than the cne intended, see Bowen
[1975]. There is below a definition of this important property which has been established
at some parameter values of various maps {(the logistic one for example, [Hammel et al,
1987]), and which holds for structurally stable systems.

Definition 2. A dynamical system zn4) = f(z,) has the shadowing property if there
exists €9 > 0 such that for any e—trajectory Zo,Z, -+, Ty with € < g9, the dynamical
system has trajectory zo,zy,' -+ ,ZTn Such that |&; — z;| < e fori=10,1,---,N.

For dynamical systems (both in continuous and discrete time) which have this property,
the problem of reconstructing trajectory from some s—trajectory, can be successfully
resolved in admissible time.

Definition 3. A dynamical system znt; = f{z,) has the anti-synchronization prop-
erty if there exist eg > 0 and A, 0 < A < 1, such that for any two e—closed (with € < gg)
trajectories o, T1,---,zn and z(, T, -+, 2y (that slz; —z}| <e fori=0,1,.---,N), we
have |zg — z| < const x AV,

This definition may be generalized in an obvious way to systems of any dimension and to
continuous-time systems.

Important remarks

1. For a dynamical system having the anti-synchronization property, we can always
recover any piece of any trajectory with any given accuracy by knowing some
e—trajectory of fairly large length which is e—close to this trajectory.

2. If the dimension of a dynamical system is greater than one and there are both
positive and negative Lyapunov exponents of the trajectories on the attractor of
this system, the problem of the transmission of information via such a system is
resolved by the use of both synchronization effects (for the negative exponents) and
anti-synchronization effects (for the positive exponents).

We can now come to the main result given in the following theorem.

Theorem 4. : (Main result)

Let us have a dynamical system, f*: X — X, where X is some compact, and let
A C X be a hyperbolic (strange) attractor of this system. Then there is some g9 > 0
such that for any £ < ¢o and any e—trajectory {Zy, 71, ,Zn} (N being sufficiently
large) belonging to e—neighbourhood of the attractor A, there exists (true) trajectory
{zg, 21, --,Zn} on A such that ||Z; —zy|| <e for 0 <1 < N,

Furthermore, for any é > O there exist may,ms > 0 (m; + my < N ) such that for
any two trajectories {.ﬁcgﬂ,x@,---,xf)} (¢ = 1,2) on A for which ||Z; — scSQ)H < g for
0<i<N andqé€ {I,2}, we have ||x,(1) — s <6 form <i<N—ma
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Corollary Under the same hypothesis, if Z; = z; 4+ 5, 0 <1 < N, with [s;| < €, then
for any 6 > 0, there are m, my > 0 such that each trajectory z;,71 =0,1,---, N for which
|£; — zi] < € if 0 <1 < N on the time interval [m,, N — my| has the following property:
|z} — z;| < & and thus |s! — 55| < 6§ where s{ = %; —z}, m; <1 < N — ma.

2.2 Algorithm for piecewise linear systems

Let s; be an information bearing signal and Z; = z; 4+ s; be the input signal, where z;
is some unknown trajectory of one of the receiving systems. We want to realize secure
communications via a strange attractor, then to extract s;, 1 = 0,1, -- from Z; ; (this
problem is equivalent to the problem of recovering the trajectory z;, 7 = 0,1, -- of the
system from its e—trajectory Z;, 1 = 0,1, ).

For that purpose we have to realize an algorithm and to write a program to find z! if
we know I;. We use Lozi-map, f, as an example. This map exhibits a hyperbolic strange
attractor, it is given as follows :

{ Tper = - alze| +y+1

Yn+y1 = bz,

Let A;, 7 = 1,2 denote the Lyapunov exponents of the map f, the main steps of our
algorithm can be summed up as follows :

(i) Firstly, for a given initial condition (2o, %), we have two sequences {Zg, Z1, -+, Z;, - - },
(#; = x4+ s;),with |Z; —zi] < € and {§1, %2, -, %, -}, With |§: ~ v| < €, (for Lozi-
map, £ = be).

Let us denote k; and m; (1 =10,1,2- -}, the integers verifying:
e =0<k <my <ky <y,
2 0ifmey <9< k,, wheres =1,2--+,
. E <0ifk, <i<m, where s =1,2-.-.
(i) Secondly, we define the sets :

- If I\ Az] <1 (case of synchronization) -
VP = {(z,y) € R* Z;i—e < z; < £;+eand fi—e < y; < gi+e}ifmey < i < k,,

§=1,2.-
Z={(z,y) e R Ti—e <z < T teand fi—e <y < §+e}ifk, < i < my,
s=1,2--,

- If [A1Az] > 1 {case of anti-synchronization)
U ={(z,y) € R®Zi~c < z; < Zyteand f—e < y; < ite}ifm,y <i <k,

s=1,2--,
W2 ={(z,y) e R* Zi—e < z; <Ti+eand fi—e < y; < fi+e}ifk, < i< my,
5 = 1)2...)

(1) Finally, we define the sets below by iteration, for  =1,2,--- N

?
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- Case of synchronization
Vi=VEin fvih), ifmely < i < kg s =1,2---,
Zt=Z7 0 f(Z0)), ifk, <i<my, s=1,2--+,

- Case of anti-synchronization
Ub=Ul"'n f~YUED), if mely <i < kg, s=1,2- 1,
Wi =W n AW, ik <i<mg, s = 1,200,

Each of these sets is a subset of the previous one (ie. VO D V' D V2. .- D VN 3 ).
Hence we can recover z; with the given accuracy é after N(§) iterations.
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Abstract: Non-linear oscillations of a nearly integrable time-periodic Hamiltonlan sy-
stem with one degree of freedom are investigated in a small finite neighbourhood of its
equilibrium. It is assumed that multipliers of the linearized system are multiple and the
characteristic exponents +¢N are imaginary (N is an integer).

It 1s shown that for most initial data the motions are quasi- periodic in the neighbour-
hood of the equilibriurrd. The existence of stable 2x-periodic motions near an unstable
equilibrium position is established. It is shown that, irrespective of instability, trajec-
tories beginning sufficiently close to an equilibrium point will always remain at a finite
distance from it. The chaotic nature of the motions near trajectories asymptotic to the

equilibrium point is discussed.

1 Formulation of the Problem

Consider a system with one degree of freedom whose motion is described by Ha-
miltonian differential equation. The Harniltonian is 2x-periodic in time ¢, analytic in
canonical variables ¢,p and a small parameter €. Assume that when £ = 0 the origin
g = p =0 is a stable equilibrium position. By an appropriate choice of variables ¢, p the
Hamiltonian can be written in the form

B = suld + )+ o(g? + 7Y+ O((g" + 7))+ O(e) ()

where w is a frequency of linear oscillations. We assume that the constant ¢ # 0.

In this paper we analyze the behaviour of the system in a small finite neighbourhood
of equilibrium by a parametric resonance w = N, where N is an integer. The case of the

parametric resonance 2w = /N was investigated in [Markeyew, 1995a).

2 Unperturbed System
In the case w = N —eff ( B is a constant) the Hamiltonian can be reduced by a

non-linear canonical 2z-periodic in £ change of variables ¢,p — =1, z; to the form
o= 95 Lel(u— 1)a? + (1 + 1)2d] = e[faos® + frz’es + frocazd + foazd)+
= 13 K Ty e )iﬂg \—[ 30T} + fnziT2 1214 03%7
1
1@ 4227 f + O((ed +52)%) +£04 + O ©

where b, u, fi;(t + 7 = 3) are constant and O, denotes a series that begins with fourth-

or higher order terms in the variables z,, 14
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["ig.1 The phase portrait of the unperturbed system

If J#| # 1 then all terms of third degree of the Hamiltonian can be killed by means
of a non-linear canonical change of variables. This case was investigated in [Markeyew,
1995b]. We shall investigate the case y = —1.

We introduce the variables u;,u, through the generating function

1 ) 1 , 1 3
S = znwup — ‘Z;faoI;U? - me?l]uz - 6f12u2 (3)

and carry out rescaling by means of the formulae

3 3
uy = €7 fin, ur = €fosys, T = —2bfose?t (4)
In the new variables y,, y2 the Hamiltonian has the form
1 1 Fl
H = yi-yj+ Zy;‘ + sz(2f§3y$y§ — 4 foa(T)ys — fosfnys) + O(e?) (5)
where the function foq(7) is periodic in 7.

Putting £ = 0, we obtain a unperturbed system with the Hamiltonian

1

Ho = v —vi+ 7% (6)
The unperturbed system has the energy integral Hy = h and is a integrable system.
Its phase portrait is shown in Fig.1. Motions of the system can occur only when b > -—?.
The value h = —%7- corresponds to a equilibrium position (point P in the Fig.1) with the
coordinates y; =0, y, = 3. If —24—7 < h < 0or A > 0 the phase trajectories are closed

curves. The value h = 0 corresponds to the separatrix and the origin of coordinates.
QOutside of the separatrix the solutions of the unperturbed system can be expressed

in terms of elliptic functions

_ovhen(u, k) + 8
v = \/ch(u,k)-I-l (M
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where u = wo(7 — 79), the A, e, §,wp, k can be expressed through the energy constant h.

The quantity 7o is an arbitrary constant. On the separatrix we have (taking y1(0) = 0)
T 1
(8)

= ( Yy = ;ﬁ{_—%
Outside of the separatrix expressing in the action-angle variables w,/ the Hamilto-

T2 + %)2’
nian has the following form Hy = A(J). Calculations show that outside of the separatrix

the condition for non-degeneracy of the system % # 0 1s fulfilled.

3 Non-linear Oscillations of the Perturbed System

Consider now the perturbed systemn with the Hamiltonian (5). According to Ivanov &
Sokol'skii [1980], Merman [1964] and Bardin [1991] its equilibrium position y; = y, = 0
1s unstable and there are exactly two single-parameter families of asymptotic solutions,
one of them tends asymptotically to the origin as ¢t — +co and other as 1 — —co. I,
however, the asymptotic trajectories are pairwise confluent in the unperturbed system,
forming separatrix, then in the full system the separatrix in general decouple [Arnold,
et al. 1988 ], and there is a stochastic layer in their neighbourhood .

Since outside a sufficiently small neighbourhood of the separatrix the Hamilton func-
tion (5) written in the action-angle variables is analytic and its unperturbed part is
non-degenerate, most closed trajectories in Fig.1 generate conditionally-periodic moti-
ons when 0 < ¢ < 1 [Arnold, et al. 1988 |. The Lebesgue measure of the completion
of the set of these generating trajectories is of the order exp(—cie™") (where ¢; > 0 a
constant) [Neishtadt,1981]. Thus, in spite of the fact that the equilibrium y; =y, = 0 is
unstable in the perturbed system trajectories that begin sufficiently close to the origin
of coordinates remain in a bounded neighbourhood of the origin.

According to Poincare’s theory the equilibrium position P of the unperturbed systern
are replaced by 27 —periodic {with respect variable 1) motion of the full systern which
depend analytically on €. Since the unperturbed system is non-degenerate, from Moser’s
theorem on invariant curves these periodic motions are stable,

We use Chirikov’s [1977] method to obtain an estimate of the width of the stochastic
layer. The general solution of the unperturbed system can be written in the form

y1=yi{7 + k), y2 =1yt +0,h) (9)
where ¢ and h are arbitrary constant and h is the energy constant. In the full system
o and h are slowly changing functions of 7. Ignoring terms of order above €3 in the

Hamiltonian (5) we consider the separatrix mapping

Ry = hg+exre ™ sinag, oy = ag + aq)\|h.|—é (10)

where o = gAo + 0, hg, oq are the value of h, o correspondingly at + = 0 and Ay, oy
are the value of h, o correspondingly over a time interval equal to one cycle of a motion

near separatrix. y,&;, ¢ are some numbers and A = (2] fos]e2) 7.
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We linearize the mapping (10) in the neighbourhood of the stationary points
h. =% (agh/27n)°
P1 =P0+I\/Sin/\g, &1:&0+P] (11)
where { = exA%e™?7%¢a/6h%. The new variable P was introduced by means the following
formula ,
h=h.—6hE(agh)™'P (12)
According to Chirikov’s method from the condition |K| > 1 we determined that width

of the stochastic layer is the order of €? exp(—cs“%), where ¢ = (b] foa|) .
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By now inverse scattering transform (IST) method is apparently a pow-
erful systematic tool to solve nonlinear PDE and by significance may be
compared with the Fourier transforms method for the theory of linear dif-
ferential equation. But from the outset IST had form suitable to solve the
Cauchy problem for nonlinear equations (NE) of hyperbolic types. The 2D
elliptic sine-Gordon equation

(8% + 83)11, = sin(u) (1}

describes in good approximation quite a lot of nonlinear phenomena in the
condensed matter physics: two-dimensional Josephson junctions, magnetic
films, incommensurate structures in crystals and so on. In this paper the
modification of the IST is proposed to solve boundary value problems for NE
with L-A pairs.

Single vortex with topological charge @ = § Vu - dr |, dipoles of vortices
with @ = +1,42,... have been studied using IST modification proposed in
(1,2, 3, 4]. The outline of our procedure is following: 1) the direct and inverse
problems are considered in both half- plane z > 0 and z < 0 separately, 2) the
boundary conditions when allow us to determine only part of the scattering
data, 3) we match the scattering problems in the left and right half-planes and
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determine the all scattering data. Then Dirichlet problem reduces to solution
of the Gelfand-Levitan-Marchenko linear equations. Vortex dipole formed by
charges is represented by 2m -kinks of finite length that are terminating ou the
vortex centers. It has simple boundary conditions: u(xz,y) — 0, as r — oo .
In this case we obtained the following systems of inverse problem equations:

(~1)* 4N (5, 2) + exFoy+ 2) + [1M1 (v, 2) - Fo (24 2) +
¥
EikN,{;(y,t)'F] (t+2§)]dt=0, Eik = —E&)q, 512—_—1,
o0
4:}\/11 ('y,z) + E]iFl (y + Z) + -/Haikl Mk (y,t) : F] (t + 2.') + (ﬁ)
¥

E‘ika(y»t)'FZ(t+Z)]dt=O} k=12
wa )

1 = o)
Fy(m,y) = 5 / dA 2T wi()) exp { v — wl()\)sc} S(A), p=10,1,2

-1

which for given scattering data S (X} (X is spectral parameter, wy = ’\z*\ , Wy =

-1

2=2) define kernels Ny, Miof Jost functions and solution of (1) by u(z,y)
= —4arctan 2Ny (z,y,t = y) . We find that vortex dipole (centers of vortices
are situated at the points @ = 0,y = %! )are described by continuous spec-
trum with singularity:

Q) sinh ! - wy

Wa

S(A)=0 (z-X) <0, S (A) = —wy.sign()) (z-2) = 0.

Spiral dipole is represented spiral-shaped 2sr—kink section. Near the spi-
ral centers (z = 0, ¥ = *!) the field u can be asymptotically expanded

yx!

u — = arctan +i—:’:1n[(y:i:l)2+:tz] (z— 0, y—yxl).

7T
The first item has singularity of vortex () = £1), the second item represents
logarithmic singularity of point sourse with fistrength. We show that so-
lution of corresponding boundary problem is defined by (2) with scattering
data

5 (A) = sign(A) [—wlz -y - sinh(wsg - 1) + % exp (—wy - 1) + % -exp (we - 1)
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for (zx -1 >0) and S{(A) = 0 for (z-1 < 0). The asymptotic behavior of

w(x,y) as r? = 2% + y® — oo have the simple form :
P

I+ . — — f_ . == —
Ay (z,y) = (32— 5;3.1, Ky (| T — 'r_,_|) -ld. + Q—Way Ko U r — 7~_|) ,
(3)
where Kp(r) is zero-order McDonald function and 7= = (0, £{). Just as we

1nvestigated vortex dipole and spiral dipole {(with z = 0, y = =+! centers)
against background of the cnoidal wave

ug = 4arctan [cn (E) /14 sn (%)} (4)

which corresponds to the ground state of the junction for definite values
of the external magnetic field,to the ground state of some incommensurate
magnetics and crystals. Using obtained scattering data [2] we find leading
terms of the asymptotes of u (x, y) (adiabatic approximation)

u— uglzx+olz,y)+ 8(z,7)) T — 00, (5)
o(z,,y)= E arctan Yx _ arctan Y- T, = _z_ yu = yF!
) 9 z, T, ) + /—I{I) =+ ,—I{,‘z,
~k T4 T_ . 4Kk™ ) 4E
ﬁ(m"y)zm(f*mE*"f‘lnE)’ =g Y27

where R is truncation radius, K, E are complete elliptic integral of the first
and second kind respectively and ri = z% + y5. Such solution describes
the two-dimensional deformation of the cnoidal wave (or lattice solitons) in
the presence a magnetic spiral dipole. It is known that when the junction is
cooled below its superconducting transition temperature Abrikosow vortices
are trapped and created a magnetic dipole (f3 = 0) |5] or spiral dipole
(fo # 0) on the defects. We note that firstly the single singular spiral
was found in [6] by numerical simulation and our results for dipoles are in
accordance with that results.
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Abstract

In this paper the two degrees of freedom system (TDOFS) with friction which
describes belt conveyor will be investigated. The area of parameters when the
movement is chaotic will be calculated. The equations describing these model are
nonlinear so that their chaotic characteristic: the shape of solution, the phase
orbit, the Poincare map, the spectral density function, the autocorrelation func-
tion will be taken into account. Additionally, an initial conditions influence the
vibrations form has been considered ( the simple celluar method ). The results
has been presented graphically.

1 Introduction

The technical dynamical systems are described mostly with ordinary differential equ-
ations called ‘equations of motion’. They have the form x = f{1,x) with the initial
conditions x(to) = X, where X = [z1,22,...,2x8)T and = [fi, fo,..., fn]5. It is
assumed that one or more of the functions f; are nonlinear.

Solutions of such equations may be chaotic, quasi-periodic or periodic. There are
some characteristics making possible to distinguish it: the shape of solution, the phase
orbit, the Poincaré map, the spectral density function, the autocorrelation function,
the Lyapunov exponent value.

2 The analysis of two-degrees-of-freedom chaotic
system with friction

In this paper the two-degrees-of-freedom dynamical system with friction is analysed.
It is a system which consist of two mass: my,m2, two springs: &y, k; and moving belt
with speed v = consi. This system is given in Fig.1. The equations of motion of this
system are:

Ty = —kyr1 — koary + kexa + Th(un) MaZy = —kpzy + kp1y + To(w2)
where:
Ti1(q) - 1s the friction force of mass m; dependes on the relative velocity w; = vy — 1

T (w,) - is the friction force of mass m, dependes on the relative velocity wy = vo—
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Figure 1:

Iy, T - mass velocities my,m,
Functions Ty and T, are defined by:
T1 (w]) = Tmsgnﬂr’l — O I’Vl -+ ,81 I’Vla Tg('wg) = ngsgnt - Q;Y*Vz -+ ﬁg“?

For the numerical analysis it has been assumed that:
my =4, my = 3,a; = 5.518, a0y = 4.9, f; = 0.1569, B, = 0.1816,
To1 = 29.43, T4z = 19.62, vg = 0.5k, = 11.77, k2 = 7.85 and zero initial conditions.

Equations of motion have been solved numerically using the Runge-Kutta-Merson
method. Next, the chaotic characteristics have been derived from the solution with
the programs described in [4]. Figures 2 and 3 show two of them: the Poincaré map
for mass mm; and m, which suggestes that the system is chaotic. Remaining charac-
teristics of chaos which were used in the investigations are the following: non-regular
displacement, non-existence of limit cycles in phase plane, wide spectrum, shape of
the autocorrelation function will be presented during the conference.

The influence of the varying of initial conditions on the nature of motion is analysed
with a simple cellular method [3]. Fig. 4 shows an influence of initial conditions for
system solutions.
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Abstract : We intend to establish a methodology suited to the search of the first
bifurcations of convective flows using a linear stability analysis, allowing us to define
a relation between amplitude and frequency of the perturbation. A particular combi-
nation of various numerical methods to compute on one hand the basic solution and
on the other hand the perturbation is applied to the search of the bifurcations in a
thermally—driven cavity. This method shows a good agreement with available experi-
mental and numerical data and can provide a significant accuracy for a reduced cost in
comparison with other weli-known techniques like direct simulation.

Introduction

The transitions from steady state to unsteady flows in a thermally—driven cavity with
conductive horizontal walls provide a test problem in the field of natural convection.
They have been investigated in many different works. Observations from experiments
[1] show that instabilities inside a tri-dimensional cubic cavity are bi-dimensional ones.
Transitions lead to three successive frequencies that occur in the interval [3 x 10%;107]
of the Rayleigh number. Numerical approaches of square cavity confirm these results
either by using the method of control-volumes [2,3] or by making use of spectral methods
[4] or by analyzing the linear stability from a finite element method [5]. The different
authors of papers [2—5] announce some frequencies that seem to be in good agreement
with experimental results. But an uncertainty is remaining about the critical Rayleigh
number. The reason is that to characterize the instability of sub—critical Hopf type is
difficult directly by numerical simulations. In this paper, in order to determine with a
good accuracy the bifurcation threshold of the fiow, an analysis of the linear stability
is proposed which is fairly adapted to this problem.

1. Mathematical setting

We are dealing with the Navier-Stokes equations coupled with heat equation in the
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case of Boussinesq hypothesis. We choose nondimensional variables for convective terms

du _ Pr ap

E-ﬁ-(u-grad)u— Wﬁu— E—FPTTk

or 1

5 + (u-grad} T = WAT (1)
divu=0

The boundary conditions are written in the following form
u(x1/2,z) = u(z,£1/2) =0 (2)

T{-1/2,z)=-T(1/2,z) = 1/2, T(z,£1/2) =~z
{perfectly conductive horizontal walis).

2. Analysis of the linear stability

Let us denote uy = (ug,wp), To, Fo the basic solution (without any bifurcation).
The previous system of partial differential equations (1) with boundary conditions (2)
is now written by using a vorticity {Jp and stream function form: it is expanded at
first order 1n the neighbourhood of the basic solution. This procedure leads to a non-
autonomous perturbed system in ¢ and 7 (respectively the stream function and the
temperature of the perturbation),

o(z, 2, 1) = p(z, z) exp(ot)

7(z,2,t) = 7(z, 2} exp{ct)

Thus, this system is resolved by making use of some expansions of the functions ¢{z, z)
and 7(z, z) over a basis of polynomials well adapted to the boundary conditions. This
basis is orthonormalized by using a Gram-Schmidt procedure.

Several different techniques have been compared in reference [6]. It occurs that
the best procedure is the method of collocation: it provides the results at the lowest
computational cost and it processes the highest speed of convergence when the size of
the bases of functions is increasing.

The basic solution is looked for according to the grid of Gauss-Lobatto~Chebycheff
collocation points. The meshes of the grid are irregular: thus, we prefer to build a
finite element method associated with this grid of collocation points. We choose a P,
approximation of velocity field and a P approximation of the temperature and pressure
fields with triangular elements, according to the inf-sup condition [7].

Pressure is known except for a constant. We remove this difficulty by setting a
discrete pressure of null-mean inside the cavity. We get rid of the condition diva = 0
of the system of equations (1) by iterating a variant of the algorithm of augmented
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Lagrangian [8] well-adapted to our problem. The iteration matrix obtained according
to this procedure is better conditionned and the GMRES iterative method [9] readily
leads to the solution of linear systems. This last method includes a reduced storage
related to the coeflicients of the matrices different from zero.

The steady—state is calculated by demanding 8/9¢ = 0 in the system of equations
(1). The non-linear equations obtained from the finite element method are solved by
using the Newton algorithm. The problem of how to choose the initial condition before
running the Newton algorithm has a solution with several steps, when increasing the
Rayleigh number from a low value.

The basic solution that as been calculated according to this procedure is now intro-
duced in the perturbed equations. The derivatives are estimated by Taylor expansions
adapted to the-irregular grid in order to guaranty a second order approximation. The
perturbed system is transformed into a generalized eigenvalue problem Ax = ¢Bx,
solved by the QZ algorithm {10].

3. Results

We deal with the three critical situations provided by experiments. By using from
16 % 16 polynomials to 28 x 28 polynomials, we have localized the critical point round the
non-dimensional frequency f = 0.252 corresponding to the Rayleigh number 2.6 x 10°
(Fig.1). We obtain a good agreement with the data that could be found in literature.

H R 7
> a ¢

Figure I: Real and imaginary parts of the eigenvector corresponding to

0
@
i,

e

e

the first bifurcation. Streamlines and isotherms of the unsteady part of
the flow.

The convergence of critical points when the number of polynomials is increased show
that the frequency and the logarithm of the Rayleigh number simultaneously converge.
Thus, this gives explanation for the difficulty of determining the critical values of this
iast parameter. Therefore, our technique provides a significant convergence for numbers
of polynomials small enough (1% error for the critical frequency and the logarithm of
the Rayleigh number with a basis of 20 x 20 polynomials).

Conclusion

This work associated several numerical inethods which guaranty a rather fast con-
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vergence towards the critical points of parameters (o, Ra) of the flow. The linear
analysis of stability can be achieved whithout any analytical knowledge of the basic
solution.

This method allows a comparison of new results with the values given by direct
numerical simulations of the unsteady flow.

Now we are directing attention to the good qualities of the convergence of this
method of analyzing the linear stability. We focus on the computational cost of this
new method: we are able to provide convergence towards results at a computational
cost lower than the computational cost of all other approaches.
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Unimodal 2-endomorphisms and Chaos in the Sence of Li & Yorke

V. A, Dobrynskiy
Institute of Mathematics of National Academy of Science of Ukraine
(Tereshchenkovskaya str. 3, 2062601 Kiev, UKRAINE)

Abstract: It is shown an existence of two open sets in a parame-
ters space such that mappings associated with parameters belonging
to these sets have areas with chaotic in the sense of Li & Yorke
behaviour of trajectories. Mechaniques which generate chaos differ
one from another for mappings associated with each of domains. A
measure of chaotic area may be so small that it is impossible to
find one with computer-assistant calculations.

Let Int(T) be a set of interior points of T €= I9=[0,11%[0,1]
and I(T)=T\Int(T) be its boundary.

A Z2-endomorphism of 12 into itself
& (x,y) — (Axy),x), (1

where (x,v) € Ig is called unimodal one if & x,y) is such a smooth
function that & x,0)=F x,1)=H0,y)= 1,y) and there is only one
point (x,y) € Int(IZ) such that both partial derivatives of & x, ),
¢§(x,y) and @é(x,y), evaluated at (x,v) are simultaneously equal
to 0 and besides &X,7) > &x,y) > O for any (x,y) € Int(I%) such
that (x,y) is not equel to (x,v) [Dobrynskiy,1995]1.

From our point of view this definition is one of the most natu-
ral generalizations of the notion of one-dimensional unimodal map-

ping on the two-dimensional case. Below we study properties of the
following 2-parameters family of such mappings:

Fi(xvy) > ( AF(X)Lh{F(V)}IZ , ¥ ). (2)

where n, s 0 < x & 1, 5> 0 are parameters, f(t) is smooth unimo-
dal on [0,1] function such that f(0)=f(1)=0, f(g)=1, where g is a
point of the extreme value of f(t), with the derivative f’(t) sa-
tisfying the relation (t-g)f’(t) < 0 for all t € [0,11\{q} and
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where A t) is a diffeomorphism of [0,1] such that K 0)=0, h"(t)>0
for all t € [0,1],

A critical set K=K(F) of F is a closure of the locus of Int(IEU,
where Jacobian ||DF|| of F being equal zero. The set K is differ
from I. Gumowski’s & C.Mira’s [1980] LC. Get analytical expressions
for K and its two first images and preimages, Th%y are K={(x,y) :
y=q, 0 <x <1}, F(K)={(x,v): x=xf(y), O gy <1}, F(R)={(x,y) :
x=\F(V)IH y/A)I5, 0 ¢y ok, FUR=((x,): x=q, 0 <y <1}, F K-
={{X,V): q=xf(x)[h{f(y)}JS}. Note that F_Z(K) exists only if x> gq.

Denote by R(n)=Fn+2f12), Obviously E[j%::R(j) it 1> 7, i.e. E(n)
are embedded one into another and NWTFDc::?fE(n), where NW(F) is

nz0
a non-wandering set of F. The sets E{N) form a system of compact

ne ighbourhoods ofcﬁjﬁfn) and preimages of K dissect each of them
on parts. Let J, ﬁfoN are natural numbers. A connected part of
I'({T) is called a base of T if it lies in an arc belonging to

Pfrvrf“j(K)]fgo. Two bases are different one from another if

they belong to the distinct arcs of [F{n)nF’j(K)]g;o. A supple-
ment of bases till whole I(T) is called sides of T. Each connec-
ted component of the supplement forms one side of T. Let N be a
number of elements of partition. Denote by i1 € {1,2,...,N} corre-
sponding the number of i € {1,2,...,N} the element of partition.

Sets FL(l), i are called one-dimensionally correctly intersec-

ting if i has two bases and two sides, bases of i and FL—images
of bases of j do not intersect one another and if there is a
simple connected component ¢ <= FL(i)ﬂL having also only two ba-
ses and two sides with bases lying in the different bases of i
and sides non-intersecting sides of i. Sets FL(i), 1 are called

two-dimensionally correctly intersecting if Int(FL(l)) — .

Now we are able to use a symbolical dynamics in such a manner.
According to one of the mentioned above definitions assign to

each pair of numbers j,i an element " of a matrix of admissible
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transitions n so that T is equal to 1 if sets FL(i), 1 intersect
correctly and it is equal to O in opposite case. )
In accodance with this matrix n constitute of all kinds bounded
from the left sequences of symbols 1,2,...,N. There is a natural
correspondence between seguences and subsets of‘?fﬁfn).
So, it is easy to show for each periodic of period M seguence of
symbols there is at least one invariant with respect to FLM sub-
set of tﬁpﬁ{”)o Further, it is not heavy to prove an eXxistence the
n=o
fixed point inside every of mentioned above FLM—invariant subsets
of Cﬁ E(n). The number OM of periodic of period M sequences, as it
hasrBeen proved by V.M Alexeev [1376), is given by formula

OM=Sp[nM 1= ¢ pﬂ, where Sp[nM ] is a spur of the matrix nM, Ky
MEF ;
are eigenvalues of n and 7 is its spectrum There is an equality
= Iim V@&, where u, 1S the largest positive eigenvalue of m.
Moo

S0, the number Qg of periodical of period M points of FL can be

Ho

estimated in such a manner: Qy Sp[nM 1~ ¢ yﬂ, TR Iim V@E )
- MeEf M-res

It 1s resonable to ask whether the mapping of (Z2) having men-
tioned above properties exists. The answer is '"yes',




Theorem 1. There are %, 5 g < » < 1, §> 0 and natural L such
that for any collection of numbers a,s,n, J such that n=0,1,...,
=2,3,..., <A g1, 0<s5¢ 5 [ or s > 1/5 ] constituted for the

~ ~~

mapping FL the matrix n is non-trivial in the sense of existing pe-
riodical sequences of sympols among of all kinds thosé constituted
in accodance with the matrix m.

For example consider the neighbourhood F and its partition by arcs
beloning to [ v J(RU]j .o for a,s picked out as in the Theorem 1.
They are pictured in Figs. 1-2.

f" (L) 3r f'(t) {2
Denote by S(f(£))—— — —-—~[———————} Schwarzian (the deri-
: Fret) FFt)

vative of Schwarz) of f(t).

Theorem 2. Let S(f(t)) < O in [0,11\{q} then there are

0 <X <1, s> 0 such that the mapping of (2) has at least one
saddle-type hyperbolic periodic of period 3 p01nt and one bi-
asymptotlcally tends to it trajectory consisting of transversal
intersections of stable and unstable manifolds of this periodic
point for all a,s such that 0 < s <5, Xx¢EngL

Theorem 3. There are O < X < 1, &> 0 such that the mapping of
(2) has a fixed point being the snap-back repeller [ Marotto, 1978)]
for all a,s such that s> 1/3, X ¢ » ¢ L.

Proving of both last theorems is connected with a treatment of
certain subsets of the partitions of R In first case this is the
element 8 of the partition described in Fig, 1 and in second one
this is the element 3 of the partition described in Fig. 2.

Theorem 4. For the mapping F a measure of area of chaos in the
sense of Li & Yorke [1972] tends to zero as s tends to infinity.

Ih conclusion we notice that proofs of all theorems menticned
above can be found in [Dobrynskiy,18995al.
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CHAOTIC VIBRATONS OF A HELICOPTER

Zbigniew D¥ygadlo and Grzegorz Kowaleczko
Military University of Technology
ul. Kaliskiego 2, 01-489 Warszawa, Poland

Abstract. A helicopter is a rotorcraft which can be subjected, during its motion, to various
types of vibrations. For some of these vibrations there can appear bifurcations and regular or
chaotic motions. Spatial motion dynamics of a helicopter-autopilot system i1s considered. A
complete set of nonlinear differential equations describing the fuselage motion and all the
blades motions 1s applied. The control laws for static autopilot have been formulated on the
basis of the method of motions separation. Some results of numerical analysis are presented,
which show phase plane plots and power spectrum diagrams for several flight parameters.

1. Introduction

Recently some investigations have been made of dynamic models of helicopter-
autopilot systems (cf. [1]-[3]). In [4] the flap-lag motion of a rotor has been studied, where
regular and chaotic transient response has been found.

In the present paper a nonlinear dynamic maodel of a helicopter-autopilot system is
considered which enables us to determine regular and chaotic motions of the helicopter.

For the analysis it 1s assumed that the helicopter fuselage is a rigid body and the motion
of rigid blades about flap hinges, lead-lag hinges and axial hinges is considered, while the tail
rotor is treated as a hingeless and weightless source of thrust equilibrating the drag moment
and ensuring directional control of helicopter.

The induced velocity has been determined making use of the Biot-Savart law and a
simplified model of vortex field has been applied, spatial structure of tip vortex trajectones
being taken into consideration.

2. Formulation of the Problem

On the basis of physical model presented above, a set of nonlinear differential equations
has been obtained, which describes the dynamics of translatory and rotating motion of the
helicopter and the blade motions around flap, lead-lag and axial hinges. The kinematic relations
are also included in this set.

Several systems of coordinates have been applied in the problem under study.

Equations of dynamic equilibrium of forces and moments have been determined in the system
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Ox,y,z, fixed with the fuselage and blade motion has been considered in the systems of
coordinates P, x y' z and B,xyz fixed with the hinges P, and 7.
Finally we obtain a set of 25 nonlinear differential equations with periodic coefficients
which can be presented in the form:
ALX)X = F(,X,S) (O
where X is the vector of flight parameters:
X=UV,W,P,ORS.B.(.C.ODY, =1,234 (2)

and U, V, W are linear velocities of the centre of fuselage mass in the coordinate system
Ox,y,z, fixed with the fuselage, P, O, R are angular velocities of the fuselage in the same
coordinate system, @ ,® ¥ are pitch, roll and yaw angles of the fuselage, 4 - i-th blade flap
rotation about flap hinge P, , £, - /-th blade lead-lag rotation about lead-lag hinge F, .

Vector § is the vector of control parameters: S = (6,,x,.7,, gam)r (3)

where: @, is angle of collective pitch of the main rotor, x, is control angle in the longitudinal
motion, 77, 1s control angle in the lateral motion and ¢_, 1s angle of collective pitch of the tail

rotor. Detailed way of determining Egs.(1) can be found in [1] to [3].
It has been assumed that the helicopter is performing a steady horizontal trimmed flight

without sideslip. The terms of this flight are:

- linear and angular accelerations are equal to zero: U=V =W =P=0=R=0 {(4)
- angular velocities are; P=0=R=0 (5)
- and the velocity component parallel to the Oy, axis is: V=0 (6)

On the basis of Egs.(4)-(6), making use of Eq.(1), the following vector of flight
parameters can be obtained: X, = (UO,O,%,O,O,O,ﬂo,ﬁo,gﬁo,qo,Go,CDO,‘PO)T, i=1,23.,4 (7)
and the vector of control parameters: S, = (6,55, 7, P50 )5 (8)
Vectors (7) and (8) define the initial conditions for further calculations of flight parameters.

The control of helicopter under consideration is carried out by means of a static
autopilot for which the law of control can be described by the expression:

S(ty= 8, + Tx() (9)
where x(/) is the vector of increases in flight parameters (2) and T is a matrix of stabilizing

coeflicients. Method of determining the matrix 7 can be found in [2].
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3. Solution of the Problem

The set of Eqgs.(1) together with the taw of control (9) has been applied to numerical
simulations for Polish ,,Sokol” helicopter with the static autopilot for four values of flight
velocity: 0, 100, 200 and 300 km/h.

Some results of computation are presented in this paper. In Figs. 1 and 2 the phase
plane plots for blade flap motion B and blade lead-lag rotation ¢ are shown. It is seen that al}
these motions are regular and periodic ones.

Similar courses can be found for the pitch angle @ of fuselage, while for the angles of
roll ¢ and yaw ¥ there appear small chaotic perturbations. Linear components of velocity
UV, W have regular courses and for angular components P,Q,R we obtain chaotic
perturbations. In Figs. 3 to 5 power spectrum diagrams (PSD) are shown for angular velocities
P,0, R at the velocity F=300kmvh. It is seen that there occur period doubling bifurcations and
chaotic perturbations appear.

In Figs. 6 to 8 power spectrum diagrams are presented for control parameters ¢,, x|
and 77, at J=300km/h. Pertod doubling bifurcations and chaotic perturbations are also shown
in these figures.
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REGULAR AND CHAOTIC VIBRATIONS OF AN AIRFOIL
IN SUPERSONIC FLOW

Zbigniew Dzygadlo, 1dzi Nowotarski and Aleksander Olejnik
Military University of Technology, ul. Kaliskiego 2, 01-489 Warszawa, Poland

Abstract: An airfoi] 1 supersonic flow, having deformable supports, is an aeroelastic system
for which can appear vanous types of bifurcations and regular or chaotic motions. The airfoil
has two degrees of freedom: plunge displacement and angle of pitch displacement. The stiffness
force and moment for those motions are assumed to be nonlinear ones. The airfoil 1s subjected
to the pressure difference produced by its motion 1n supersonic flow.

Types of bifurcations occunng in the system and limit cycles of self-excited vibrations
as well as regions of regular or chaotic motions are investigated.
1. Introduction

Recently some investigations have been made of nonlinear vibrations of aeroelastic
systems in which regular and chaotic motions have been studied ( cf. for instance [1]-[3] ).

In the present paper nonlinear vibrations of an airfoil in supersonic flow are considered
(Fig. 1). The airfoil is subjected to the pressure difference caused by its motion in the gas
stream and this pressure difference has been determined on the basis of the potential theory of
supersonic flow [4].

Finally, we obtain a set of two nonlinear differential equations describing the motion of
the system under consideration which enables us to study regular and chaotic vibrations.
2. Equations of Motion

The atrfod has two degrees of freedom (Fig, 1), where z.=z.(¢) is plunge displacement
and ¢=at) is angle of pitch displacement. Equations ofmotion can be written in the form
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where 7z, S, ] are mass, static moment and moment of inertia, respectively, per unit span of the
airfoil and

Po=P(z)=-k(:, +B.2)) , M, =M,(0)=-k (a+p a’) (2)
represent nonlinear stiffness force and moment for motion of the airfoil, while Q, and Q, are

aerodynamic force and moment.
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%__ The pressure difference produced by
Y the airfoil motion m supersonic flow can be
determined in the form ( cf. [4] )
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where p® =M% -1, M==2 51 (4)

po. 4, M density, sound velocity and Mach

number of unperturbed flow and W=W(x,t)=z () +a()(x, - x) (5)

Aerodynamic force and moment can be obtained as
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(6)

The problem will be considered in a dimensionless form assuming that the displacement

. 1s referred to the cord length of airfoil / and time ¢ to 1/w, , where

S L L (7

are natural frequencies of uncoupled vibrations of the airfoil under study.

Equations of motion (1), (2), (6) are then obtained in the form

f-—ed+x:(3+5:23)=ylr2a—'}'15?‘1(3‘4-5_,"&) > &—rizf+o:+]3aa3=Yl€0a—y15[éof+(€§+;§)cﬁ] (8)

where
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Equations (8) together with relations (9) are applied to the analysis of the airfoil wvibrations. In

wl’ ml mi (9)

these equations, the coefficient y; defines the reduced dynamic pressure of supersonic flow,
which 1s decisive for self-excitation of the system, »,& is the coefficient of aerodynamic
damping and & 1s the dimensionless distance of the elastic axis ea from the mid-chord point

(Fig. 1).
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3. Numerical Analysis of Stability and Nonlinear Vibrations of the Airfoil
At the beginning Eqgs. (8) are ]jneaxizeci assuming that
B.=B.=0 (10)
and the solution of Egs. (8), (10) can be found in the form
2=z, | a(@=a,e” (11)
We then obtain the frequency equation from which cntical parameters of self-excited vibrations
Y =Y., PEO, (12)
and crtical parameters of divergence Y=Y, P=0 (13)
can be determined depending on values of parameters of the problem under study.

For the analysis of nonlinear vibrations, the complete set of Eqs. (8) is applied. Making
use of numerical methods course of vibrations is determined, regular and chaotic limit cycles
are examined.

Numencal calculations have been performed for the following data: ,=0.2; e=0.125,
17=0.12; B,=0; B=20 and 5=0.001, 0.01, 0.1, while £,=0 to 0.5.

Some results of computational analysis are presented in this paper for £,=0.4; v,=1.2, 5
and $=0.001, 0.1 1» Figs. 2-4, where the effect of y, and 8 on the course of limit cycle
vibrations is mvestigated.
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Fig. 3. Chaotic limut cycle vibration and its PSD for y,=5 and 8=0.001.

054 E£=0.4; y,=5; 6=0.1 . 05 & £=04; y,=5; 8=0.1

0.4 I— 0.4 '

03 I 0.3

02+ 0.2

01+ 0.1 4
B

0.1 1 0,1

02+ -0,2 -

03+ 0,3 -

041 0,4 -

-0.5 | 0,5 : . : G
06 04 02 0 02 04 06 0 100 200 300 400 500

Fig. 4. Periodic limit cycle vibration for y, = { and =0.1.

115
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Abstract. The direct Lyapunov method is applied to the design of synchronizing
systems. Sufficient conditions of sinchronization are established based on recent
results of nonlinear control theory.

1. Introduction

Synchronization of dynamic systems is a commonly known phenomenon well studied in
systems with periodic solutions. It has been recognized recently that under sertain conditions
synchronization phenomenon may also be observed in systems with chaotic behavior (see, e.g.
[Wu & Chua, 1994] and references therein) that is important for various applications. In the
existing definitions (see Blekhman, 1971; Afraimovich, et. al 1987; Blekhman, et. al 1995) the
problem of synchronization was stated as one of analysis. From the different point of view this
problem can be reformulated as one of control design (Fradkov, 1994). Notice that controller
which ensures synchronization can depend on parameters of interacting subsystems which may
be unknown in practice. This leads to the problem of adaptive synchronization which can be
posed as follows [Fradkov, 1994].

Definition 1 Adaptive synchronization problem statement.
Given equation of r interacting systems:

i,—=F;($;,u,t,f), i:]-"'ra (l)

where z; € R™ and £ € = 1is the vector of unknown parameters.
Find equation of the connection system:

u(t) = Ullaa(s), z2(s), ..., 2,(s5), 6(s),0 < s < 1], (2)
where u € R™ and equation of the adaptation algorithm

0(t) = ©4]z1(s), z2(s), ..., z.(5),8(s),0 < s < 1], (3)
ensuring the goal |z;(t) — T:(t)| < A fort > t., where T(t) is some solution, perhaps unknown

a priori.

2. Decomposition based synchronization
Consider an n-dimensional system governed by a state equation of the form:

z = f(=)
where z € K*. Divide the system state vector into two parts in an arbitrary way: z = (24, y4)".

Pecora and Carrll [1990] suggested building an identical copy of this system and “drive” it with
the y4 variables coming from the original system as follows:

. zg = Z(z4,y4)
D ste { 4
rive system i = Y( d’de (4)

i, = Z(zr,Ya)
R syste { T 5
esponse system b = Yz u) (3)
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where y4 € R! and (zd,y4)7, (2r,y»)” are the state vectors of the so-called drive and response
systemns !. Notice that variable y, (output of the drive system) is used “to drive” the response
system. Notice also that the first equation of the response system can be represented in the
form:

= Z(z,y, )+ u
where u = U(z,,y,,yq). Therefore, introduced decompeosition solves the problemn of synthesis
of synchronizing systems. The decomposition (4-5) was introduced in [Pecora & Carroll, 1990]
in order to achieve the following goal of synchronization:

1z4(t) — 2, ()] = 0, as t—oco

For the sake of completenes we will consider the additional synchronization goal:
ya(t) —y- (1) = 0, as t— o0

To investigate the system behavior write down the error equation:
é: = folezt) €&, = files, ey,1)

where ¢, = z4 — 2z, e, = yg — y.. Obviously this error system is non-autonomous. The following
result is valid:

Theorem 1 Assume that

A1. For any initial conditions z4(0),z,(0),ya(0) solutions z4(t),ya(?) ezist on infinite time
interval and equilibrium e, = 0 of é, = fole,,t) is globally uniformly asymplotically stable.
A2 ¢, = file., e, t) is input-to-state (ISS)?* stable with e, as input.

Then for any initial conditions the synchronization goal is achieved.

3.High-gain synchronization
Consider the following system:

i1 = flz) +g(z)(yz —v1)  T2= fl22) + 9{z2){31 — ¥2) (6)

where z; € R™ and z, € R" are states variables, y; € R' and y; € R! are outputs of the first
and second subsystems given by

1 = h(z) y2 = h(z2)

We will assume that f, g and h are smooth enough to ensure existence of the solution of {6) at
least on some time interval. The problem of synchronization is to find appropriate g such that
|z1(t) — z2(t)| = 0 as t — oo for all initial conditions z1(0), z2(0) from the given compact set.
[t 15 seen from (6) that synchronous motion in our case is a solution of the following system:

z= f(z)

which as we will assume is well defined for all initial conditions z{0) € R™ on infinite time
interval.

*For our convinience we changed notions of the drive and response systems introduced in [Pecora & Carroll,
1990]
see, e.g. [Sonlag, 1995]
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It is worth mentioning that (y; — ¥1) can be considered as a control input and in this
case number of inputs is equal to the number of outputs: m = [. In the study of high-gain
synchronization we will assume that each system to synchromze has relative degree (1,...,1)7 .
Recall that this assumption means that matrix L h(z) ? is nonsingular in the nelghborhood of
origin. If, moreover, the distribution spanned by the vector fields g1(z), . .., gm(%) is involutive,
it 15 possible to find coordinate transformation z = ®(z),z € R"™™, locally defined near z = 0
such that in new coordinates the system is represented in the normal form. Assume that such
a transformation is globally defined (see Theorem 5.5 in [Byrnes & Isidort, 1991]). Then (6) can
be rewritten as follows:

z = ‘I(Zhyl)

o= alz,y) + bz, 1)y — ) )
z; = (z%y?)

V2 = a(z2,y2) + b(z2,y2)(1n — v2)

where a(z) = Lih(®7(2)),b(2) = Lyh(®7*(2)). The problem is to find appropriate param-
eters of b which ensure synchromzation. We will assume that the vector function b can be
parametrized in the form b(z,y) = +b,(z,y) where v € R! is the synchronization gain, also
refered in the literature to as a coupling constant. As we will see under the certain conditions
if v exceeds some threshold value then synchronization occurs for all initial conditions from
the given compact set. Imposing constraint y; — y» = 0 one can easily find dynamics of the
constrained system (7):

21 = Q(zlayl)
2, = g(2,51) (8)
1= G(Zhyl)

System (8) provides zero dynamics of system (7).
Now we are in position to formulate the main resuilt of this section:

Theorem 2 (High-gain synchronization). Assume that

A1 . geClaeCt beC

A2. For all initial conditions z1(0), z2(0),y1(0) system (8) has bounded trajectories which cxpo-
nentially converge to the set zy = z4, that is, there exist a Cl-smooth function Vo : R™™™ — R_
and positive numbers o, ..., a4 satisfying quadratic type inequalities:

Of1||21 - Z2||2 < Vb(zl - 32) < C1f2||7~’1 - 22||2,
(VVo(21 = 22))7 (9(21,31) — g(22,%1)) < —aul|z1 — 2%,
[[VVo(21 — 22)|| < aullz1 ~ 2]l
A8, For any z; € R™™ ™, y; € R™ matriz b,(z,y:) 1s uniformly positive definite:
b"y(zhyi) > ﬁIm:ﬁ > O

A4, System (7) is bounded-input-bounded-state (BIBS) stable with y, — y, as inpul.
Then for any compact set §0 of initial conditions z1(0),z2(0),v1(0),y2(0) there ezists q such
that the goal of synchronization is achieved for all v > 7q.

®L,f stands for Lie derivative of f with respect to vector field g
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Theorem 2 establishes sufficient conditions under which two system synchronize as long as
their initial conditions belong to some compact set ). Once this set is known 1t is possible to
find number #q such that the gain v > 7, ensures synchronization. From the practical point of
view this result is not always satisfactory. Indeed, to find 3q the model of the system must he
known with its stable invariant set. Thus it is interesting to find an adaptive algorithm which
tunes vy untill synchronization occurs. Such an algorithm can he easily found. The following
result is valid:

Theorem 38 (Gain scheduling). Assume thal hypotesis of Theorem 2 holds and the syn-
chronization gain is updated by

Y(t) = (n(t) — y2(2) " A1 (11 (2) — v2(2)) + / (1(s) = y2(8)) " Aa(ya(s) — va(s))ds

where A1, Ay are semiposttive and positive definite rn X m matrices.
Then the trajectory (1) is bounded and the goal of synchronization is achieved for arbitrary
initial conditions z;(0),v:(0),v(0).

4. Conclusion

In this notes we have discussed some results which can help in design of synchronizing
systems. One of them relates concept of Input-to-State stability, the other is based on the
fact that exponentially minimum- phase system of relative degree one can be semiglobally
stabilized. It is also to be said that this semiglobally stabilizing feedback makes the overall
system semiglobally feedback passive. Therefore one can apply nonlinear version of the Kalman-
Yakubovich lemma (see, e.g. [Byrnes et. al., 1991]) to find adaptive control laws which provide
synchronization under parameter mismatch.

Proofs of the presented theorems and results of computer simulation will be included in the

full version of the paper.
The authors are supported in part hy RFBR Grant 96-01-01151.
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PERTURBATION SOLUTIONS OF STRONGLY
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Abstract: Two perturbation methods for strongly nonlinear oscillators
have been applied to the supercritical Duffing equation, in order to ob-
tain a close approximation to the frequency-amplitude relationship. A
preliminary step introduces a modified version of the original equation,
and then the perturbation methods can be applied in a highly autom-
atized version. In the first case a hybrid Lindstedt-Poincare-Galerkin
approach 1s used, whereas in the second case a modified perturbation
parameter is defined, which allows the introduction of strong nonlin-
earities. The performances of both the methods are checked against
the corresponding numerical simulations by means of a symbolic code
written in Mathematica

1. Introduction

It is well-known that the dynamic behaviour of a slender beam subjected to an axial

force can be modelled, in first approximation, by a Duffing equation:

i+ o+ fzd =0 (1)

[f the axial force is lower than a critical value, then the linear stiffness coefficient «
is positive, and the resulting oscillator has a single stable equilibrinm point at the origin.
In this case the standard perturbation techniques give excellent results, even for strong
nonlinearities (see Havashi [1964], for example).

As the axial force increases beyond the critical value, the linear stiffness coefficient
becomes negative, the equilibrium point at the origin becomes unstable, and two stable
equilibrium points are created through a pitchfork bifurcation. The standard perturbation
methods cannot be used, because the system has no linear frequency, and it is usual to
employ Melnikov-like techniques (cfr. Wiggins [1990], Holmes [1979)).

In this paper two perturbation methods for strongly non-linear oscillators are adapted

for this particular case, and then their performances are compared with some numerical
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trajectories. In both the cases, the original equation will be written in the modified form:

i4+ar+e(fz® —2w1)=0 (2)

with o > 0, and then the “perturbation” parameter € will be assigned the value 1, recovering
the original equation.

The first perturbation technique (see Geer and Anderson [1991]) combines the well-
known Lindstedt-Poincaré method with a Galerkin technigue, and our results generalize
in some sense the approximations given in Geer and Anderson [1991].

In the second approach, a nonlinear parameter transformation is defined, which allows
the use of standard Lindsted-Poincare even for strong nonlinearities. The method has
been proposed in Cheung et al. [1991], where it has been applied to single-well Duffing
oscillators.

Finally, a symbolic program written in Mathematica allowed us to obtain several terms
in the approximation procedure, so enabling a crude convergence check,

2. Preliminaries and Results

Let us briefly review the classical Linstedt-Poincare method, as it is the starting point
for the subsequent modified perturbation techniques.

First of all, the time rescaling 7 = wt should be performed, where w is the (unknown)

frequency of the response, so that (2) becomes:

w'E + az + e(fz® — 2az) = 0 (3)

where now the dot denotes differentiation with respect to the new parameter 7.

Then, the following series expansions can be written:

2(r) = zo(7) + ez, (7) + e%xa(7) + za(r) + ... (4)

w:\/&_+sw1+€2wg+... (5)

and inserted into eqn.(3). A set of linear equations can be deduced and solved sequentially.

If N terms of the series expansions have been cezlculated, then a solution is expressed as

(cfr. Geer and Anderson [1991]):
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I(r) = zo(1) + &12 (1) + Saza(T) + .. + Sy—12n-1(T) (6)

where the N — 1 amplitudes §; can be determined by inserting the previous ansaiz into the
Duffing equation, and by imposing that the residual must be orthogonal to the coordinate

functions zx.

2n .
f [LT,:Q:E +at +¢ (ﬁ:EB -~ Zafjl] Trd7 = 0; k=1,.. ,N (7)
0
In this way, NV nonlinear equations can be obtained, which will be solved to give the
amplitudes §; and the frequency @°.
If, for example, two coordinate functions are employed, then a trivial application of the
Lindstedt—Poincare method gives:

3

zg = A cos(t); T = —% cos(t) sin(t)? (8)

as coordinate functions. According to the Galerkin approach, the solution will be expressed
as u = go + 4177 and the two resulting nonlinear equations can be easily solved. Unfortu-

nately, the results are too long to be given here.

The second approach is even simpler, and can be essentially reduced to the following
steps (cfr. Cheung et al. [1991]):

— instead of the w series expansion (cfr. eqn.5), it is convenient to expand w?:

w? =w§+ew1+£2wg+£3w3... (9)

— a new perturbation parameter is introduced, as follows:

y= ol (10)

wg + €y
so that v will be less than one for every ew, value.
— the series expansion in term of ¢ is replaced by the new series expansion in terms of
the new parameter ».
A classical Lindstedt—Poincaré approach can now be followed. The first terms of the

relationship frequency-amplitude are given by:
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Figure 1. Comparison between numerical and perturbe solutions,
, . . .
a) Lindstedt—-Poincare—Galerkin with four coordiante functions vs. nurnerical solution

b) Modified Lindstedt—Poincar® with six terms vs. numerical solution.
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3. Numerical Results

As already said, a symbolic computer program was written, which greatly simplifies
the tedious calculations of the perturbation methods, and makes possible to obtain a close
approximation to the true results. In Fig. 1 the perturbed solution is compared in the
phase plane with the corresponding numerical simulation for « = § = ¢ = 1 and for an
amplitude A equal to 1.42, which is quite near to its limiting value {cfr. Wiggins [1990)}.
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Abstract

The delayed feedback control method has a potential to stabilize the unstable peri-
odic orbit embedded in the chaotic attractor. In this paper, the stabilization of the
unstable periodic orbit in the magneto-elastic system is discussed experimentally.

1. Introduction

The controlling chaos is a hot research field in nonlinear dynamics and numerous pa-
pers have been published [1). Among them the delayed feedback control method, which
is proposed by Pyragas (2], is an interesting controlling method on the standpoint of ap-
plication to real systems. We have already applied the method to stabilize the chaotic
motion appeared in a magneto-elastic system [3-5]. The magneto-elastic beam is well-
known to appear the chaotic motions in the external forcing condition [6]. The system
can be described by Duffing’s equation. As for the real system, however, it is difficult
to describe the nonlinearities and the exact parameter. As results of the experiments, it
was shown that the delayed feedback control is effective to stabilize the unstable periodic
orbit-embedded in the chaotic attractor of the magneto-elastic beam [5]. |

Many of the methods propesed for the controlling chaos should wait for the moment
when the state of the system comes close to the well-known unstable periodic orbit. The
linear feedback theory plays the role only in the neighbourhood of the expected orbit. In
the case of the delayed feedback control, the stabilized unstable periodic orbit cannot be
predicted until the motion is stabilized. However, the control can be acheived without the
knowledge of the unstable periodic orbit. In this paper some aspects ablut the controlling
method is discussed experimentally.

2. Experimental Setup and Control Method
The magneto-elastic beam systern is well-known as a system that shows the chaotic
motion [6]. The elastic beam that is fixed on the frame at the one end is vibrated
between the two magnets placed on the frame. The system can be identically modeled by
the Duffing’s equation:
i+262+ flz) = Beoswt (1)

When the feedback control is applied to the system the system can be represented by
I+ 26t + f(z) = Beoswt + u(t) (2)
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Figure 1: System configuration.

Here the feedback value u(t) is depending on the controlling method. To establish the
delayed feedback loop in the experiment, the feedback signal can be induced by the error
between the output state values and the delayed ones of the forced magneto-elastic system.
To make the experimental system simple, the loop is composed only of the velocity of the
elastic beam. When the delayed time is set at T, '

ult) = K(&(t) — 2(t — 7)) (3)

In the case Eq. (2) becomes the difference-differential equation. Fig. 1 shows the detail
experimental system. The control signal is superposed to the forcing sinusoidal signal
of the electro-magnetic shaker. To stabilized an unstable period-one orbit, the delayed
time is set at the same as the forcing period. Moreover, the stabilization of the unstable
period-N orbit is expected when the delayed time is set at the N times forcing period
(2, 5. Once the motion of the magneto-elastic beam is stabilized, the control signal be-
comes extremely low level. However, if we begin the control at the arbitrary timing of the
chaotic motion, the stabilization cannot be insured at every trial. The reason is that the
feedback gain has a limmit in the real system. The delayed feedback control means that
the original system (differential equations) is converted into an infinite dynamical system
(difference-differential equation) when the system is controlled. Therefore the theoretical
analysis is extremely difficult.

3. Experimental Results and Discussion

As the nonlinearity depends on the relation between the beam and the magnets, there
is some varieties of the nonlinearity. In this case the potential well by the nonlinearity is
the double well shape. We will not discuss whether the system shows the chaotic motion or
not. At first, in order to confirm the effectiveness of the contro! method, the stabilization
of the unstable periodic motion with the period 1T, which exists after the period doubling
bifurcation, is considered. The results is shown in Fig.2.

The figure shows that the unstable periodic orbit is stabilized on the phase plane,
where two period-two stable orbit and one unstable periodic orbit exist at least. The
result implies that the delayed feedback control has a possibility to select the unstable
periodic orbit only by setting the delayed time. When we repeat the switching the control
on and off, the stabilization is achieved by every controled interval as shown in Fig.3.

In the chaotic attractor, the infinite number of unstable periodic orbits are embedded.
Potentially, the arbitrary unstable periodic orbit can be stabilized by using the delayed
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Figure 2: Stabilization of the unstable periodic orbit embedded in the period -two motiomn;
(a} displacement, (b} control signal, {c} trajectories of the period 2T motion and stabilized
1T motion, and {d) Poincaré map of 2T and stabnilized 1T motion.
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Figure 3: Stability by switching the control on and off.
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Figure 4: Stabilization of the unstable periodic orbit embedded in the chaotic motion; (a)
displacement, (b} control signal, (¢) Poincaré map of the chaotic motion, and (d) Poincaré
map of stabilized unstable periodic motion.

feedback control. However, the each basin of the pericdic orbit is considered to be narrow
and besides to the basin of other periodic orbit. Then it is difficult to stabilize every
unstable periodic orbit experimentally. The stabilized unstable periodic orbit is liable to
go to the most possible one as shown in Fig.4.

4. Conclusion

In this paper it is shown that the unstable periodic orbit of the magneto-elastic beam
system can be stabilized by the delayed feedback control both in the periodic state and
the chaotic state. These results should be a clue to the theoretical analysis of the delayed
feedback control and further experimental applications.
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DYNAMIC LOADS IN A DRIVE MECHANISM

Victor Hinko
State University "Lviv Politechnic”
290070, Lviv-70, Khotktvich Str., 64/25, Ukraine

Abstract: Dynamic phenomena occuring in drive elements of a lifting
mechanism of drill string are considered, taking into account the change jf the
cable length and resistance of the environment in an out-pipe space.

Equations of the cable and string motion are built with consideration of a
linear speed of cable-over-drum wrapping, difference of gravitation constants
during motion inair and liquid.

The work of drill strings when fullfilling technological operations in the
process of making wells is connected with considerable dynamic loads in the
elements of a lifting mechanism. For convinience of investigation, the lifting
mechanism of the drillstring is divided into component elements which are
funtionally interdependent and interconnected by means of a pneumatic coupling.

From differential equations taking into account initial and boundary
conditions of the problem, we pass over to integral-differential equations with are
studied dy the methods of Bogolubow-Mytropolskyi assymptote theory using a
small parameter, as well as by application of "cable functions".

The work of drill strings when fullfilling technological operations in the
process of making wells is connected with considerable dynamic loads in the
elenents of a lifting mechanism. For convinience of investigation, the lifting
mechanism of the drill string isdivided into component elements which are
funtionally interdependent and interconnected by means of a pneumatic coupling.

Structurally, the lifting mechanism comprizes the following elements:

1. Drive which is divided into diese], diesel-hydraulic (is used with power
aggregates CA-6, CA-10 and CA-1AIT-1000), ac electrical and do electrical
motors,.

2. Transmission which consists of summing reductor, decreasing reductor and
gear box.

3. Drill winch which depending on the design may be of the following types:
(¥Y2-5-5, JIBY-1000, JIBY-1700 and JIBY-3000).
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4, Pulley block system wlucli consists of crownwleel, load rope, and hooked
pulley block.

5. Drll pipe coluwmn which corporates drill column, loaded bottomn and face
motor.

6. Chisel feed control is an auxiliary elements in drilling and is designed to
form and regqulate on-face axial force value.

All the mentioned elements of the lifting mechanism are connected each
with other by ineans ol tire-and-air flux clutches.

Depending on the design, each element of the lifting ineclianismn may be
either in the forim of a eparate assembly, or together with other elements of this
mechanism. Each of the lifting mechanisin’s components is of a particular design,
and therefore, the investigation is cariied out by different dynamic models. Basad
on the analysis of kinematic scheines,the eguuvalent dvnamnic schemes liave been
built; they permit to study each element and obtain, as a result, calculation
parametrs which will be initial when investigating the subsequent element of the
hifting mechanism. As an example, let’s consider kinematic and equivalent
dynamic model of the direct current electric dnve.

For the given drive the [following operation variants are inhierent: 1 and 2 -
operation of the electric motors [ or I[ when they are linked with the winch’s
shaft; 3 - simultaneous operation of the electric motors [ or II; 4 and 5 -
operation of the electric motor I and [I via lowering chain transrmission (this
‘operating vadant is used for lifting maximum load 4MN or for pulling pulley
block system); 6 - operation of the lifting mechanism with the chisel feed control.

Mathematical models for each of the above varants of a diive are coniposed
based on the second type Lagrange cquation, taking into account non-linear
characteristics of elastic coupling links, factual mechanic characterictics of the
drive, the effect of time-varable lengths of load-camving ropes, varable inertia
moinents of the drun.

For examnple, let’s consider mathematical models for the first and second
variants. For the first variant, mathematical model 1s described by the set of
equations as tfollows:

W v T T + oy (@ - 9p) = Lk ‘ (1)

.
"

v ( dp, 4oy,

J d', , ", _ dpyy o (‘kplz _ d‘PJS\\I _ i
36 AV T Yy — J 1 = )
i dt v vt dr . v i .

+‘713(‘[-‘1.) - QPn) - Cfs((Pu - (Pss) - Cn(@] - q:’u) =0 (2)
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dz‘Pss APy [ i, “1‘935) ,
Toart ¥ Vs dt +\”l\ a4 ff635@35_013(@11_®35)=0; (3)
d l(p dp oy dep Ao
M3 ’C'ﬁ—«ll + "’u[?m - “j - "'13[_;:—2— 7”') + 013((-?13 - (Pd)_ Clz(q?u “Pu): 0 (4)
d*e, .. do, dp,,  dp, )
Jd(Z)T"' Jd“)—dl‘i + VuL dfm - T:J + 013((913 - Cpa') = —Z""_(l‘); (3)

For the second wvariant, mathematical model i1s described by the set of

equations as follows:
~

9 dp,, do
I dtzu + Vll( d:l = d;nJ T Cll((pll _(Pn) = I;](t).: (6)

7 d*q,, v (d(Pu _ G’CPH]_G_W ( do,, _f’&j+v [dfpzl _d(P:n]_
0 ar g dt 2| At dr \ar dr

_sz((Pu - (921) T sz(‘le - (Pd)"' Cv_x((Pn - (Pn) =0; (7)

d dep Cdyp,,  do,
dzzjx + Vg d;l - Vyy \. dzl _ dtJ + 3Py — cu(cp21 - CPZJ) =0, (8)

Ao dop, dp do A
[Jd(t)"'jnu]ﬁfjd(f) it _Vn( dtn_a’_td _522((911_(%):_?:(1)' &)

Similarly, one can compose equations for the other operation variants of the

direct curtent drive. In equtions 1...9 quantity J,(r) is determined by the formula:
3

JJT

Jo(t)=Jy + 0,500, 5 (R + k) 1, (10)
1

In order to solve the above differential equation sets we used the program
PUSK with a subprogram DMOMS that defines values of quantities 7, 7, from
the dependency 11:

T=Cy®i,, where ®=0i, ). (11)

Here C, is constant coefficient, and work flow is the function of anchor
chain current i, and free field winding /.

Indicating p as time differentiation we write down

piy=Su,+Tu+E, pi,=Su +Tu+E, (12)
where
S, =1/(L,-L,L,/Lg), T,=-8L,/Lg;
E, =-(L,E, +ri,}/ Lg; T, =51,/ Lg; (13)
S, =(-L,T)/ L

E, = S,,(Ldvrfif / LJJ’ - Cpo® - Au-r,i).
Coefficients L, are determined as
LJL,=a"PJ/d1'L,, J=a, n D J, k=a,f,
where ¥, ¥, ¥, ¥, are full flux-linkage of anchor winding, sequentizl and free
field winding, and winding of additional poles.
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L =L,+L,+ Ly L, = L4+LHI+LDI., (14)
r,» 7y is resistance of anchor chain and field winding;
u,, 1, 15 voltage;
Au 1s voltage cut down in a brush contact;
©, 15 angle speed of a rotor which is defind by the formula 15

s

o, = p|[(T-T)/ Tt (15)

0
Here, p is a number of pole paifs; 7, is statistic moment of resistance on a
shaft; / is concentrated inertia moment of the systemn which is initiated.
Dynamaicity coefficients X, on the shaft of a drill winch in start at 7 =40
kNin, and start time in 4s equals for each of the vamants: 1.216 - for the first;
1.218 - for the second; 1.209 - for the third; 1.295 - for the fourth; 1.303 - for the
fifth, and 1.446 - for the sixth variant. The maximum value X, is obtained during
drilling. As lifting time increases, the dynamicity coefficient decreases.
Resistance moment 7 which i1s applied to the winch drum is calculated
from the relationship
T.(1)= F(x, )R,(d), (16)
where F(x, 1) is force in the rope branch which is reeled over the drum: R,(r) is
variable radius of rope reel over the drum, which is determined from the
dependency
R,({)=R+ Hz+signi). (17)
The force value F(x, 1) is determined when solving the equations of the rope
and dnﬂ pipe column movemernts

dig (v, 1) du{x, o) + ey (1)
= - 5 =4¢x _; 18
dar “ o5 T (1%)
du,(x,, z) dza?(x,, [) N du;l(\,, t)
- Ly = - = , 19
dr’ T a . % (1)

In these equation u({x,, 1), u(x,, 7} are longitudinal displecements of cross-
sections of the cable and the dnll string; a,, g, are speeds of propagation of
alastic waves of deformations in the cable and the dnll sting; g, g, Is gravitation
constant during meotion in the air liquid; V is resistance of motion of the dnll
string in the out-pipe space; v,(7} is speed of cable-over-drum wrapping of the
dnll winch

g=8(1-v,/7) (20)
where v,, v, Is density of drilling inud and the pipe material.

Solution of equation 18 must satisfy the following boundary conditions, at:
x,=0 M, - EAu,, . = M,g,; (21)
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x, =1 Moy, + E A,y = My(g =v,)+ f(x, 1) (22)
. In section at x, =/,, coordinates X, =0 and X =/,.
In the point of rope reel over the drum X = J)(r) the boundary condition is
expresed by the dependency

!

wl1(r), 1] = [a 1), r)r)ar (23)
0 .
where the rope length

= Jl-‘dfh‘ (24)

[nitial conditions when solving ecuations 18...19 in a general case are

functions 25:
“1( ) (Pl( ) ulr(x): (pz(:c)

ih(x) = wy(x5) iy, (%3) = wo(y)
In connection with the fact that doundary condition 21 is not being

Integrated, we come from equations 18 to integral-differential equation 24
b

Vilx, 1) = - [ K[s,x, 00 Wals, 0)ds ~ (V[100), 1)), =

.’(r)

JK[S x, It ] s)ds ~ _[E[s X, 0 )] (s)g + v,)ds. (26)
i 1)

Having investigated the latter by Boholiubov-Myvtropolskyl asymptotic
theory, we obtain analytyical dependencies to determine vibration frequency

(25)

forces in cross-sections of the rope reel over the drum:

_ Py = [3EAM 2, / [+ afi(0)p1(0)]] " 7
where M=M+M+m /3 olf])=qll, -11)]/ M,
when ¢, 1s running mass of the rope.

Analysing curves we can see thet an error in calculation by the exact and
approximate formulas will be larger at smaller length of the puliey block. So. for
the drll g winch JIBV-3000 values &F,,, which are received by the exact
formula at /, = Im equal 175 kN and at length /,=50m, 38 k.

Thus, at the average and large length of a pulley block, forces can be
deterimined by approximate formulas, and at the small length 27 and 28, in order
to raise accuracy, it is necessary to use exact solutions.

To conclude, [ can say that the analytical investigation performed permits to
determine vibration frequencies, deformations and forces in drve links of the
lifting mechamism of the dnll nig.
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A SIMPLE CRITERION FOR THE OCCURRENCE OF CHAOS

Kazumasx Hirai

Dept. of Applied Mathematics, Konanr University,

8-9-1, Okamaoto, Higashi-Nada, Kobe, Japan ¢638

Abstract: A simple method to analyze the occurrence condition of chaos in a

nonlinear control system 1s investigated. The basic idea for this analysis is that, if

every equilibrium point becomes unstable and there exists an unstable limit

surface surrounding them, then chaos may occur. The describing function

method 1s applied for this analysis and the parameter region for the occurrence of

chaos 15 shown for several transfer functions.

1. Intreduction

It can be considered that, if all equilibrium
points are unstable and there exists a closed
stability boundary surrounding these points in
the state space, every trajectory starting from
the inside of the boundary surface does not
converge to the equilibrium points and also
does not diverge. Then, every trajectory may
wander 1n the state space. This phenomenon
may be a chaotic motion [Khbnik et at,1593],
[Kuramitsu,1995]. In the following let call
this stability boundary an unstable limit
surface, from where every trajectory starting
from the inside or outside of this surface goes
away [Fukuda & Hirai, 1995].

In this paper,

considerations, the occurrence conditions of

pased on the above
chaos will be studied. The prediction method
proposed here is simple and applicable for
higher order system. A parameter region for
the occurrence of chaos will be shown for
several transfer functions.

2. The Occurrence Condition of Chaes

The first step to study the occurrence

condition of chaos is to investigate the
conditions for every equilibrium point to be
unstable and next step is to find the existence
condition of an wunstable limit surface
surrounding them.

However, since it is not easy to obtain the
existence condition of an unstable limit
surface, we may consider the existence
condition of an unstable limit cycle at first,
Since a limit cycle 1s a closed curve and not
surface, the additional conditions must be
considered for the trajectory not to diverge
and to remain in some closed regions in the

state space.

G(s) >

T() —

Fig.1 Nonlinear control system

Now, a nonlinear control system shown in
Fig.1 is considered. The transfer  function

G(s) and nonlinear function f(x) are



assumed to be represented by

G(s)= N(s)/ D(s) (1)
N(s)=bs"+-+b, 5 +b_

D(s)=5"+a,s" +-+a,_s+a, (nzm) (2)
fx)=x" -k
where we assume that, G(s) has a low pass
fitter characteristic and &, = 0.

This equation can be represented in the

} (3)

+ b _x, (4)

form of the state equation as
X, =Xy X=X, 0

X, =—(ax, +a.x, ,++a,x + /()

+bx

,y = bﬂxmd-l P
2.1 Bifurcation of equilibrium points

From Eq.(3), the equilibrium points are

given by

Pl x,=x.= - =x_ =0

P ox, = (kb ~a, )b
X, =x; =-=x,=0

Clearly the equilibrium points P#* can only
existif & >a, /b . Linearizing Eq.(3) around
each equilibrium point and investigating the
roots of characteristic equations, the stability
and the bifurcation mode of each equilibrium
point can be obtained. For example, it will be
shown that if 4 increases, ~0:unstable —
P* stable = P=*:unstable (Hopf bifurcation).
In this final state three equilibrium points
becomes unstable.
2.2 Limit cycle

Next, the existence condition of an
unstable Jimit cycle surrounding three unstable
equilibrium points is now studied. Assume
that one stable limit cycle around one of P%
1s represented by

x,(1)= A+ Bsinal (5)
The output f(x,) can be approximated as
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Sy =N (A.B)yA+ N (A.B)siner, (6)
where N and A are represented by

f\f“(A,B):i'['T J({A+Bsinw)dat
2m s
=—k+ A +4iB° (7
N,(A,B):Lj" J(A+ Bsinawr)sin widawr
2me-a
=-k+347+31B (8)
It is to be noted that this approximation

can be satisfied if the linear part G(jw) has a

property of a low pass filter,  From Fig.1, we

have
—{G(O)N (4, B)4 + G(jw)N, (4, B)Bsin w)
= A+ Bsinwr (%)
Then, the following equations are obtained:
1+ G(O)N (A, B)=0 (10)
1+ G(jw)N (4,B)=0 (1)
Substituting Eq.(7) into Eq.(10), we have

A=+lk-3B -g, (12)
where g, =1/G(0), and the sign £ of A
corresponds to p~.

Hence, from Eq.(8),
N(4,B)=N(B)=2k-%B -3¢, (13)

The describing function method will now
be applied {Gelb,A. et al, 1968].

Eq.(11), if there exists a hmit cycle, two loc,
G(jw) and ~1/N,(4,B) must have an

From

intersection on the complex plane.

Since N (A4,B) is real number,
ImG(jw) =10 at the intersection. Now let
ImG(jw,)=0, and ReG(jw,)=1/1,.

Then, from Eq. (13), we have
B= B.v = .J%(?,k —Bg“ + ."“)

(14)
Substituting Eq. (14) into Eq. (12), we have
A=t (k+g, -21) (15)

The stability of a limit cycle can be

determined by checking the relative location



of the both ioci.
Next,

unstable

of an
the

the existence condition

limit  cycle surrounding

equilibrium points is now studied.  Since the
limit cycle has no bias component in this case,
we put 4=0 1n Eq. (5).
(8) and (11), we have
B=B =,3(k-1).

Then from Eqs.

(16)

By plotting two loci, it will be made clear
that this limit cycle is unstable.

Summarizing above, the amplitude of
stable and unstable limit cycle, and the bias
component are given by Eqs. (14), (16) and
(15), respectively.

In order for the unstable limit cycle to
encircle stable limit cycles,

B, +|A‘ < B (17

Substituting Eqs. (14), (15), (16) into Eq.
(17) and using /, <O, we have

2/, - g, <k <-14] +15g, (18)

However, the left-hand side condition is
mcluded in & > (3g, —/,)/2 obtained from
Eq.(14).

T.herefore, k must be satisfied

+(3g, -1, )sk<-14/, +15g, (19)

It 15 to be noted that the left-hand side
conditton 1s equal to the condition for every
equilibrium point to be unstable.

Next, the problem that the trajectory
starting from the inside of the unstable limit
cycle does not diverge in the state space must

be studied.
It will be clear, that since x,(7) is bounded,

if @, is positive, all state variables do not
diverge from Eq.(3).

Summarizing the above, it can be said that
Eq.(19) and a, > 0 is the necessary condition
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for the occurrence of chaos for sysiem of
Fig. 1.
3. Chaotic region

In this section the chaotic region in
parameter plane for several transfer function
will be studied.
(@) G(s)=1/(s"+as’ +a.s+a,) (20)
Since @, = \/Ez:,/“ =a,—-a,a.,g, =a,,

then Eq. (19) becomes

A= ta, <k <ldaa, +a,. (21)
(b) Gis)=(bos+4h))
. (22)
(st a,5" ta.s+ay)
w, = '\/(b]a: _bnaa)/(bl _a|bu)
l,=(a,-aa,)/ (b —ab,)
g, =ay /b,
Then,
oy oty —“.'“b., 1y
:}?I— b':\l_”lb‘l +E < k (’)q)
u Ay = by iy <2
= 14?:— ;’1“‘:‘5‘0 +b—| '
(¢) G(s)=
4 3 2 . (24)
1/ (s +as" +a.5 +a.s+a,)
Cl)p = m, 1’“ = :—:-——‘“(dra'a\:]_”:-m . =4,
Then,
%-%(n,az —a,)+a, £k
13)

<14-“(aa. —a,)~a,
n)l -

The parameter regions for the occurrence

of chaos for the above transfer functions and

examples of chaotic trajectory are shown in

Fg 2.(a) ~ (c). In the shaded region, chaos

may occur. In the upper (lower) part of the
shaded region, system may converge
(diverge).

We can say that the condition given by Eq.
(19) is necessary condition and chaos does
not always occur even if the parameter values

satisfy these conditions.



4. Conclusions

[n this paper, a simple method to analyze
the occurrence conditions of chaos in a
nonlinear control system was investigated.
The parameter conditions for several transfer
functions and the simulation results were
shown.

The method proposed here is simple and
applicable. However, since the descrbing
function method is used, the accuracy of the
approximatton may be problem, if the system
has no low pass filter characteristics.
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Fig.2 Chaotic regions and simulation resuits

136



USING THE CHAOTIC SIGNAL FOR WHITE GAUSSIAN NOISE
MODELLING

M. Jessa
Institute of Electronics and Telecommunication, Poznafn University of Technology,
ul. Piotrowo 34, 60-965 Poznan, Poland

Abstract: In this paper a method for generating chaotic signal for white
Gaussian noise modelling 1s considered. It is shown that topological
conjunctions between dynamical systems can be used for chaotic signal
generation with Gaussian distrtbution. This signal may be used for white
(Gaussian noise modelling, .g. in telecommunication experiments,

1. Introduction

The Gaussian (also called normal) distributton is of the greatest importance in different
fields of science. Naturally occurring experiments are often characterised by random varnable
with Gaussian distribution. A further tmportance 15 that the probability distribution of the sum
of K stafistically independent processes with the same probability density function approaches
normalised Gaussian distribution (with zero mean value m, and standard deviation G, equal to
unity) in the himit as K approaches infinity (central limit theorem). The values of normally
distributed noise-like signal are usually calculated from this theorem. The sequence {yi},
where

K
(x, +x,+. X )=
y, = = i=123,. (1)

K
12

X1,X2,...,%g - values of uniformly distributed random vartable X, has a normabsed Gaussian

distribution N(0,1) for K approaching infinity. In practice, we assume K=12 [Bratley af al.
1991, Knuth , 1981]. The Gaussian distributton N(m,, o,) with arbitrary values of mean value
m, and standard deviation o, can be generated for random variable Z=c,-Y+m,.

In this paper we discuss the possibility of generation chaotic signal which properties are

close properties of the white Gaussian noise. We use topological conjunctions between chaotic
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systems for direct generation of noise-like signal {y,} with Gaussian distribution. We
investigate the basic properties of generated chaotic signal which are important for
telecommunication applications (the set of properties in comumonly depends upon the
applhcation). The main are: the accordance of signal distribution with theoretical one, the
uniformity of the power spectral density function (the Fourier transform of the autocorrelation
function) and values of the cross-correlation function obtained for sequences starting from very
close mitial points.
2. The Normally Distributed Chaotic Signal

The equation which describes dymamical system with an arbitrary probability density
function can be drawn from expression which relates probability density functions of dynamical
systems which are topologically conjugate [Jessa & Dawvies, 1994, Kilias ef al., 1994, 1995].
This is relatively simple when one of these systems is ergodic and generates uniformly
distributed numbers in the unit interval <0,1) [Jessa & Davies, 1994, Kilias ef al., 1994, 1995].
If we assume that some dynamical system f{X,|\) with probabilistic measure | 1s described by
tent map with Liapunov exponent equal log2 we obtain the followmg equation describing
dynamical ergodic system g(Y,u) with one-sided Gaussian probability distribution function,
topologically conjugate to system f{X, 1)

1. {3&™ -1 7
yn+1=;1n[3_em] Jor y,,E[O;\E*Iﬂ)

1. (% +5 bis 8
yn+J=E1n[e-(}‘,._3] fO)' yn E[J%*m3;+w]7 }(: ; (2)

The choice of the tent map from the family of piece-wise linear maps results in the conclusions

of paper presented by M. Jessa and A.C.Davies [1994]. One of them states that tent maps and
sawtoooth maps are related by simple formula. The second 1s that the maximal cycle length of
chaotic numbers generated for tent maps 1s double greater the maximal cycle length of chaotic
numbers obtained for sawtooth maps and for the same precision of calculations.

In Fig. 1 we see the histogram of signal {y,}. The histogram was obtained numerically
from equation (2) for 10° samples. The accordance of signal distribution with theoretical one
was verified n chi-square test. The result is the statement: “There 1s no reason (with 0.99
probability) to reject the hypothesis that the generated sequence has the Gaussian distribution’.

The uniformity of the power spectral density was checked for map
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q(v)=g’(y) a=12,... (3)

where g" denotes the functional composition of g o times. The smallest value of the standard

deviation of the power spectral density function is equal to 2.5% of the average value. The
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Fig. 1. Histogram of the one-sided Gaussian distribution.
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Fig. 2. The power spectral density of sequence {y.} obtained for =7 and 5000 of trajectory

points generated from (2), the average value is equal to 0.538 and standard deviation is equal

to 0.0135.
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Fig. 3. The cross-correlation function between trajectories started from y, and y.+t0.0001

obtained from equation (2); 5000 samples, «=7.
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largest value 1s equal to 4.5 % of the average value, This result was obtained for 0=7, i.e. for
sequence composed of each seventh sample obtained from equation (2). The values of cross-
correlation function R(j) between close trajectories (Fig.3) are at least 34 tunes smaller than the
greatest value of the autocormrelation function.
3. Conclusions

In this paper a method for generating chaotic signal for white Gaussian noise modelling
for simulation experniments has been considered. We have shown that the topological
conjunction method can be used for chaotic normally distributed signal generation. It seems this
signal may be used for white noise modellng, e.g. m telecommunication expertments. The
calculation of successive samples of normally distributed noise-like signal based on topological
conjunctions between dynamical systems 1s a general method. The complexaty of calculations
n this method is always less than the complexity of calculations of successive samples in the
another general method - the mverse method [Bratley at al. 1991, Kouth , 1981]. The latter
method requires first a generation of uniformly distnbuted numbers, while the former leads
directly to the generation of samples with desired distribution. The application of central hmut
theorem requires at least 12 random numbers to produce a single sample of the Gaussian signal.
Moreover, this number increases rapidly when large values of noise signal has to taken nto
account in stmulation experiment.
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Abstract

In this paper , based on the analyses of the 3-cell model and the experimental findings , we
report the bifurcation and chaos phenomena of the mterspike imtervals ( ISI ) in the nervous
system . After that , nonlinear forecasting as well as the surrogate data method is applied to
analyze the chaotic IS] time series both from the model and the experiment .

Key words : bifurcation , chaos , neural electrophysiological activities , f-cell model ,

chaotic time series analysis , the surrogate data , nonlinear forecasting method

It is of preat mterest how the information is coded in the nervous system . Lots of
experiments and theoretical mvestigations have been aimed at this problem . One experimental
method widely used is to study the interspike intervals ( ISI ) of the nervous action potentiai
trains propagated along single nerve fiber . Now , whether the time series of IS have chaotic
structure or are intrinsic noise 15 still in violent dispute . Some people have the point that they
are absolutely noise without deterministic structure [1] , while others are for the pomt that
there is deterministic chaos in the signals [2] . Although different methods have been utilized to
apalyze the data , actually , the mechanism underlying them is still unknown . There is one
fundamental question need to answer , that is , what can be reflected of the original complex
nervous system by the ISI data ?

In this paper , we focus our attentions on the mode] of S-cell proposed by Rinzel et al. [3] .
Usmmg the method of the Poincare section which seerus to be one of the most. powerful tools to
study the complicated system , the period doubling to chaos as well as the period adding

bifurcation diag;ram of the ISI with the alteration of the parameter By, Was obtained and
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shown 1 Fig.1 (a) (b) separately . Therefore , if the originél nervous system is considered as a
continuous dynamical system , the ISI data corresponds to the reduced discrete one . For the
purpose of comparison with the expenimental case , Figure 1 (c) exhibits the enlargement of
the period doubling bifurcation which was contaminated by the Gaussian white noise of the
mean value 100 and the variance 50 . The chaotic ISI time series were demonstrated in Fig. |

(d) of which the surn of the ISI number was plotted in sequence on the abscissa .
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Fig. 1. Bifurcation and chaos of the ISI time series in the -cell model , with the Poincarc
section V+35=0 . (a) The pertod doubling bifurcation to chaos ( without noise ) . (b) The
period adding bifurcation diagram of the ISI time series . (c) Enlargement‘ of the penod
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doubling procedure ( contaminated by the Gaussian white noise ) . (d) The chaotic IS time

series ( without noise ) .

Second , the bifurcation phenomenon of ISI has been found in our experiments too . The
surgical operations were carried out usmg the procedure described by Bennett and Xie [4] .
Adult male SD rats were used in the experiments , the discharges along smgle nerve fiber werc
input to an A/D converter and the ISI data were recorded by the computer , the activities of
the nervous system were monitored on 2 memory oscilloscope screen ( ve-11 system ) during
the whole experiment . When analyzing the ISI data , attentions were paid to the dynamical
change of the data with time rather than the static value . As a result , the bifurcation
procedure was found and recorded . Figure 2 (a) exhibits the bifurcation diagram of the [S]
data CA381W4 from the experiment . Figure 2 (b) gives another period addhg bifurcation of
the IST data EG3803 . It can be seen clearly from both these figures that although the ISI data
were corrupted by the measurement noise , they still can reflect the dynamical change from the

periodic motion to chaos of the nervous system .

1z
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Fig. 2. Bifurcation and chaos of the IS time series from the experiment . {a) The bifurcation
diagram of the ISIT data CA381W4 . (b) The pertod addng bifurcation of the IS] time series
EG3803 .
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Third , nonlinear forecasting and the surrogate data methods have been combined together to
analyze the IS] data both from the experiment and the model [5][6] . Although the data are
contamunated by the noise from experimental measurement , correlation coefficient curve has
distinct difference from that of their surrogate data . This means that the nervous system was in
the state of chaos at that time . The results from the experiment are also consistent with wlat
have been obtaimed from the model while contaminated by the Guassian white noise . As
another important evident to support our finding of chaos , the plot of ISI (n+1) vs. IST (n)
which can reflect the charactenstic structure of chaos is reconstructed . [t is exciting that there
is a good resemblance of the structure between the plot from the model and that obtained from

the experiment .
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Abstract: We investigate a transition from chaotic to nonchaotic behavior and

synchronization in an ensemble of systems driven by identical random forces.

We analyze the synchronization phenomenon in the ensemble of particles mo-

ving with friction in the time-dependent potential and driven by the identical

noise. We define the threshold values of the parameters for transition from

chaotic to nonchaotic behavior and investigate dependencies of the Lyapunov

exponents and power spectral density on the nonlinearity of the systems and

character of the driven force.
1. Introduction

Trajectories of the nonlinear dynamical systems are very sensitive to initial conditions
and unpredictable. The systems exhibit an apparent random behavior. It might be
expected that turning on an additional random forces make their behavior even “more
random”. However, as it was shown by Fahy & Hamann [1992] and Kaulakys & Vektaris
[1995a,b] when an ensemble of bounded in a fixed external potential particles with different
initial conditions are driven by an identical sequence of random forces, the ensemble of
trajectories may become identical at long times. The system becomes not chaotic: the
trajectories are independent on the initial conditions. Here we analyze the similar phe-
nomenon in the ensemble of particles moving with friction in the time-dependent potential
and driven by the identical noise. We define the threshold values of the parameters
for transition from chaotic to nonchaotic behavior and investigate dependencies of the
Lyapunov exponents and power spectral density on the nonlinearity of the systems and
character of the driven force.
2. Models and Results
Consider a system of particles of mass m = 1 moving according to Newton's equations

2 — az sin wt,

in the time dependent potential V(r,t), e.g. in the potential V (z,?) = 2% —z
and with the friction coefficient . At time intervals 7 the particles are partially stopped

and their velocities are reset to the mixture of some part a of the old velocities with
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random velocity vI®m: v = gvold 4 yien

1 .

, where 7 is the stop number. Note that vIo®
depends on the stop number ¢ but not on the particle. The simplest and most natural
way is to choose the random values of velocity v®" from a Maxwell distribution with
kg=m=1.

A transition from chaotic to nonchaotic behavior in such a system may be detected
from analysis of the neighboring trajectories of two particles injtially at points ry and ry
with starting velocities vy and vy. The convergence of the two trajectories to the single
final trajectory depends cn the evolution with a time of the small variances Ar; =1l —r;
and Av; = vl — v;. From formal solutions r = r(r;,v;,t) and v = v(r;, vy, t) of the
Newton's equations with initial conditions r = r; and v = v; at ¢ = 0 it follows the
mapping form of the equations of motion for Ar and Av. The analysis of dynamics based
on these equations has been investigated by Kaulakys & Vektaris [1995a,b].

Here we calculate the Lyapunov exponents directly from the equations of motion and
linearized equation for the variances and extend the investigation for the systems with
friction in the regular external field and perturbed by the identical for all particles random
force. In Fig. 1 we show the dependence on 7 of the Lyapunov exponents for the motion

in the nonautonomous Duffing potential with friction described by the equations
4 = 2z — 42° — yu + asinwt, z=u. (1)

" For the values of parameters corresponding to the positive Lyapunov exponents, i.e.
without the random perturbation {7 ~ co) the system is chaotic. The negative Lyapunov
exponents for small 7 indicate to the nonchaotic Brownian-type motion.

As it was already been observed in [Kaulakys & Vektaris, 1995b] such systems exhibit
the intermittency route to chaos which provides sufficiently universal mechanism for 1/ /-
type noise in the nonlinear systems. Here we analyze numerically the power spectral
density of the current of the ensemble of particles moving in the closed contour and
perturbed by the common for all particles noise. The simplest equations of motion for
such model are of the form

1= F — yv, T = (2)
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Figure 1. Lyapunov exponents vs the time 7 between resets of the velocity for motion in
the Dufling potential according to Eq. (1} with @ = 5, w = 1, v = 0.07 and different .

log,,S(f)
1/f* +11
15
5 4 -3 -2 | logo f 1

Figure 2: The power spectral density of the current of the ensemble of particles moving
according to Eq. (2) with F' =1, v = 0.1 and perturbed by the common for all particles
noise v'*¥ = av?? 4+ vI%" with @ = 1 and 7 = 0.1. The dense line represents the averaged
spectrum.
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with the perturbation given by the resets of velocity of all particles after every time
interval = according to the identical for all particles replacement v = qv® + vIon We
observe the current power spectral density S(f) dependence on the frequency f close to
the 1/f-dependence (see Fig. 2).

QOur model may be generalized for systems driven by any random forces or fluctuations.
On the other hand, the phenomenon when an ensemble of systems is linked with a common
external noise or fluctuating external fields is quite usual. Thus, an ensemble of systems
in the external random field may provide a sufficiently universal mechanism of 1/ f-noise.
3. Conclusions

From the fulfilled analysis we may conclude that, first, synchronization and transition
from chaotic to nonchaotic behavior in ensembles of the identically perturbed by the
random force nonlinear systems may be analyzed as from the mapping form of equations
of motion for the distance between the particles and the difference of the velocity as well
as from the direct calculations of the Lyapunov exponents and, second, an ensemble of
systems linked with a common external noise may exhibit the 1/f-type fluctuations.
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Komendantov A O.#* and Kononenko N.I.*
# Glushkov Institute of Cybemetics, Kiev. Ukraine;
* Laboratory of Neurobiology, Bogomoletz Institute of Physiology
Bogomoletz str.. 4, 252601 GSP, Kiev-24, Ukraine

Abstract: The mathematical model of electrical activity of bursting neuron
demonstrates period-doubling chaos and ecrisis as the chemosensitive
conductance is increased. This conductance in intact nerve cell depends on
neuropeptide released by interneuron. The transition from resting state to
bursting activity evoked by short-lasting stimulation is observed in our
model. These studies reveal a putative role of nonlinear properties of

celtular membrane in information processing at the level of a single neuron.

1. Introduction

In recent years, neurobiological studies gave undoubted evidences of complexity of
electrical processes in single nerve cells. Intact nerve cells and their models can demonstrate
beating, bursting or chaotic activity [Canavier ef al, 1993; Chay er al., 1995, Hayashi &
Ishizuka, 1992]. The model presented reproduces behavior of Helix identified bursting neuron
although the results of our studies have a relevance for more clear understanding of functions
of other nerve cells and neuronal assemblies.
2. Model of Electrical Activity of Bursting Neuron

The model 1s based on experimental data and includes following components: slow-
wave generating mechanism (/x-, Iva. fnaps, I5); Hodgkin-Huxley spike generating mechanism
({nary  fxmp) and fast potassium current (Jge) ; calcium and calcium-sensitive system ( /ey,
Iceca » Icay , uptake of [Cay]m by intracellular depots). The equations and corresponding

parameters are presented in Appendices.
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3. Bifurcations, Chaos and Crisis in the Model Neuron

The bifurcation diagram in Fig.1 is obtained by numencally integrating the model
equations. It shows the interspike interval  (ISI) changes with increasing of gg
(hyperpolarization-activated conductance responsible for termination of spike burst ) from
0.380 to 0.455 p1S. This conductance in intact snail neuron was established to be modulated by
neuropeptide released by corresponding interneuron. The model pacemaker neuron changes its
monomodal beating activity to chaotic one with increasing of gz and the diagram demonstrates
route to chaos through cascades of period doubling. The dominant Lyapunov exponent to the
attractor in the region of chaotic beating activity for time sefies contained 2600 ISIs was
estimated as 0.438 bits/iteration.

The model demonstrates also the features of crisis [Grebogi ef al., 1983] which was
observed in other models of excitable cells [Chay et al., 1995]. When gz>0.420 uS the size of
attractor changes suddenly. The periods of quiescence are appeared in high firing rates and

maximum of ISI value is increased to 10.5 s (It 1s not shown in diagram).
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Figure 1. Bifurcation diagram for IS1 as a function of ga,
4, Mode Transition in the Mode! Neuron
In the previous model [Komendantov & Kononenko, 1995] without /ir and /oy

([Ca’ Jin-activated non-specific cation current) we observed stable parameter-independent



mode transitions from periodicity to aperiodicity and vice versa which have been induced by
short-lasting membrane polarization. These events simulate activation of synaptic inputs of
neuron. The extension of the mathematical model presented in this paper allows us to simulate
new interesting features of neuronal behavior. Short lasting depolarizing current can perturb
quiescent neuron into persistent bursting activity (Fig.2), Such phenomena take place in some

electrophysiological experiments.
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Figure 2. Time course of membrane potential (bottom) and corresponding [Caz_]ln {(top). The

bar at the bottom graph indicates the spell of current pulse application (-0.5 nA, 1s).
S.Conclusions

- Period doubling, crisis and parameter-independent mode transitions were observed also
in some other models of excitable cells [Canavier e al, 1993, Chay er a/, 1995; Hayashi &
Ishizuka, 1992]. Such phenomena have a biological relevance and nonlinear properties of our
model neuron may be considered as putative neuronal mechanism of associative leamning, fixed
acts, memory, recall.
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7. Appendices

A.1. The model equations:
= Cor dV7dl = Iyapy= Iinr~ Lir— I Tva= Inopn= Ip+ Ica=Ico.ca = Icax;
et =gnarim” B(V-Vieo), T =g’ (V-Vi);  Tur=gir f q(V-1%);
dm’dt = (1/(1+exp(-0.4(1+ 31)))- m )/0.0003,
dh/dt = (1/(1+exp(0.25(V=45)))- h)/0.01;
an/dt = (1/(1+exp(-0.18(V+23)))- n)/0.013;
dfidt = (1/(1+exp(-0.2(V=20)))- £ }/0.01:
dq/dt = (1/(1+exp(0.3(V+80)))- g)/0.1:
Inagy = guam(1/(1=exp(-0.4(V=45)))) (¥-Fyo).
Iy = gulV-Vi): Ina = 8va(V-Vng), 1= g mg ha(V-Vp);
dmpg/dt = (1/(1+exp(0.4(V=38))) - mp)/0.08;
dhgdr = (1/(1+exp(-1(V+43))) - hg)/1.5;
Ica=gcamca (V-Feo); dmeodt = (1/(1=exp(~0.2¥)) - mcg)/0.01;
dfCajidt =p (<(Tca ~Icaca2F V- ks{Cal): L = 4aR 73
leaco=gcace / ((Kdco-ca + [Ca])Kdcoca) (F-Feals
I=exp(-0.12(17-45))

. Ieav=gean ([Cal’/Kdean+ [Ca)’)) (V-Veaw).
[Caj 1s [Ca™ [, F 1s Faraday number, ks - rate constant of intracellular Ca-uptake by

intracellular stores, p - endogenous Ca buffer capacity.
A.2. General parameters for the model equations:

gi== 100 uS; gnayw=400 uS; Fyu=40 mV; F;=-70 mV; T5=-58 mV, [lc=150 mV,
I'ea=10mV; R=100 pm; p = 0.002; ks=100 1/s; Kdco.co=1.6 107 mM.
A.3. Parameters and initial conditions for part 3 (bifurcation diagram):

Cn=0.04 uF; 22=0.25 uS,; 22a=0.02 u§; gvor= 0.15 US;  grus=150 uS; geo= 8 1S,
2eaca=0.04 1S, gean=0.005 uS; Kdex=210" mM; p=1; F=-55 mV; [Caj= 0 mM.
A.4. Parameters and initial conditions for part 4 (quiescent state):

Cn=0.02uF; g¢=0.3 uS; gv=0.034 uS; gyans= 0.1 uS; gg=0.3 uS; gipr=250 US§; gco= 10 pS;
gcaca=0.03 pS; gen=0 017 uS; Kdcon= 410" mM; p=4; F’=-53 5 mV; [Caj= 1.8 10" mM
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SMALL HYSTERESIS PERTURBATIONS IN
BIFURCATION PROBLEMS
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Abstract: The effects of the Hopf bifurcation type are studied for autonomous sys-
tems depending on parameters. An operator approach based on the method of parameter
fuctinalization is introduced to analyze the existence of periodic solutions in the neigh-
honrhood of the system equilibrivm. The approach is applicable to the study of svstems

with autonomous hysteresis nonlinearities.

1. Let us begin with a simple example. Consider the system

d=
dt

Here A(A} i1s a real matrix with continuous in A elements; the vector function {z.A) is

= Az + oz )), Ae R, ze RN (1)

continuous in z. A and (z;A) = O(]z)*), = — 0. Hence, = = 0 is an equilibrium of the
system (1) fer any A € K.

We say that Ay 1s a bifurcation point (in problem of the Hopf bifurcation at zero
equilibrium}. if for any ¢ > 0 there exist a number A, and a nontrivial 7'().)-periodic

solution z(?: A, ) of the system (1) for A = A, such that
[A: — Aol < 2. [z(t:A)| <&, tER (2)
Obviously. a necessary condition for Ag to be a bifurcation point is that the linear syvstem
== A({A¢)= have nontrivial periodic solutions.
Suppose that this condition is satisfied and. in addition, the matrix A(Ag) is nonsiu-

gular. Then. the matrix A(Ag) has a pair of the pure imaginary eigenvalues £:3;, where

Jg > 0. Let the following assunmiptions hold:
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(i) The cigenvalues 210y of the matriz A(Ao) are simple;
(i1)  The numbers i0pk, where b = 0, £2,£3,. ., do not belong to the spectrum ofA()\o).

Note that the spectrum of A(Ag) may include some pure imaginary pomnts u # %15
(excepting the ones mentioned in (ii)) as well as any point g = £ 4 15, where £ # 0
regardless of the sign of £.

It follows from (i) that the matrix A{A) has a unique eigenvalue a(A) 4+ :3(}) close
to i3y for |JA — M| < 1. In this notation, e{is) = 0, 5(A) = F0.

Theorem. Let assumptions (1)-(11) hold. Let for any § > 0 there exzist M. A" €
()\0 - 5, Ao + 5) such that
a(M)alA") < 0. (3)

Then. Mg ts a bifurcation point for the system (1) in probiem of the Hopf bifurcation at
zero equilibrium. Moreover. the periods T(A.) of the cycles z(t, .} salisfy

T(A) = 27/8y as & —0. (4)

The general approach used to prove this theorem makes it possible to find asymp-
totic formulas for the cvcles =(¢; A.) and their periods T(A.). to analyvze stability of the
cvcles etc. The approach can also be applied to analyze problems of nonlinear resonance
(bifurcation at infinity).

The idea of the proof is as follows. First, by time rescaling we replace the problem
of periodic solutions of unknown period T for the svstem (1) by the boundary valuc
problem on the segment [0, 1]:

d:_ﬁ

o =TAR): + To(=:). (

p 1]
—

=(0) = =(1). {6)

Here T becomes an additional prameter. Then, we get over to some equivalent to the

problem (5)-{G) integral equation. Let us write it 1n the operator form

()= Blz(7); A, T]

——
-1
——

[Eg.(7) can be analyzed in various functional spaces, e.g. in the space C' of continuous on

[0.1] vector functions T = z(7). Operator B: (" x R » R — (7 is completely continuous.

154



An intrinsic peculearity of Eq.(7) is that the set Z(X T) of its nonzero solutions
T does not contain isolated points. Furthermore, if Z{A, T) # 0, then any connected
component of Z(A. T) is a continuum of zero topological index. This complicates the
study of Eq.{7).

To overcome the difficulty we introduce the pair of the scalar valued functionals
f(Z.q). f2{Z:q), where ¢ > 0 is an auxiliary parameter. Substituting f,, f2 for A, T in
(7), we obtain

= B[z /1(Z:q), f2(Z: )] (8)

el

The functionals f;, f2 are constructed so that nonzero solutions of Eq.(8) are i1solated.
It is important that f,, f; are given by simple formulas.

The argument based on standard topological methods of functional analysis shows
that Eq.(8) has a nonzero solution Z, for any sufficiently small ¢ > 0. The function

I, = z4(7) determines the nonzero T'(g)-periodic solution z(t; A(g)) of the system (1) for
A= Mg), where A(g) = f1(Z5:¢),T(q) = f2(Z,;9). Formulas (2),(4) follow from

max|=(5 (gl = 0, Ma) = do, T(e) = 27/B a5 q—0. (9)

2. The approach outlined above is applicable to the study of bifurcation in au-
tonomous systems with hysteresis.

Let 1" be an autonomous hysteresis nonlinearity with inputs u(t) and outputs x(1).
their values being elements of R' and R™ respectively. In particular, W may denote
some scalar or multidimensional hysteron, e.g. a play or a stop. It may be as well a
complex hysteresis nonlinearity like the models occuring in plasticity and magnetism, e.g.
the ones due to A.Yu.Ishlinskii, G.J.Friedman, 1.D.Mayergovz, Z.Mroz, V.V .Novozhilov,
F.Preisach etc. |

Consider the system with the hysteresis nonlinearity W of the form

dz

— = ANz + vz, e RY (10)
w(t) = Wlto, wlte)ult), t > 1o, (11)
u(t) = Pz(1), z = d(w). {12)

Here w is a state of the hysteresis nonlinearity 17; it is an element of a convex compact

subset {2 of some Hilbert space //. Operator {11) determines how the state w is changed
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in time from its initial value w(ip) under the influence of the input u(t). Operators
P RN 5 R and & : Q0 — R™ determine the input and the output of the nonlinearity 11,
Initial conditions for the system (10)-(12) consist of two equalities z(#y) = zg. w(fy) =
wo. Periodic solutions of the system are the pairs {z(1),w(t}} of T-periodic functions:
their values shape cycles in the system phase space B™ x (1.
For the sake of simplicity we restrict our consideration to the case when Eq.{10) has

the form
dz

5 = Az + o(z4) +eglz, 7)), (13)
where ¢ > 0 is a small parameter. The system (11)-(13) is considered as a perturbed
system (1) with the perturbation term depending on the hysteresis nonlinearity output.

Classical approaches to the Hopf bifurcation problem fail when applied to the study of
systems with hysteresis. The reason is that hvsteresis nonlinearities are not differentiable.

To analyze the problem of small periodic solutions for the system (11)-(13) we use the

approach presented in Sec.l. First, the problem is reduced to the analysis of the svstem

1]

= Bi[Z,w; M, T], w= B[F,w; A, T). (14}

The structure of its set of solutions is similar to that of Eq.(7). As above, by substituting
the functionals [y, fo for A, T, we get over to the system with isolated solutions. The
latter 1s analyzed by means of standard topologica) tools, which leads to the result

analogous to the Theorem of Sec.l.



DYNAMIC AND STATIC STABILITY
OF MULTILAYER CONTACTING SHELLS

V.A. Krysko
Professor, Doctor of Technical Sciences, Honourd IV{an of Science an Engineering of Russia.
The Head of the Hignerst Mathematics chais, addres: B. Sadovaja str., 96a,5lat 77,
Saratov, 410054, Russia. E-mail kvm(@sstu.saratov.sn (88452)255558

There are few works, devoted to dynamic of non-soldered multilayer
shells. In given work we aspired to fill this blank.

In given article the dynamic stability of multilayer geometrically
nonlinear rectangular in plane shells is discussed. For the first time local
and general loss of stability of shells is studied. Offered approach allows to
consider both static and dynamic problems.

Let's consider multilayer rectangular in plan cylindrical shell
assembled from any number of n +1 layers. Let h is the distance between
layers Si and Si+1. Let's designate through S the middle surface of i-th
layer (i=0, n). We'll take 0-th middle surface as a coordinate surface z=0.
We'll take main curvature lines as curvilinear axes. External normal is
directed to center of curvature of the given coordinate surface.

We'll consider each layer Si as an independent thin shell described
by the equations of Kirchhoff-Love model:

VjF’+%LUWJVJ+VﬁWf=Q

w1 1 ()

7;7+;'u@—#)

To integrate the equations of system (1) it is necessary to attach the
appropriate 1nitial conditions:

Viw' —ViF - LW F')-0' =0

W = Wé (x,y);

=14 (x, ). )
=0

1=0 3

Moreover, it 1S necessary to satisfy with four boundary conditions
in each point of contour r:
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O’HIFI
f

= Q) (x,1.,1); =0 (x,,1), (3)

N r

r

where n is normal to border r; k, 1, change from 0 up to 3.

Let a normal load Q (x, v, t) is applied to layer Si. Under its influence
points of the layer get displacements Wi and can enter into contact
interaction with neighboring layers. Let's assume that contact pressure
(i.e. tension normal to surface) is much more smaller than normal
pressure in sections of shells and shells free slip in zones of contact.

Let's consider balance of an element of shell Si in view of contact

interaction with layers S’ ™! and §'*:

2w L] ]

e mvﬁw" _VIF L(W",F")

~O' —p R +<01‘+1Rf+l}:07 ()

where R' is contact interaction between layers S’ and S}, and
; 1[l,in case of contact;

0, contact not present.

Excepting contact pressure R’ from equations (4), we'll get an
equation of motion of shells taking into account contact interaction
between layers:

viF +%L(W2W")+V§W" =0,

stw o [atw [e2wt
aal et I B U Lk R =
z{ P { P ] |+e P ] (5)

o'+ '] [gp"” + ! []] + qoi[cof‘l + qof"l[...]...],

]

If an initial arrangement of shells and load are those, that shells are
not contacting during movement , j=0 and (5) splits into n independent
svsterns. Otherwise the equations of system (5) are connected.

where ¢’ = Vj{H""+V,2\.F"+L(Wf,Fi)+Q’ i=0,n.

2
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For example, let's consider a system consisting of two layers. Let a
uniformly distributed load Q 1s applied to layer S. Then equations (5) will
take the form:

viF! +%L(W’,W1)+V%W1 =0,

(6)
VjF2+%L(W’3,W2)+VﬁW2:O,
2 1 1 2 2 2
W W W
7 . v e +qo[§mz/ 4 e ]:l ;V}t_wlﬁ-\?z}?l
o ot ot o ) x| 1afi-v?)

{u(uﬂ F)- Q} + {?’Fl—v—l)ﬁwz +VIFY 4 L(WE,F:)H,

—

where ¢- is the decay factor of medium,
The initial and boundary conditions are :

ow
_ = — :O,
|! 0 a 1=
o'W AW,

W' 0.0 :W-Ix: :—’ = 3 :0>
= R S N S
’x—-On = Ix—Ob :iiii :E :0;‘

o o =00 Dlemos

We'll decide system (6) using a finite differences method of O(h2)
order. Together with initial and boundary conditions, received
equations represent complete system of ordinary differential equations
of the second order on time. This system can be integrated as follows:

. We use Wi, obtained on previous step on time, to form right side
of system of algebraic equations for function F.

2. Received IF and W are substituted in right side of differential
equations, from which using Runge-Kutta's method of fourth order we
etermine W for following step. Zones of contact (the functions j) are
determined from reasons of mutual non-penetration of shells.

Further the process repeats .



00 g7 T Fig. 1 demonstrates the
‘ H== H=13 dependence of a deflection
P H=20 from load for various H
L/ /’)!’ P \ ij-f‘H:]‘:I) (curves 1-7 correspond H=0;
i/ . . H=1.0 0.5; 1; 1.5, 2; 2.5; xres-
e T T hens pectively ). For K =K = 2a
M/ i T H < 1.5 system losses stabi-
30— - 74 / T AR i lity when second shell
/ ”/f—i — — "H=0.0 | losses them.

100 -/7”;5"- P When h increases,
[ v 5 process of loss of stability
50_.-,-‘;"/_ _ .- _ - - -E- e - splits on two parts. Shell §
b S | losses stability when the
| o oy shell S still stable ( local

0 I ﬁg stability loss of system).
fig.1. Load to be increased,

loss of stability of shell S occurs (general stability loss ).

Critical loads were determined according to [1].

The contact pressure has character of concentrated in center load. If
load increases, a zone of contact increases too, and maximum of contact
pressure moves to the border of a contact zone. It's explained by the fact that
in using model the squeeze on thickness of shells in zone of contact is not
taking into account.

For H>1.5 contact pressure completely concentrates on the border
of a contact zone (in central part the contact pressure is equal to zero). Thus
contact of shells breaks in center and contact zone gets a form of ring.

Journal reference:
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NIpSMOYTONLHBIX B MJIAHE NPH KOHEuYHbIX nporubax”, /nt. J. [lpuriaonas
mexarnura 15(11), 58-62.

Henroxknd N.YO., Kpbicbko B.A.[1994]"0O kpuTtepus MHHAMUUECKOH NIOTEPH
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NONLINEAR VIBRATIONS AND CHAOS
IN ELASTIC-PLASTIC STRUCTURES

U. Lepik
Institule of Applied Mathematics, Tartu University,

Vanemuise str. 46, EE2400 Tartu, Estonia.

Abstract: Nonlinear vibrations of elastic-plastic beams, flat arches and cylindri-
cal shells are considered. The end sections of the structure are pinned so that
mermbrane forces appear. The equations of motion are integrated by the Galerkin
method. Possibility of chaotic behavior of structures is discussed; for this purpase
displacement-time histories, phase portraits and power spectrum diagrams are put

together.

1. Introduction

Symonds and Yu [1985] considered the following problem: a fixed-ended beam is
subjected to a short intensive pulse of transverse loading that produces plastic deforma-
tions. Solving the equations of motion they found that permanent deflection may be in
the direction opposite to that of load. Such a phencmenon they called "counter-intuitive
behavior” of the beam. They also showed that this effect takes place only in a narrow
region of beam and load parameters. In the following papers Symonds and his cowork-
ers investigated chaotic character of the vibrations, for this purpose they used Poincaré
diagrams and Lyapunov exponents. Symonds and Lee [1993] calculated also the fractal
dimensions for this problem. They found for the similarity dimension the value 0.78 and
for the correlation fractal dimension ~ 1.44. In most of these papers Symonds and his
coworkers for simplicity sake used models which consist of rigid beams connected by small
elastic-plastic shells (Shanley-type models). The case of a continuous sandwich-type beam
was discussed by Symeonds and Yin Qian [1993]. In this paper equations of motion were
integrated by the Galerkin method (for two degrees of freedom).

Elastic vibrations of compressed beams under lateral excitation were discussed by
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Abhyankar et al [1993]. They considered a beam which is compressed by an axial load
greater than the Euler buckling load and then is fixed in its compressed position. After

that a transverse load p = p(z,t) will be applied, besides a base excitation wg(t) may
act (Fig. 1). Chaotic behavior of the solutions follows {from phase portraits and period

doubling bifurcations.

Flx,t)

e T T

P
T i
Fig. 1

The author of the present paper has tried to get solutions for continuous beams
(1.e. without making use of Shanley-type or analogical models). For this purpose the
(Galerkin procedure for an arbitrary number of degrees of freedom has been used. The
results which are published by Lepik [1993a, 1993b, 1993e, 1993, 1996] refer to beams,
swallow arches and cylindrical shells. Here in after a short review about the method of

solution and achieved results i1s presented.

2. Method of solution

To be brief we shall consider only beams with a rectangular cross-section, B, h and
L are the width, thickness and length of the beam, respectively. The equations of motion

are

__(9T (92u_
@1:-—;—;)3 é—t'z— 0
82 o /.0 2 W
_ M 9 (0w _ Pw  Fup
P2= 50 T o <T83§) Pz t) th(Bt? I )

where p- Is density, u- axial displacement, w- deflection. Axial force T and bending
moment M we shall calculate from the formulae
+h/2 +h/2
T =/ o{z,z)dz, M =] o(z,z)zdz (2)
—h/2 —h{2
We shall assume that the beamn material has linear strain-hardening and the stress-

strain diagram has the form as shown in Fig. 2. Elastic unloading (line CD) and secondary
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plastic loading (line DB) are also taken into account.

6|

Fig. 2

To the equations (1) we shall apply the Galerkin’s procedure

L L
/ $ibudz =0, / 6wdz =0 (3)
0 0

Here we shall confine us only to the beam with simply supported ends and seek the

displacements u and w In the form
u = ib;sinZin, w:if{cos(%-}fl)?r3 (4)
=1 L =] L

The integrals (2)-(3) we shall calculate numerically; by doing this we find the second
derivatives b; and f;. For evaluating the quantities &;, b, f;, f; we shall use the scheme
of central finite differences (for getting a stable solution the time increment At must be

sufficiently small).

3. Discussion

Calculations have been carried out for four problems: (1) beam under short pulse
loading, (2) prestressed beam, (3) flat arch under short pulse loading, (4) prestressed
cylindrical shell. These calculations showed that the necessary exactness is achieved if we
shall take from both of the series (4) only 2-3 terms. The results obtained by our method
are quite close to the solution obtained by Abacus technic. Most existing solutions go out
from the assumption that the axial force T" is constant along the beam. Our computations

show that this assertation does not hold in the real case.
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For analyzing chaotic behavior of the vibrations deflection history, phase portraits
and power spectrum diagrams are put together. It follows from these diagrams that weak
chaotic effects in the response of the structure may exist, especially in the initial phase;
as to the long-term motion then it transitates to periodic vibrations of smaller amplitude.
Most distinguished are these effects in the case of prestressed beams. In the case of flat

arches and cylindrical shells the vibrations are considerably more regular as for beams.
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REGULAR AND CHAOTIC MOTION OF FROUDE
PENDULUM

Grzegorz Litak, Grzegorz Spuz-Szpos, Kazimierz Szabelski, Jerzy Warminski
Department of Mechanics, Technical University of Lublin,
Nadbystrzycka 36, Lublin 20-618, Poland

(Fax: - 48 8! 550808, E-mail: glitak@archimedes.pol.lublin.pl)

Abstract: Vibrations of self-excited Froude pendulum under external excita-
tion with non-linear stiffness. were analyzed. Differential equation of motion
includes nonlinear damping term of Rayleigh’s type. Vibrations synchroniza-

tion and chaos were examined in the system.

1. Introduction
Froude pendutum is well known example of self—excited system [Minorski 1962, Moon

1987, Litak et al 1994, Litak et al, 1996]. Vibrations of pendulum subjected to external
excitation are described by the following differential equation:

@ — (& — Bp?)p + singp = Beoswt | (1)
where &, ( denotes non-linear damping coeflicients of Rayleigh’s type, B excitation am-
plitude, w excitation frequency.

The system 1s described by two characteristic frequencies: the frequency of self-
excited vibration p and the external excitation frequency w. For exiting force amplitude
B equal to zero vibration with the same frequency as seli-excited appears. For B >
0 according to the parameters of the system, it 1s likely to occur two cases of regular
solutions: mono-frequency solution or quasi-periodic solution with modulated amplitude.
Besides regular solutions, also chaotic solutions may appear |[Litak et al. 1994, Litak ef
al. 1996].

2. Vibration in the Vicinity of Fundamental External Resonance
Let us examine small vibrations around ¢ = 0. Expanding in Tailor’s series up to

the third order terms sin(e) & ¢ — 7¢°, where ¥ = 1/6 we get following equation
@ — (o — B + (1 — 39’ )o = Beoswt - (2)
For fundamental external resonance {I = 1 we can write:

A =14¢r . (3)
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Introducing the small parameter € < | into Eq. 2 we get:
P+ 0% = elop+ (o - "¢ - (1 - y¢*)p + Beosut| ()
where B =ef3, B = ¢B,a=c¢a, ¥ =ey.
Proceeding standard multiple-time-scale calculations [Nayfeh 1989] we look for the

first order approximation of type:

]
z(1) = acos (Eﬂi + r,b) , {5)
where a and i satisfy the following equations:
) a 3,5 B .
a = ¢ (E - gﬂa - ESIHI,L’) (6)
. 3 B
_ ay = ¢ (—%a - 8_3?2&3 — gﬁascosr,b) . (7)
1.40 — a
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Figure 1. Vibration amplitudes (la), time history for w = 0.87 (14).
Figure la shows vibration amplitude a plots versus frequency of parametric exci-

tation w. They were obtained as result of analytical {AR) investigations in first order

approximation {Eqs. 4,3).

0.5 1 0.5

0.0 1 0.0 A
I\ | |
1 ¥ ]

A0 51 A,~0.5
-1 04 -1.0 1
a) b)

-15 = T T T 1 T —T -15=— T T T T —r——

00 25 50 75 100 125 150 0.0 25 5.0 7§ 100 125 150

Figure 2. Lapunov exponents: & = 0.35 (Fig 2a), & = 0.035 (Fig. 2b).
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Comparative points obtained during numerical simulation (Eq. 1) were also marked
(RKG). Parameters used in investigations were following: &@ = 0.035, 8= 0.1, B = 0.1,
¥ = 1/6, ¢ = 0.1. Outside the synchronization area beats, i.e. almost periodic vibrations
occur. The typical time history in this region is presented in Fig. 14, where w was chosen
to be equal to 0.87.

3. Chaotic Motion of Froude Pendulum.

The most reliable critenion for chaotic motion is positive value of maximal (but
nonzero) Lyapunov exponent. Figure 2 presents results values of Lyapunov exponents A,
versus excitation amplitude B calculated by Wolf et al's algorithm [1988]. For calculations
the following parameters: w = 1, § = 0.1, & = 0.35 (Fig. 2a) and & = 0.035 (Fig. 2b) the

initial conditions: ¢wg = 0, o = 0.5 were used.

a0 w 30 4.0
2.0 2.0 T .oJ —
/_\ - o 2 L :_::______-,
b = - X P ._-'_-,."
1.0 4 od L& & 2.0 - R e
r / ’ ._,.'
co - cod T Lo / .
ya A Va
-10 ~194 ° % y/: 0.0 4 \ /
W .
\__/ ¥ e -
— e e
-2 0 -2.0 4 =t -1.0 4
a) ) c)
-30 T v . ; - v -3o T r T T ; — -2, T - \ ————
~3% ~25 )15 0% 05 15 25 35 -35 -25 -1.5 -0.5 D5 1.5 25 35 293‘5 -25 —-15% ~05 0% 15 25§ 3%
¥ ¥ [

Figure 3. Poincaré maps, Figs.3a, b, ¢ for values of parameter B=01,042,25 respectively.

For intervals around B = 2.5 chaotic motions of pendulum were found in both cases
(& = 0.35, & = 0.035). Additional interval around B =~ 0.45 for & = 0.35 shows chaotic

behavior which is absent in case of smaller a.
3.00 T

2.00 Fimn

1.00

@ 0.00 1

—1.00 1

-—2.001

_3.00 % ——— —3.00 Jmrmr . . .

0856 035 00 080 080 1.00 308 530 o040 Bo,ég 080 1.00
B

Figure 4. Bifurcation diagrams: for (zg, ve) = (0, 1) (Fig. 4a), for (2. vg) = (0,0.5). (Fig. 4b)
For three values of the parameter B = 0.1,0.42, 2.5 (other parameter values as in Fig.

2a) Poincaré sections are presented (Figs. 3a,6,¢) Figure 3a shows regular quasi-periodic

167



motion while Figs. 36, ¢ illustrale the strange attractors of pendulum chaotic motion.
Two different. Bifurcation diagrarms (all parameters values as in Fig. 2a) according to
different initial conditions (corresponding to upper and lower branches of Poincaré Maps
in Fig. 3a) are connected with rotational motions of pendulum in different directions.
Thus the regular motion of Froude pendulum could be synchronized with external
forcing or quasi periodic. We found that quasi periodic vibrations appear outside synchro-
nization region for smali alpha (Fig 1b) while quasi periodic rotations appear {or large
enough a (@ = 0.35 ~ Fig. 2a). We see in Fig. la for relatively small external excitation
B, where the quasi periodic rotation appears Lapunov exponent A; has nodal value.
4. Summary
Analytic and numerical investigation was carried on for Froude pendulum. Synchro-
nization region was obtained under certain simplified assumptions and their verification
was obtained applying numerical simulation. Chaotic vibrations and quasi-periodic rota-
tion of pendulum was investigated by means of Lyapunov exponent, Poincaré maps and
bifurcation diagrams for particular parameters of the system.
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VIBRATION SYNCHRONIZATION AND CHAOS IN
SELF- EXCITED SYSTEM WITH PARAMETRIC
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Abstract: Vibrations of self—excited oscillator under parametric excitation with
non-linear stiffness were investigated in this paper. Differential equation of
motion includes Van der Pol, Mathieu and Duffing terms. Vibrations syn-
chronization and chaos were examined in the system. In the resonance area,
self-excited vibrations are dawn by parametric excitation. Qutside the synchro-
nization area, almost periodic vibrations appear. According to the parameters,
in the system may doubling of the period and transition to the chaos appear.

Chaotic solutions were found by means of Lyapunov exponent.

1. Introduction
Let us examine vibrations of parametrically self-excited systems described by diffe-
rential equation [ Szabelski 1984, Huseyin and Rui 1992, Rui and Huseyin 1992):
i—(a; — fz)z + (8 — pycosQt)z + 7z’ =0 . (1)
" As far as chaos investigations in this class of system are concerned chaos was di-
scovered for vibrations model with Van der Pol terms, non—linearity of Duffing-type and
external excitation in the form [Ueda and Aamatsu 1981, Steeb and Kunick 1987, Kapi-
taniak and Steeb 1990]:
7 ~ (o — BzY)i+ (6 + vz¥)z = Beos(wt + ¢q) . (2)
For that equation scope of parameters, leading to chaos solutions, was determined.
In [ Ueda and Akamatsu 1981, Steeb and Kunick 1987] case § = 0 was examined, and
in § # 0 case. In [Kapitaniak and Steeb 1990] case § # 0 and v # 0, where v < 6, was
investigated. In [Szabelski et al 1996] system (Eq. 2) of soft type of nonlineatity (7, < 0)
was considered. In this paper we provide the analogous analysis of stiff case (73 > 0).
2. Vibrations in Case of the Main Resonance

Iniroducing a small parameter ¢ < 1 into Eq. 1 and putting § = 1, we obtain:
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F4T=c¢ [(cx — Azh)x + prcosQt — yz?| (3)
In case of the main parametric resonance (2 = 2), we can write:
%Qz =14 eor . (4)
Introducing this formula into (2), we obtain:
z -+ iﬂzx =¢ [(a — Az¥)t + oyx + pzcost ~ 7:3] : (5)

After some algebra [Szabelski et al., 1996] solutions of the equation ir the first and
second order of perturbation may be presented in the following forms:

( solution in the first order approximation)

z(t) = acos (%Qt + z,b) , (6)

where a and 1 satisfy the set of equations:
a = ¢ (%a — gae' — Q—Qasin(%b)) ()
ap = ¢ (—%a + %aa - Q%acos(%,b)) (8)

( solution in the second order approximation)
1 na 3 af 7 i ) (3 )}
~ _0 sl LA 2
z(1) = acos (2 t+1,b>+e[ 492cos (2Q1+1,[))+a (892 +4Q cos 29t+31j) . (%)
where a and ¥ satisfy the set of equations:

PR P S T JECTIRE R I
a = e(Qa Sﬁa 2Qasm(27,b))+e PTorke +64Q2a +1692a cos(2) | (10)

IR SRS ) 2| f_of ot 3
e( Qa.+4ﬂca Qﬂacos(Qw) +e€ 03 4Q+893 a

N (3701 + af lECOS(Qi,/))— ﬁ—#s-in@?,b)) Q4 ( 1592 _ 75° jas} .1

ay

202 T 40 40 802 3203 7 19280

Figure la shows vibration amplitude plots versus frequency of parametric excitation.
They were obtained as result of analytical (AR) investigations in first order approximation
(Eq. 6). Comparative points obtained during numerical simulation {Eq. 3) were also mar-
ked (RKG). Outside the synchronization area beats, 1.e. almost periodic vibrations occur.
Parameters used in investigations were following: o = 0.1, § = 0.5, v = 0.5, u = 1.0,

e =10.1.
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3. Chaotic Vibration of System
Applying Wolf algorithm [Wolf e al. 1988], maximal (nonzero) Lyapunov exponent

(Bq. 1) a1 =02, 5, =02, 4y = =17, 0 =4, 1n =1 and § = [0, 20]) was found (Fig. 1a).
mi 2 o 1.00
160 — 0.50 -
120 - ’ ] ; :
. B A 0.00 Hfomm e
W] an
. -0.50 ¥--
¢G40 ~
| a)
; 1 . : N
0.0 N T T8 ST ST 1666 1560 20,00
1.80 1.80 2_30 210 rdv.sl 6

Figure 1. Vibration amplitudes (1a), Lyapunov exponent (1b).

The following initial conditions were assumed zo = 0.5 and zp = 0.5. Figure 1%
shows interval of parameter values { § = ([1.5,5.1] } for which exponent A is positive.
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Figure 2. Poincare Maps

For 6 values belonging to that interval, the system behaves in chaotic way. Figures
2a-e shows Poincare maps for chosen values of ¢ (other parameters are as in Fig. 16). In
Figs. 2a (6 = 1.3) and 2d (6 = 1.7) system vibrations is synchronized. Figures 24 and
2c show strange attractors of chaotic motion. At last [ig. 2e for larger value of & (& =

20) presents limit cycle attractor of quasi periodic motion characteristic for self~exited

systems.
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4. Sumrnary

Considering existing and stability of differential equation solutions, the interaction
effects of self-excited and parametnic vibrations were determined. It was found that vibra-
tions synchronization in particular frequency interval of parametric excitation took place.
Analytic investigation was carried out under certain simplified assumptions and their
verification was obtained applying numerical simulation. Applying Lyapunov exponents
method, chaotic vibrations were discovered for particular parareters of the system.
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TRANSITION FROM UNIMODAL TO BIMODAL MAP
IN ONE-DIMENSIONAL PIECEWISE LINEAR MODELS

Yu. L. Maistrenke, V. L. Maistrenko and S. I. Vikul
Institute of Mathematics, National Academy of Sciences of Ukraine,

3 Tereshchenkivska st. Kiev, Ukraine, 252601

Abstract: We study transition from unimodal to bimodal maps in a three-
segment piecewise linear one-dimensional family. It is shown, that such type
bifurcation gives rise to the appearance of the period adding cascades of at-
tracting cycles which assumed a description with use of symbolic dynanucs.
We obtain exact formulas for the existence regions of these attracting cycles
and explain the mechanisms of their destructions.
L. Introduction
We continue the study of attracting cycles as well as cycles of chaotic intervals of
bimodal piecewise linear maps of line itself begun in Maistrenko et al. [1995a]. Consider

the map n the form:

lz—lb—1/p+1, z<b+1/p,
f= fips(z) = § pz — pb, b+1l/p<z<b-1/p, (1)
le—Ib+1l/p—1, z>2b-1/p

where parameters [ and p are slopes, b is a shift of a graph of y = f(z) with respect to

origin. Parameter region to be considered is chosen as:

O={{l,p,b):0<l<]l, —oo<p<-~1, Ilb]<)+1/p} {2)

ff.p_._b_(x)

Jipp (z)
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It is simply to check that for all {{,p, &) € 11 fi,, has unique finite invariant interval
[-1,1] (t.e. f([—1,1]) = [=1,1]) where f is piecewise linear three-segment {Fig.1{a)). This
interval [—1, 1] attracts all trajectories of f: more exactly, any trajectory gets into [—1, 1]
for a finite number of jteration and never leave after. An invariant set possessing this
property is called by absorbing area [Gumowski & Mira, 1980]. Thus, for all ({,p,d) € 11
fi.p has absorbing interval [—1, 1] where it is three-segment. If the inequality [b] < L+1/p
i1s false f;,5 has not invariant intervals in which it 1s three-segment.

Nevertheless, if

1+ 1/p<lb]l<1—1/p,

absorbing invariant interval still exists, being equal [{(1), 1] {for b > 0} or |1, {{-1)] (for
b < 0). In this invariant interval, the map cousidered is two-segment called a skew tent
map (Fig.1{b)). Regular and chaotic attractors of skew tent map, forming period adding
cascade were described in Maistrenko el al. [1992] and Maistrenko et al. [1993]
At last, if
bl > 1 —1/p,

our map does not have any finite nontrivial invariant intervals. and the unique its attractor
is an attractive fixed point z* equals {i'%f_éﬁ—’"—l (for b > 0) or Ei-,—!_[’;—ﬂ (for b < 0).

When parameter b crosses the surfaces |b] = 1 — 1/p ( |4} is decreasing) so-called
"border-collision” bifurcation takes place [Nusse & Yorke, 1993]. 1t consists in passing
by the attractive fixed point z* through the extremum (turning) point which is a border
of two intervals at every of which the map is linear. Result of this bifurcation is a birth
of absorbing invariant interval, where f is a skew tent map. Just after the bifurcation
moment, this appeared interval is infinitesimal, then its size increases linearly with &.

Let’s continue decreasing the modulus of the parameter b When i1ts value passes
through the point 1 + 1/p, ({,p,b)- parameter point enters the region II - so-called
"unimodal-bimodal™ bifurcation takes place consisting in the following: in the nvariant
interval, the map f;,» turns to change its form from two-segment to three-segment.

The purpose of this paper is to show that this bifurcation gives rise to the appearance
of the attracting cycles of different periods and configurations. to obtain exact formulas for
the regions of existence of these cvcles and to study the mechanisms of their destructions
mside II.

In Maistrenko el al. [1995a], the map fi,, was considered under the conditions that

the parameter point (/. p, b) enter the region I through the surface p = —oc. where the
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map can be represented as a discontinuous circle map in the form:
z—lr+a (mod 1) (:3)

and a = 1 — I(b+ 1}/2. If, additionally, { = 1 this map tums to a shift map with a
rotation numnber p = (1 — 5)/2 being a rational or irrational depending on b be rational
or irrational. In the first (rational) case all trajectories are periodic with the rotation
number p o r/q, 1n the second (irrational) case all they are quasiperiodic.

At 1 <1 (still p = —o0) the regions of synchronization I1,;, arise (so-called Arnold’s
tongues) being regions in the parameter plane (I, ) in which attracting cycle 7, ,, with
rotation number 7 /¢ exists for any 7 and ¢ relatively prime. In contract to the case { = 1.
this cycle 4./, 1s global attractor: all other trajectories of fi_.p are attracted by it.

Let, by this time p > ~oo. Consider the map fi,p at ({,p, ) € TI. This map has unique

fixed point =~ = ;’%, which 1s repelling. For each period-¢ cycle

y={f"(zo)}nZt "
(q be period) of the map fi,s we introduce the following proper fraction

o #i=Ta: f)e (1)
q

(4)

which will be called generalized rotation number or, simply, rotation number of the
cycle y. Numerator of the fraction indicates how many points of v belong to the interval
(z7,1]. Geometrically, it is a number of inverses of corresponding periodic trajectory for
a period. Denominator ¢ equals to the period of trajectory. Note, that this [raction /¢
may be reducible.

At p = —oc this generalized rotation number turns to usuaj rotation number of circle
map [Melo & Strien, 1993] when rotation number of any trajectory is the same for any
trajectory. For fi,» at p > —oc it is not the case: different trajectories may have different
rotation numbers.

Suppose that 4 is a cycle with rotation number p = r/q, where {raction »/q. generally.
may be reducible. Cycle, possessing this property, will be denoted by =,/,. Moreover.
(I, p, b)-parameter region where ~,;, exists and is attracting will be denoted by Ii(~.,,) or.

simply, 11, .

175



2. Regions of Synchronization after Bifurcation »Circle Map - Three-
Segment Map”

As 1t was shown in Maistrenko et al. [1993a], bifurcation "via p = —co” in the family
fips of the form Eaq.(1) gives rise to the appearance of the regions of svnclironization
(Arnold’s tongues) II,;,. Every this regions II,,, is characterized by the existence of the
only one attracting cycle v,,, (r/q is cycle rotation number) which is a continuation of the
corresponding attracting cycle incoming from the case p = —oo. Cycle 7./, is characterized
as follows: it has r points belonging to the right segment [ — 1/p, 1] and, respectively,
g — 7 - to the left one [—1,b4+ 1/p| (for a definiteness, we assume b > 0).

Analogously to the case p = —oo, these regions II, /, can be ordered in accordance with
the levels of complexity [Leonov, 1959; Mira, 1987]. First complexity level consists of the
regions Il 4 (for & > 0) and II(y_1ys, (for & < 0) ¢ = 2,3, ... Between any two such regions
of first level, there are two converging sequences of second complexity regions: IL,/(ng+1)
and Il./a(e+1)-1 (for & > 0) and ngg_1y41/(ng+1) and ingm1y/m(g413-1 (for & < 0). And so
on.

Recurrent formulas has been obtained for the regions of any level of comiplexity. Note,
that the boundaries of any region II,/, are derived with use of the following criterion: one
of the cycle ,, points passes through the extremum point of f giving rise to a border
collision bifurcation.

Regions of the next (k + 1)th level of complexity are obtained by the action of some
operator of similarity defined on the regions of previous kth level. At this formulas for the
boundaries of first level complexity regions can be easily derived directly. For example.
for I, ;, (b > 0) they are:

R e N L B

b= Pt T
(+) _ 1-——2?—}-]‘?.,*1*—21‘7_1-{—1?
bil =~ 1—10 7 1=

where p’ £ —1/p. See, also, Veitch & Glendinning [1990] and Veitch [1992] where formulas
for regions I1,/, are derived directly (without use of the notion complexity level).

In Maistrenko et al. [1993a], also, general bifurcation picture for the destruction of
any region II,,, is presented. Depending on parameters, this destruction, being a result
of border collision bifurcation, can give rise to attracting point cycle Y, mq. as well as to
attracting cvcle of chaotic intervals [;/mg, with a general rotation number mr/mg (see

Def.(3)), where m can be any positive integer.
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3. Regions of Synchronization as a Result of Bifurcation "From Unimodal
to Bimodal Map”

The bifurcation consists in the transition from skew tent map f;, to bimodal (three-
segment) map fi,:. In parameter space ({,p,b) it occurs at {b| =1+ 1/p.

We find that, typically, this type bifurcation results in period adding sequences of
attracting point cycles Yo, yayak/es +annks £ = 0,1, ..., where a;;, 7,7 = 1,2 are some inte-
ger numbers which characterize each sequence. All atiracting cycles arising due to this
hifurcation have the only one point belonging to the third segment [6—1/p, 1] (2 > 0) or
to the first segment [—1,6 + 1/p] (& < 0).

With use of compuier simulation, two these sequences yayak, 7544k, 204 P 4240 /344K
k1, ky =0,1,..., can be easily seen between tongues II,, and I1,;3. For both sequences, an
accumulating point {at the bifurcation curve b =1 — 1/p) is the same, and can be found
from the condition of gomoclinic bifurcation of the cycle /9 of skew tent map f ,.
Below, these facts are formulated as a statement.

Let fips, (I,p,8) € II be a map in the form Eq.{1). For any its trajectory 4 =

{fi(z)}i2g°, the following symbolic sequence

Eoéy. ..

of five symbols L, M, R, C;, C; can be constructed by the rule:

(L, if fi(z)e[-1,6+1/p),
M, if fi(z)€(b+1/p,b—1/p),
L=< R, if filz)e(b—-1/p1], (5)
Ci, of f($)=b+1/p,
Cy, tf f(I) =b-1/p,

1=0,1,...
Statement. When the parameter point (I, p,b) enters the region I through the surface
b= 14 1/p, between the regions Il /; and Tlya, two sequences of attracting cyeles v,

and =y, appear with the following generalized rotation numbers and symbolic sequences:

2 A
pk,::—*—ﬂkl, (LMY LAPLR... k=01,
5+ 4k
= MY MIR. k=01 ...
o= o (L) 2
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Moreover:
i) numbers of attracting cycles vy, and i, are finite at any fized | € (0,1). nevertheless

these numbers tends to infintty with [ tends to 0;
i1) regions of the existence and attraction I, and Il,,, of these cycles 7, and 7,
are bounded by the following curves: ’

Jor IL,, - p= —[2+2

(P H3pEte — 1)(1 - Bp?) + (1= Up)(R) 5 (1 +1p°(0 = D)L = Ep%) + (1 +1p)(1 = (19)*)]

()25 (1 4 p(1 4+ p) + Ip2(1 4+ D)1 = 12p2) + (1 + p)(1 + Ip)(1 — (Ip) ™))

-y _
b(l)z

b(+} _ (1 _ 12k1+apzk;+2)(1 — (’-‘pi’) 1 (1 — ]/p)[(z’_’h-}-lpﬂkl(l + l'pz) _ 1)(1 . Izp:') + {(1 + 1p}(] _ ({p)ﬁkl)]

: FR+ip (14 p(1 5 p) + 1p° + 1)(2 = 2p%) + 11 + p)(1 + Ip)(1 = (Ip)**+)]
2ky 42
for HP,JL_2 : p= —[%27]

(1— PRat2p?hst )1 — 2p?) 4 (1 = 1/p)[((F9)°4 = 1)(1 = Pp%) + (1 + Ip)(1 = (Ip)*™*))

(=) _
v T+ s (T4 D)1 - 125%) + {1+ p)(1+ [)(1 — ()7 '

py _ PR - 1)1 - Pp) 4 (1 U/p)[PRepthe (1 - 1)) - ) + (14 ip)0 — (19)2)].
2 ['_’kgplk;-}-l(l + !(1 + ‘1))(1 _ ppz) + 1{1 +p)(l + (p)(l _ (!P)Ek;\)] H

111) when parameter point (1, p,b) leaves region I1,, crossing curve b(1+) or bg_), border-
collision bifurcation takes place; it results in a cycle of 5 + 4ky invariant intervals at
every of which the map f3%% is skew tent map with the slopes of linear branches equal
2% 43 .

’

to '!1'21.‘1+3 2k1+2 and‘ l?k1+2

p p
iv) when parameter point (I,p,b) leaves region I1,, crossing curve b.{;’] or bg")_. an
inverse saddle-node bifurcation takes place; it results in appearance cverywhere densc in
[-1,1] trajectories of fi,4; morcover, every two neighbor regions [lisay and Iliiang e @re
mutually intersecting (multistability phenomenon takes place). o T
As further, computer simulation shows there are much more such type period adding
sequences in the gap between tongues Il /3 and Tl 4, for all of them @12 = 3 and ay; = 6.

And so on, it seemns to be true, that number of such sequences between Il and T, /04,

tends to infinite when g — oo (see also Maistrenko et al. [1993D]).
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1. Introduction

Bere, we intend to use lools of the bifurcation theory in order to build either new edge detectors, or new
methods of segmentation for noisy and textured images. We describe the method associated with a polential (a
“calastroph"} ; for this general case, we introduee a m-ary enceding, transition steps on local grids, entropies and
energies. We show results for examples and give building braids associated with every pixel of an image. We use
knot theory to build a kind of topological filter,

2. Description of the method

2.1, Heuristic

Every “catastroph™ or “singulanty” [1], [2], [3). [4]). is associated 10 a potential V(X A} where
X =(x,...,x,) denoles the veetor of the variables, and A = (a,,...,a.)} the vector of the paramelers. The main

idea is to use approximalion of the discrete starting irnage, build with a given geometrical paltern (a catastroph).
The approximation depends on the step h of the local grid which is choosen. So the pattern can change with the
deformations of the grid governed by the step(s) : indeed, there exist somme critical steps which define the
bifurcations, and determinale the geometrical change. The number of crivcal values is relaled to the set of
bifurcation of grad, V(X,A)=0.

2.2. Method for the general case

2.2.1. Calculation of the codimension coefficients

We generally call "image" the values of a map from a sample of R" into a finite subset of R (if n is equal 1o

2, we find again an usual “image" as values on a grid). Let us consider on the space R” X R a catastroph
whose potential 15 V (x;,...,x,} and the codimension parameters (a,,...,d,). The catastroph surface 15 defined

av a } ) o .
by : Vie[l,n] ;_)x—z(). In the space R”, a discrete tocal grid G is introduced related to a reference point
i

-1 . . .
(xl,...,):n) ; then the n derivative . are adjusled in the best way in the sense of local mean squares on the

Xy

2

v
grid of steps (f,....#,) :(Mr'n D [“— {I.'»h; },a, adg)- [({x;‘h,})] , and the corresponding paramelers
a

18l 1gign ox;

{ai,...,ac) are compuled by solving a linear systern.

2.2.2. Defintiion of a m-ary encoding

For every pixel and its local associaled grid, we computed the “least squares” parameters (ai....,a.). Then,
we solve a system of equations. We obtain a definite number m of real solutions. So we are able to split up the
space N that we analyse into m areas.

2.2.3. Computalion of images with transition sieps

In the previous splilling, the obtained image depends on the steps h of the given grid of R" and its
orientation. So.let us fix this orientation, we are abte 10 compute for every pixel some steps h;_x corresponding Lo
the transiiion between any number k and k+1 (k < m) of solutions. So, every transition k->k+1 could provide one

or several images of &, . This number of co-images can be very targe ; then clever choices are to be made.,
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2.2.4. Image of quadratic norm

Fitting the best way the n derivatives on the local grid produces a « quadratic error» that we intend to show.
Parameters of this image called «norm» are n, h and the direction d. Global images (Fig 9) obtained with
sumuming on d are relatively invariani with h. However it is possible to find al which h, the norm is minimum (Fig
1T).

2.2.5. Computation of the best fitiing catastroph
Asin 2.2.4, iuis finaly possible to compule the same results, but taking into account which catastroph (among
the ombilics, or the cuspoids, or both) leads la the minimum norm. Then, we compute (Fig 7, 8) splitted images

(3 gray levels for ombilics, and 4 for cuspoids). Experiments show that norms obtained with cuspoids are almost
always inferior to those with ombilics ; then a 7-levels-splitling is impossible to oblain in this way.

3. Analysis with the cusp-catastroph

3.1. Introductian

The cusp-catastroph is defined by a universal unfloding of x*, the catastrophic surface beeing:
S={{x,p.q) /x*+ px+g =0}, and the potential from which it derives : V(x.p,q) = x* /4 + px2 /2+qx.

3.2, Calculation of the splitting parameters

We define a n-points Jocal grid by choosing a direction {vector v) of the image (plan) which define the
variable x of the given potential V. We choose a step h related to x, and a neighbourhood of n pixels (n generally
odd). The pixels are sample according to the grid. For each pixel, except those belonging to the boudary of the

_ — - - Vv o : %
image, we compute the couple (p,g) so that Z(u,- - %(,r,.))z is minimized, with (%— =x 4 px+g). Then,
x
i=l
the equation x° + px+5 =0 1s solved, that leads 1o ane, two or three real solutions. So, we are able to split the
image into three parts. When n=3, the parameter G is equal 1o the mean of level of the pixels on the
U-l + lbz + H]

neighbourhood, and that E is related to a h-normalized pradient : ;(h) = Lﬁ—-hulﬂ B et E(h) = 2

3.3. Variatien of h and edge appearance

If the step h of the grid (the same slep b is retained for every grid around every pixel) is varied, and if we use
the encoding 1, 2 or 3 {the number of solutions of the cubic equation), we can present the edges thal appear : see

on Fig 2. The results give information about edges in agreement with the expressions of p(h) and g (h).

3.4. Compuiatian of the co-image or « dual » image

The number of solutions of x* + px+g =0 depends on ihe step h. For large values of h (h > 3), 3 solutions
are generally obtained. For small values of h (h < 0.0} for example), only one solution 1s often carried up. So we
look for a critical step h* (for every pixel) comresponding to lhe transition 1 solution -> 3 solutions (namely 2
solutions). At the end of the computation, we are able 1o build the "co-image” of the gray-levels of the h*.

For each point, the computation of h* is cheap enough using a numerical dichotomic methed for example. But
an analviical calculation is possible here : using Cardan-formula, for a three-point gnd, somme algebra leads to :

o Sgngle (8 e 8
J'J-.Jz 2u (\2\4 i > 2 gty (8)

where §=uy—u eti=1/3.(u +1; +uy). We keep only the real positive solulion in agreement with this
expression. The cusp-melhod leads to an orientaied and selective edge detector. We apply the method 1o the
“pirl" image. A result is presented in Fig 3.
3.3. Applicarion to a global edge detectian

First, we sum the «co-images » related 10 each direclion (defined by an angle 8), and we use a weight

coefficient ag. This process provides a mean «co-images » according 10 @ /g = Zae-"h.e- Another «co-
8
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images » is interesting : for any given directuon, h coutd be varied (between h,;,=0.0001 and hp,4,=5.0) in order
hzhmu

lo compute : M = Eh.lh . We provide an example of image M for the « girl » in Fig 4.
h=hg

o

: number o

& =)
Ry (AN I o NV '/& . - & - d
Fig 3: dual image in NE direction  Fig 4 : global image M for 3x3 Fig 5 : dual ombilic entropy (h=1.0)
o R

Fig 6. cusp‘ energy for 3x3. h=0.5 h=1.0

3.6. Definition of energies and entropies

The "best” local deformation of the grid versus a given catastroph, associated with a "strain” (the image)
remembers one of the variationnal principals in the field of mecanics of the continuous media, and of the energy
of deformation. Using this analogy, we define for any image I {similar 10 a strain) and its dual image or « norm »
image 1* {similar (0 "local deplacemenis") one global energy E=/®] = Zi(x, e X007 (1) x, ), and two

PCR"
global eniropies £,(/,17)= 3 log(l (3, )0 (5 it ) Ex( = 9 logll (g coes ) 1y e, -
PcR" PCR”
Locally. around any pixel, we can also define an energy and two entropies. Fig 5, 6 show images obtained from
the “girl” in this way, that seem to pul high contrast boundaries into Light. 1t is possible to use these images o



search for local minima or maxima, draw local maps of high or low energy or entropies, or build special
sphitlings.

Fig 11 : « fish » images of h where the ombilic norm is minimum, for 3x3, 5x3 et 7x7
4. Braids and knots polynomial filters

A new family of filters for image processing has been developped according to the foliowing procedure : for
every pixel of an image, a braid is built using local approximations and arbitrary crossing of strands. Then braids
are classified by computing their Jones Polynomial, that are arbitrarily numbered. This procedure leads to image-
processing operators which can be useful for edge detection, thresoiding, but are sensitive 1o noise [5].

5, Conclusion

In. this paper, we dealt with image processing using “catastroph theory” and braids. We've described the
method for general singularities ("catastrophs™). We gave results by using the first "inleresting” catastroph (eusp).
It seemns, which is very interesting in image analysis, that with dual cusp images il is possible to take no account
of local contrast : tow boundaries appear as bright as reinforced ones, because the lechnique wsed leads 10
calculus of local optimum slopes. With olher catastroph, like the elliptic ombilic, we are able to define more
complex types of transition, resulting from the multi-dimensional nature of the calastroph ; and we operate new
segmentations. Fig 10 show how elliptic ombilie (with hy =h, =09 in this case) can be used to separale
onientation of patterns. Braids and knots polynomial filters lead 10 noisy results.
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A Numerical Illustration of the Quasiperiodic Route to Chaos
in a Model for Fluid-Structure Interaction

J.P. Meijaard,

Laboratory for Engineering Mechanics, Delft University of Technology,
Mekelweg 2, NL-2628 CD Delft, The Netherlands.

Abstract: Bifurcations of quasiperiodic solutions of a string excited by flow-induced forces
and possible transitions to chaotic motion are studied numerically by calculating Liapunov
exponents. It is found that quasiperiodic motion with three independent frequencies may
exist. Multiple attractors can exist simultaneously.

1. Introduction

Several transition routes from regular motion to chaotic motion in dynamical systemns
are known, of which the most important ones are the route via an infinite sequence of
period-doubling bifurcations, the intermittency route, and the guasiperiodic route. In
low-dimensional mechanical dynamical systems, the usual route is via period doublings,
whereas the route via successive Hopf bifurcations and quasiperiodic motion seemns to be
more relevant to fluid mechanics.

The quasiperiodic route for the transition from laminar to turbulent flow was first pro-
posed by Landau [1944]. He imagined that an infinite sequence of Hopf bifurcations results
in the development from stationary motion, via periodic motion and quasiperiodic motion
with an increasing number of independent frequencies, to fwbulence. This mechanism
was replaced by the Ruelle-Takens-Newhouse theory [Ruelle & Takens 1971| [Newhouse
et al. 1978), which shows that one can obtain, by a small perturbation, so-called strange
attractors in the neighbourhood of quasiperiodic motion with three or more indepen-
dent frequencies, so these quasiperiodic motions are not generic. However, quasiperiodic
motions with three or more independent frequencies have sometimes been measured in
experiments. which means that these motions may occur for a set of parameter values
with positive measure. Indeed. near a bifurcation of a two-dimensional invariant torus. a
stable three-dimensional torus mav exist if some Diophantine conditions are met, similar
to the conditions in the WNAM-theory for Hamiltonian systems [Chenciner & looss 1979]
[Sell 1979]. The quasiperiodic route can now be described as follows. As some parameter
is increased. a stationary solution loses its stability in an ordinary Hopf bifurcation, after
which a stable periodic solution originates. The periodic solution becomes unstable at
a Neimark-Hopf bifurcation, after which an attracting invariant two-dimensional torus
originates, on which periodic or quasiperiodic motion is observed. The torus experiences
a bifurcation, after which we have periodic. quasiperiodic and chaotic motion mixed in
an intricate way.
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As no physical model whatsoever was given in the original paper by Ruelle and Takens,
and the quasiperiodic route is rarely observed in low-dimensional models, this paper
proposes a systern of two coupled partial differential equations with one space dimension,
which may be regarded as a model for a string that is excited by a transverse fluid flow. Its
behaviour has a rich structure, which may serve as an illustration for several bifurcations

and routes to chaos. A preliminary analvsis of this system by numerical means is given.

2. System Description

The proposed system models a string with a circular cross-section in the flow of a liquid
in a direction perpendicular to the string, where the string can make lateral oscillations
perpendicular to the flow. The forces induced by the flow are taken into account by
means of a wake oscillator model, inspired by the ones proposed by Hartlen and Currie
[2970] and others. The model consists of the one-dimensional wave equation coupled to
a distributed Rayleigh oscillator with some additional damping and stiffness terms. The
scaled equations are

i —u" ot — it —e(t—v) + {u— )P+ k(u—v) - Ao(u —-v") =0,
mv ~ cy0” + (i — ) = (v — ) — k(v —v) + ka(u = v") =0, (1)
0<a<1, u)=u(l)=12(0)=v(1)=0

Here, u and v are the lateral displacements of the string and the wake oscillator, dots
and primes denote derivatives with respect to the time ¢ and the spatial dimension z,
m is the relative mass per unit of length of the wake oscillator, and ¢, ¢z, ¢4, k1, and
k; are positive damping and coupling stiflness coefficients. The parameter € measures
the excitation, which 1s considered as vaviable in this model and may be related to the
Reynolds number. Some of the terms are only introduced to make the system well-
behaved in the high-frequency range, especially the terms involving ¢z, ¢y and k;, and
hence small values for these coefficients will be taken. As we are mainly interested in an
illustration of phenomena which are typical for a large class of systemns, the precise form
of the equations is not so important and one may substitute equations which describe a
given system more accurately. In calculations, we shall cake as values for the parameters,
¢, =01.co=0.001. &k, =20, 5k =001, m =05 ¢, =0.001. while ¢ 15 variable.

3. Analysis

The equations have a left-right svmmetry (z — (1 — 2)) and an up-down symmetry
((u,v) = (—u,—7)). and there is alwavs the trivial solution v = 0.v = 0.

The stabilitv of the trivial solution is investigated by analvsing the linearized equa-
tions. These linearized equations allow a separation of variables for their solution. The
eigenfunctions of the linearized equations. whicl are sine functions. are used to make a



spectral expansion of the equations. If n pairs of eigenfunctions are kept, the expressions
u= i wi(t)sin(imx), v = i, wilt) sin{ira) are substituted in the equations, and only
the contributions of the non-linear terms in the kept eigenfunctions are retained, the
discretized equations become

U+ (o + 127y — e)iy + g0 + (1R + ky + Ptk ) — (b 4 27k o + Ni= 0, "
mv; + ey + (07lcy — )0 — (ky + 2Rlho g + (ky 4 7%k vy — Ny =0, (2)

where 1 <1 <n and A; represent the contributions of the non-linear term {2 — ¢}3. The
linearized equations are obtained by dropping the N;. In the sequel, we shall take n = 6,
yielding a system of 24 first-order differential equations.

For each value of 7, the two critical values for the parameter can be found, at which
Hopf bifurcations occur. These critical values are given in Table 1. The first Hopf bifur-
cation for 7 = 1 1s supercritical, because the non-linear terms are dissipative.

Table 1: Hopf bifurcation values

d SHI SHiz2

1 0.02790094%7 76516 | 0.05132 23077 46019
2 0.04571 8740971100 | 0.110183 50231 31927
3 0.0953240022 53210 | 0.16627 13391 71225
4 0.16536365027 77111 | 0.23593 32781 69453
) 0.25621 26156 23956 | 0.32284 62813 04069
6 0.36697 4320024512 | 0.4281824440 12335

One could expect that, due to the many Hopf bifurcations of the trivial solutions,
the periodic solution avising from the first Hopl bifurcation would become unstable very
soon- for increasing values of the parameter ¢, However, this is not the case; the periodic
solution remains stable for a considerable range of parameter values, and other, initialfv
unstable, periodic solutions may become stable. From an approximate analvsis by the
harmonic balance. this will become clear. If there is a dominant eigenfunction z, we have
approximately for the amplitude « of ; — 7, a® = 4(c¢ — ey )/3. This gives an exira
positive damping to the other modes of about 3¢?/2 = 2(¢ — £x:,), so the eigenfunction
7 1s stable when (2 — zp;1) < 2(2 — z g1 ). which condition is always fulfilled if 7 > 7. The
periodic solution can only become unstable when the shape departs from being nearly
sinusoidal if z reaches a value of the order of one. The picture that there are a number of
non-linear oscillators with weak coupling is not valid for this system.

For an approximation with n = 6. a Neimark-Hop{ hifurcation occurs at the parameter
value ¢ = 0.38963 97506. after which an invariant two-dimensional torus originates with
predominantly quasiperiodic behaviour with two independent frequencies. The behaviour
of this torus for increasing values of the parameter i1s monitored by calculating the Li-
apunov exponents, for which the algorithm given by Benettin et al [1980] is used. It
appears that some characteristic exponents come in pairs, similar to complex conjugate

186



characteristic multipliers for periodic solutions. The invariant torus becomes unstable at
g = 0.60136, after which we have a quasiperiodic motion with three independent frequen-
cies, that is, there is an invariant three-dimensional torus. As in experimental studies, it
is often difficult to distinguish between periodic motion with a long period, quasiperiodic
motion and chaotic motion. We assume that a Liapunov exponent is zero if it approaches
zero in a more or less linear way if the time interval of simulation is increased. If we
increase ¢ further, the motion returns to quasiperiodic with two independent frequencies
at about ¢ = 0,635, Finally, the motion jumps to a periodic left-right antimetric solution
at ¢ = 0.670, due to a kind of fold of the two-dimensional torus.

4. Concluslons

We have observed the development of quasiperiodic solutions 1n a discretization by spectral
expansion of a continuous model system. The trivial solution may undergo an unlimited
number of Hopf bifurcations, resulting in many coexisting attractors. There is a strong
coupling between modes. It appeared that quasiperiodic motions on a three-dimensional
torus are possible. It remains unclear whether there are interspersed regions of chaotic
motions, but these chaotic regions must be very small. The attractors may suddenly
disappear by a collision with another periodic or quasiperiodic attractor.

As the approximation with n = 6 is still crude, one can question if there is a close
connection between the discretized and the full system. For a further analysis, more
powerful techniques than simple simulation are needed, such as the direct computation
of invariant tori and more ingenious ways of calculating Liapunov exponents.
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MATCHING OF LOCAL EXPANSICN AND A CONSTRUCTION OF HOMOCLINIC
TRAJECTORIES

Yu.V.¥ikhlin
Kharkov Polytechniec Universlty, Eharkov 310002 Ukralns

dbgtract: A simllar approach 1s propossed here for the
oconstruoctlon of the homoolinic trajectorles. Quasl-
Pade’approximants,potentiallty and oconvergenos oonditions
are utlllized in the problem.
1. Introduction
The homoalinie and heteroslinic orbits of nonlinear
dynamiocal systems wlth spaoces of dimensions equal two or three
are analytloally approximated by oonstructing quael-Pade’
approximants (QPA) oontaining exponentlal polynomials and
periodical funotlons. Potentiality and oonvergence condltions
are performed to eliminate inltial amplitude values.
2. Convergence Condition
Aegsume that thers ars loocal expanslons obtained at small
and large values of a parameter o (for eoxample,the parameter
is an amplitude valus of the periodio solution) [Mikhlin,1995]:

ee] e
(1y_ © (i)} (2)_ ¢ pi) . -1}
p, = a ‘a’, p = B 0", (1)
! jeo i ! jéo i

Conglder fraotional rational diagonal two-pointe DPade’
approximanis (PA) [Baker & Graves—Morris,1981]:

B
& (i) ] © (i), i-u
Jﬂ‘oaJ ’ Jéoaj °
(3)
Pg T B = B (8= 1,2,3,...31= 2,3,...n) (2)
T plig T (il i-a
L 7y jLO 3
j=o =

Compars the expressaions (2) with ezpansions (1).By preserving
only the terms with an order of c¢"(-ssr=g), n-1 sgystems of
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2(g+1) llnear algebrailo egs. will be obtalned for determination

of ajif bj*),Sinoe the determlnants of these systems A‘*)are
generzelly not squal to zZsro, the systems have & gingle oxaot
trivial solution. Seleot 8 PA ocorresponding to the

(s
J

can also be assumed that b‘!’= 1. Now the Bystems of algebralo
egqs. become overdetermined. 4ll unknown ooefflolents ars
determined Ifrom (2s+1) eqs. whlle the "error" 0 this
approximate gsolution can be obtalned by esubgtitution of all
ooeffloients In the remalning eq. Obvlously, the '"error!" i1s
determined by the value of Aéi’sinoe at Aé*’= 0 nonzero
solutions and consequently exact PA will be obtalned. Henoe the
following 1s a neoesgary oondltion for convergence of the PA
(2), at 8 9 «, to fraotlonasl ratlonal funotions P;*) [ 21]:

m a,7’=0 (1=2,3,....n) (3)

B0
It is posslble to generalize the ocondition (3) to quasi-Pade’
approximants (QPA).
3. Potentiality Condltlion

A finlte-dimensional system on the olosed homoolinlo or

hetercolinio trajeotorles behaves 1llke a oonservative one
having a single degree of freedom: X + M(X)= 0. Denoting & line
Integral along a olosed oontour by § ,one write a potentiality
condition for a system of a general form, ¥ + f(x) = O

preserved terms in (1) having nonzero oceffiolents a iji’.lt

§1(x) dx =0, or §2(x) xdt =0 (4)

4.5tanding Waves Equation

The equation considered here is obtained in a problem of
the analysls axisymmetrlo, spatially loocallzed standing waves
with periodio time dependence (breathers) [Emaocl et al.,1996]:

yr(x) + (/) yU(x) - y(x) +y3(x) = 0, (5)
7'(0) =03 lImyi(x) = 0O
X=hco

Since the sought solutions gre expeoted to be analytio
funotions, they can be expressed 1n Taylor series about Z=0:
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v(x) = A + A212+ A4x‘+ A625+ e (6)

where A = (1/4) A (1-A%)3 A = (1/64) A& (1-A%) (1-32%); A=
(1/2304) A (1-4%) (1-34%), ...

On utllize the potentiality csonditlon (4).Substlituting the
expangion (6) to (4) and integrating, we oonstruct then the
dlagonal PA ocorresponding to the obtailned expansion:

ey o X%+ a4z4

1+ 8,377 g7

where 1ts ococefflolents are ocompited in terms of A.The condlition
(4) must be realilzed for X belng ohangeablie from zero 1o
infinity.Substituting the limits of integration and taking into
ageount other terms of equation{(y + 0 If X 2 c &Nd 7y » A 1T X o
0), on obiain an algebraic sq. for computing a value of A. The
value 4 « + 2.23 18 glven by not diffiocult osloulation. The
initial wvalus oorresponding to the deoaying solutlon was
numerically estimated ag A"""™z + 2.206 [Emacl et 81.,1996].

The sought solutlon ocan be expressed ag following Ilocal
expansion about X - o

-3 x—(i/z)(

vy = e B + Bix"1+ Bax'2+...) + e"axx"3’25(00+

C, X '4...) +0(e™®), (7)
where B 1s an arbltrary oonstant; B = -(1/8) B, B = (9/128) B,

CO= (1/8) B3, 01_ - (0/64) B eto. The elmplest QPA which 1s

desaribed the olosed homoolinie trajeoiorles, has the form:
2

2z YO)

s q gzt z'g(a3+ e”

Pee” ! 2 3 2
T+ B2 %+ Bz e 8

0
To compare QPA with looal expansione (6),(7) and using the
aconvergence ocondltion (3), we obtain an algebrale eq. for
somputing value of B.
5.Nonautonomous Duffing Equation

The sams method makes poseible to construetl separgirix of
the nonsutonomous Duffing eq.:

' -y + ygz T oos Wt
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The solution oan be presented for smgll values of I 88
looal sxpansions 1n the vioilnity of zero and Infinity:

_ 2 4
y=8a,+ aat + a¢t +...(t > 0)

(8)

¥ = boe“t + bie’3t+ 0,008 O +...(t > )
where ao,bO are arbitrary constants.

The first of the expanslons 1s used in the oondition (4).
Integrating from pzero to iInfinity (with the help of the
reorganization to the PA) on obtaln a value a,.Note that we
obtain 1two values a, oorregponding to two geparatrix
(geparatrix gplitting). Both looal expansiong (8) can be uged
for oonstruoting analytioal components of the separatrlz of the
form:

t

- -3t
ace + aioos 0t + e

QPA =

1+ ﬁie’2t+ ﬁae‘t 008 2ut 9)

The correspondlng oonvergenos oondltion permits to
caloulate value of bo. Numerioal oheok oomputatione show good
agresment.
6.1oreng Equation

Similar caloulatlonsg allow to oongtruot olosed homoollnio
trajectories of the Lorenz sgystem. The orblts exlast In space of
dimensions equal three. Wo take Into account that the motion
arlses on the two-dimenslon espace.Simplifled caloulations give
us a bifurcatlonal value of the parameter p near 15 (other
parameters are rixed as In the origlnal Lorenz publlication). It
ig well known that the ocorreot value 18 near 14, but a
precision of the ocaloulatlons may be exolted.
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A NON-LINEAR SHALLOW ARCH THEORY FOR LATERALLY
RESTRAINED CONCRETE SLABS

Author: Dr. G. Miiller
Lecturer, Civil Eng. Dept., Queen’s University Belfast
Stranmillis Road, Belfast BT7 1NN, UK

Abstract: The load bearing capacity of laterally restrained concrete slabs is greatly
enhanced by the formation of an internal arch. The arch is very shallow, so that non-
linear deformation characteristics have to be taken into account. In this paper, a theory
for shallow compresston-only arches under uniform Joading conditions is developed.
The previously undefined arch geometry is determined using complementary energy
principles. A comparison with linear theory shows that non-linear behavior has to be
taken into account for shallow arches of this type.

1. Introduction

In laterally restrained concrete siabs, a shallow compression arch develops when a
load is applied. The arching enhances the ioad bearing capacity of the slab
considerably, see e.g. Herzog [1976]. This effect is known as Compressive Membrane
Action and shown in Fig. 1. The compression arch is very shallow, so that its load /
deflection curve becomes nonlinear.

UDL g

it
e E— "
L

lr l

]

Fig. 1. Concrele beam with compression arch

Classical theory for shallow arches requires bending stiffness for the arch, an
assumption which can not be satisfied in concrete since the concrete is assumed to
have no tensile resistance. For an arch forming inside a non-tensile resistant material
like concrete 1t will be the compression force that dominates the behavior of the arch.
In the following, a theory for a nonlinear compression-onty arch will be developed
and compared with simple linear theory. The arch will then be used to assess the
effect of CMA on the possible loading.

2, Linear analysis

A simple three-hinged arch subjected toa uniformly distributed load (UDL) 1s shown
in Fiz. 2. Moments about point a give the thrust N of the arch as N = qu/Sh. The load
/ deflection curve 1s linear. For a any given UDL q however the lever arm h 1s
decreased by the deflection, so that the actual Joad the arch can carry will be less

than the assumed load. For very shallow arches where the deflection under working
loads can amount to a substantial fraction of the rise, a nonlinear analysis seems
necessary.
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Fig. 2: Three hinged arch

3. Non-linear analysis
For a nonlinear analysis a parabolic arch as shown in Fig. 3 is considered. The
parabola is given as y = f(x).

L L ., ——: unicaded

- -—: loaded

Fig. 3: Compression arch

The loaded deformed shape of the parabola is given as a function of the centre
deflection &h with:

we=(1=8h/h) and w(x) = (1—we)-p(x) (N

The normal force N is assumed to be constant throughout the arch. For the analysis of
an initially straight membrane. see Kerr et al. (1990}, and the strain displacement
relation becomes:

Exe(X) =t/ (x) + % 1w (x) (2)

However, it must be noted that for the equation the derivative w' is a measure of
change aof length W' of the deflected curve. In order to use a change of length, the
deflected length needs to be subtracted from the original length:

7 (x) = 37 () = w' (x) (3)

In order to calculate N for a given deflection w_ equation (2) can be rearranged.
7 1 R
wix)=-——-=W"(x 4
(x) =3 (x) (4)
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The deflection w, for each load q is assumed to be a constant. In these derivations, the
deforrnations u(x) are assurned to be very small. Re-arranging and following
Marguerre (1938), this leads to a differential equation:

'

[Ea' : (u'+%W;'2 ) w’] =—g (3)

T

[Ed-(uw%wﬂ)} =0 (6)

With the appropriate boundary conditions, and regarding that N can be considered a
constant, integration now becomes possible with

'’ 2
[/ (x)ax = 0, 50 that N%hgd,(m_m o

4]
With this expression for N, the Joad q for each deflection w, can be determined easily:
Note that for this consideration it is the change of slope of the deflected curve w’’
which determines the equilibrium at each individual point.

Defllection V'/h

| 9 g=—-(N-w) =-N-w"

| =N (- (- 2] ®

0.8

Kih=0.578 Combining equations (7) and (8) yields:
0.6 =V

——————— G4k’
| q:Ed ” -(1—w:)-(2w:—w:2) (9)
0.4 ' L
snap-
through | . .
0.2 , Fig. 4 shows the load/deflection curve. It can be
Y seen that for w,=0.422 snap-through and failure
C0 00 02z 03 04 o5 occurs. Elastic buckling can not occur. This
non-dimensional load seems reasonable as the ‘arch’ that forms inside
a concrete beam is restrained by the surrounding
Fig. 4: Load/deflection curve material.

4. Geometry of internal arch

Inside a laterally restrained concrete beam of depth d a variety of trusses can develop,
whereby the depth of the arch d, and the rise h of the arch are related, as i=d — da.
This 1s illustrated in Fig. 4. The rise h of the internal arch can vary from 0 to d/2. In
order to find the most probable rise and area of an arch, the following considerations
were made:

(1) The arch is non-linear, so that a complimentary energy approach should be used.
(2) Snap-through failure occurs at w, = 0.422, so that this point will be used for
comparison.

(3) The most probable arch geometry is the one that leads to the maximum energy
required to achieve this deflection, as this geometry represents the stiffest arch that
can form within the concrete beam. The external energy for a given arch under a UDL
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q for a centre deflection of 8h = w_ is shown in Fig.3. It can be seen that the arch
reaches a maximum for d,= 0.2d and h = 0.8d.

External work [Nm)]

35 ,
h/h= 0578
50 L = 2000 mm
25 d = 200mm
20
15
\0 ‘ : '
0 10 20 30 40 50 40

Depth of arch [mm]

Fig. 5: External work plot for determination of arch geometry

5. Application

A simple compression arch as shown in Fig. 1 in a concrete beam of 100mm thickness
and 2m span is considered. Assuming no tensile resistance of the concrete, the
thickness of the arch can be estimated as 50mm. Both supports are assumed to be
rigid. With equation the maximum load can easily be determined:

. 3
g mx = 30000-20- 64—804 (1-422)-(2-0422 - 04227 ) = 0157 N / mm?
3-2000

This corresponds to a load of 96 KN/m®. The in-plane force N can be determined as
1645 kN/m. The resulting concrete stress becomes 82.5 N/mm?. This is within the
range of high strength concrete stresses. In comparison, for the same in-plane force
the linear arch would result in a maximum load of 0.273 N/mmz, 1e 1t would
overestimate the ultimate load by 70%.

6. Conclusions

A non-linear shallow arch theory for laterally restrained concrete siabs under
uniformly distributed loads was developed. The geometry of the previously
undetermined arch was found using a complementary energy approach. A comparison
with linear theory showed that linear theory overestimates possible loadings and that,
failure can occur through snap-through instability of the arch.
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Group actions as stroboscopic maps of
ordinary differential equations

Andrzej Okninski
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Abstract

Recently, a methiod to study noninvertible discrete-time dynamical
systems by associating themn with group actions was proposed. In the
present work possibility of application of this method to systems of
ordinary differential equations is studied. Invertible group actions on
a group are considered as possible candidates {or stroboscopic maps
of ordinary differential equations. In this work maps on SU(2) group
are studied. It is shown that after proper choice of the initial condi-
tions the map describes within arbitrary accuracy a flow on a sphere
generating a stroboscopic map of Landau-Lifshitz type equation.

1 Introduction

Let us consider a dvnamical system given by a set of ordinary differential

equations (ODL)
z = flz(t),] (1)

where @ = |21, 22... ., 2., F =[N, /2., fa] and dot indicates differentia-
tion with respect to time.
Let z(¢) be a solulion to Eq.(1). Then the map

S:z(t)— z(t+T) (2)

is a stroboscopic map of strobe time 7.
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Stroboscopic maps are standard tools to solve differential equations. The
archetype of numerical methods based on this concept is the Euler method.
Let us consider for simplicity the systern (1) for n =1

dr
— = Jlr(thil =(te) = %o (3)

Let us consider time instants fo,t; = to +7,%, = Ty + T,... and introduce
shorthand notation %y = z(ip),z1 = z{t),z2 = z(t2),.... I[n the Euler
method the derivative is approximated by a finite difference

dx ot + T) —z(t) ozt + T) — a(ty)

()= Jim T = T (4)

and hence the original ODE, Eq.(3), is substituted by a stroboscopic map (a
difference equation)

Tips = 2k + T flzk, 1) (5)
2 Group dynamical systems
Let us consider a dynamical system defined by the following iterative scheme

Gryr = @(GN,“-) (6)

where Gy € G, G being a Lie group. Let G be a simple Lie group and g its
Lie algebra. Gn's can be parameterized in exponential form

Gy = exp (Z I}‘c}}'\f) (

k=1

|
[

where real parameters ¢l ..., ch are local coordinates in g [Barut, 1977].
Let us consider Eqgs. (G), (7). Substituting Eq. (7' into Eq. (G) we get a
discrete-time dvnamical system in parameter space [Okninski, 1992]

Sy = Flley, wcfy), 7=1,...n (8)

where F7’s are continuous functions [Pontrvagin, 1966].
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3 Dynamics on the sphere

Let us consider invertible discrete-time dynamical system for G = SU/(2)
Ry = Q1 RNQ RN Q7 R Q7! (9)
le. @ = QIRNQ’&RN—IQQ_]R;’IQTI in Eq.(6).

Let wy, g,, be unit vectors and Ay, @)y 2 are defined as

Ry = exp(iZf o wy) (10)
a
Q1o = expli—== 0 - q,.) (11)
where i* = -1, and o = [0',0%, 6% is the pseudo vector with the Pauli

matrices as components [Okninski , 1994]. Then Eq.{9) induces dynamics of
vectors wy on unit sphere.

We shall consider Eq.(9) in the case @1 = Q2 =Q, Q # 1

N+1 QRI\QRI\ ]Q_lRN Q_] (12)

where () = eap(i2 o g} .
We note that Eq.(12) can be reduced to two simpler equations

Snat = QSv@n-y

_ 13
Ryai = SnRyorSi (13)
Sy = QRNQRN_, and can be parameterized as Sy = emp(i% o Sn).
4 Differential equation
Let us consider Eq.(13). It can be written in equivalent form

SvaSE = QSnQoSH (14)

5—1 o 1 p-
H_;\’.J{.]RN_I — bf\'RN_]SAr RN—]

Let 3= ng.a = jing. We assume that | xo | 1, = O(1).
In what follows we shall use two operalor identities

ic\' _—|'<)" =141 (\ _ }) O( 2)
xc\ :c‘; —ch -—lc) _1+£2[}1 }/]+O
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where [X, Y] = XY — Y X. Applying identities (15) to Eq.(14) we get

Sn — S
N+ N = Sy Xgq
X0 (16)
WNg, -, = w w
%0 - N~— SN

For yg — 0 the following set of ODEs is obtained

§ = 2usxg -
D = woxs {17)

which 1s analogous to the Landau-Lifshitz equation {Landau & Lifshitz, 1935;
Brown, 1963] _

M = Mx Hejf {18)
describing evelution of magnetization vector M in effective magnetic field
H. ;. Equations (17), (18) become equivalent for M = w, H.y =s. It
follows from the first of Eqs.(17) that the effective magnetic field rotates with
angular velocity 2.

Finally, let us note that Eq.(12) {or equivalent Eq.(14)) approximates
Eq.{(17) within the Euler method, c.f. Eq.{4).
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Abstract:

‘The results of the study of the global behaviour of the convective flow of a binary mixlure in a porous
medium are presented. Bifurcation diagram, fixed points, periodic, chaotic solutions, stable and unstable
manifolds, and basins of attraction have been calculted.Different behaviours (chaos, undecidable, ...)
have been found.

1 Introduction

The problem considered here deals with the convective flow of a binary mixturein a porous medinum. Two
parameters determine mainly the convective flow: the filtration Rayleigh number Ae and the separation
ratio ¥ which determines whether gradients in the concentration help or hinder the convection. The
system may develop two types of instabilities. The instabilities are oscillatory or stationary and their
threshold curve in the (Ha, ¥) plane intersect at a polvcritical point which caracterizes a bifurcation of
codimension 2 (C.T.}. The aim of this study is to describe the influence of a small sinuscidal time variation
of the thermal boundary conditions. In a previous work [1] concerning the linear stability analysis, it 1s
shown that for low frequencies and in the vicinity of C.T. point, the motion appears as the solution of a
Mathieu equation. It is well known Lhal its stability diagram contains so-called Arnocld Longues, where
the motion is mode locked. The study of this phenomenon must take into accountl the nonlinear effects.
Tor this purpose, according Lo some hypothesis ,the problem mayvbe reduced to a secend order normal
form équalion:

%G aw
—g = mW HW3 4 (pa — fgwﬁ)e-(E + ¢ faW cos(wt) + h.ot. (1}
where 41y = jia = 0 corresponds Lo the C'T. point. fi, fa, fa are constants and ¢ is related Lo the low-

frequency modulation @ = ¢w with w = O(1). "h.o.t.” stays for "higher order terms”. For ¢ = 0 the
ordinary differential equation (1) is one-degree-of-freedom Hamiltonian system. It possesses heteroclinic
and periodic solutions. ¥When ¢ # ¢ integrability is generically lost. Therefore, we show Lhat the system
may exhibil a chaotical regime of Smale horseshoe type. We estimale, by means of Aelnikov theory, the
threshold of the onsel of the chaotic regime as well as Lhe curve at which saddle-node bifurcation occurs:
Ef3 2 0.32.

Ve propose a global numerical study of equation (!). We show numerically that the behaviour of
the fixed points strongly depends on the parameter ¢ f3 and that chacs may occur. Phase space plots,
Lyapunov exponents, stable and unstable manifolds, periodic solutions quasi-periodic solutions, allractors
and basins of attraction have been computed in order Lo provide the global behaviour of the nunlinear
oscillalor. The following values of the parameters are used here after: ) = L;pae = 0.1, f; = 1; fae =
l.;w = 2. The parameter ¢ fy is the free parameler.
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Figure 1. Symbolic bifurcation diagram in the range 0.3 — 0.35

2 Bifurcation diagram

Extensive numerical simulations have revealed that this system exhibits a complex dynamics with a rich
structure of coexisting attractors. For example, the symbolic diagram in figure 1 gives a quick overview
of the dynamical behaviour of the system for the previous parameter values when the amplitude of the
parametric excitation is varied in the range 0.30 — 0.35. The solide lines denote stable periodic solutions,
while dashed lines denote unstable periodic solutions of flip or saddle types. In the diagram, bifurcations
are symbolised by vertical lines, denoted by SN for saddle-node bifurcation and by F for flip bilurcation.
Many vertical paralell lines denote a chaotic attractor.

At SNa = 0.307 two stable period-7 solutions are created together with two regular saddles of same
period. These solutions are symetric by pair with respect to the origin of the phase space. The two stable
ones undergoe two successive flip bifurcations in Fa = 0.326 and Fb = 0.343 and then two stable period-
28 coexist. At SNb = 0.3433 two new stable period-28 solutions are created wich undergoe complete
cascades of period doublings giving rise to two chaotic attractors symetric with respect of the origin. At
last two other flip at F'c = 0.3464 and at Fd = 0.3469 give two period-56 solutions and the system return
tc two period-28 stable solutions. Theses solutions are destroyed in a final saddie-node bifurcation at
SNe = 0.346934 and two chaotic atiractors are created in type I intermittency. When the amplitude is
increased further the two chaotic attractors merge in a symetric one.

3 TUndecidable behaviour - Stable and unstable manifolds of a
fixed saddle point via Lattés method

When ¢f3 increases a saddle fixed point occurs the location of which is obviously depending on ¢ f3: it
is possible to use the Lattés method (3] in order to compute the stable and the unstable manifolds of
this fixed point. According to the value of ¢ f3 a new chaotic attractor may appear if stable and unstable
manifold of the fixed point are intersected curves. In figure 3 a) to 3 d), stable and unstable manifolds
are shown for ¢f3 = 0.32;3a), ¢f3 = 0.37,38), ¢f3 = 0.39;3¢), ¢ f3 = 0.41;3d). In figure 3 a) there is no
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intersection between stable and unstable manifold. The fixed point is not responsible for chaos. In figure
3 b) and 3 c¢), one can see that intersection is about to occur. In figure 3 d), intersection occurs: "full
chaos” is not observed but a complex boundary occurs given by the stable manifold of the saddle paint.
This implies a second undecidability. Collision between the attractor and this stable manifold is observed
for 0.39 < ¢fs < 0.41 providing a crisis. The greatest Lyapounov exponent associated with trajectory
issued from point (0.95,0.) has been computed. Its value is 0.06 for ¢fy = 0.39 and Lyapunov dimension
1.51.

z

IR TE

Figure 3. Stable and unstable manifolds. Horizontally: W, vertically
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dt dt
both in the range [—1.;1.]). a) ef3 =0.32b) ¢f3 =037 ¢) ¢/ =0.39d) ¢/3 =041
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4 Basins of attraction

Basins of attraction of the different aitractors have been computed in the (W,ﬁdﬁ‘i) plare. The pictures
provided correspond Lo the square {—1,1} x [=1,1] of initial condilions. Figure 4 a} corresponds Lo
¢f3 = 0.39 and Figure 4 b) corresponds to ¢f3 = 0.41. In figure 4 a), the Poincaré section of the chaotic
attractor is presented inside its basin. In fizure 4 k), there is no more chaotic attractor.

o

TR

a) ef3 = 0.39 by efs = 0.41

Figure 4. Basins of attracltion a) ef3 = 0.39 b) ¢fa = 0.41

5 Conclusion

A global analysis of the behaviour of a one degree of freedom systern has been briefly presented. Chaotic
behaviour has been numerically depicted. Numerical values of the different parameters mav possess
physical meaning.
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Abstract

The synchronization of chaotic dynamical systems based on active-passive de-
composition and sporadic coupling is discussed and illustrated using two uni-
directionally coupled arrays of Chua oscillators. Furthennore, we give a brief review
of possible applications and generalizations of chaos synchronization including pa-
rameter identification, generalized synchronization and phase synchronization.

1. Introduction

Synchronization of periodic signals is a well-known phenomenon in physics, engineer-
ing and many other scientific disciplines. However, even chaotic systems may be linked
in a way such that their chaotic oscillations are synchronized. In particular, the case of
one-directional coupling has been investigated intensely during the last years [Fujisaka
& Yamada, 1983; Afraimovich et al., 1986; Pecora & Carroll, 1990; Kocarev & Parlitz,
1995] because of its potential application in comrmunication systems (see, for example,
[Parlitz ef al, 1996a] and references cited therein). In this article we briefly discuss
further applications and generalizations, in particular the synchronization of spatially
extended arrays of coupled oscillators.

2. Active-Passive Decomposition

The basic idea of the following synchronization method consists in a decomposition
of a given {chaotic) system into an active and a passive part, where different copies of
the passive part synchronize when driven by the same active component. Consider an
arbitrary N-dimensional (chaotic) dynamical system

z = F(z). (1)

The goal is to rewrite this autonomous system as a non-autonomous system that possesses
certain synchronization properties. Formally, we may write

x = f(x,s), {(2)

where x is the new state vector corresponding to z and s is some vector valued function
of time given by s = h{x) or $ = h{x,s). The pair of functions f and h constitutes a
decomposition of the original vector field F. The crucial point of this decomposition is
that for suitable choices of the function h anv system

vy =1ly.s) (3)

that 1s given by the same nonautonomous vector feld £, the same driving s, but different
variables y, synchronizes with the original system (2}, ie., ||x — y|| = 0 for t = cc.
More precisely, synchronization occurs if the driven dynamical svstem is asymptotically



stable which can be proved via a stability analysis of the linearized system, by means of
a (global) Lyapunov function, or numerically using the fact that syhchronization occurs
if all conditional Lyapunov exponents of the nonautonomous system (2) are negative
[Pecora & Carroll, 1990]. In this case, system (2} is a passive system and we call the
decomposition an active-passive decomposition (APD) of the original dynamical system
[Halle et al.,, 1993; Wu & Chua, 1993; Kocarev & Parlitz, 1093; Parlitz et al., 1996a).

What makes this method for constructing synchronized systems interesting for
applications is the fact that in many cases the function s(t) can be rather general. In
particular, it may depend not only on the state x but also on some information signal
i(t), ie., s = h(x,1). In the case of synchronization (y — x), this information ¢ can
be recovered from s = h(x,i) = h(y,1) if this equation is uniquely solvable for 7. This
communication method can also be implemented using hyperchaotic dynamics [IXocarev
& Parlitz, 1995; Parlitz et al., 1996a].

3. Sporadic Coupling

To achieve synchronization of two continuous systems it is not necessary to couple
them continuously. Even if the coupling is switched on at discreie times ¢, = nT only,
synchronization may occur if the coupling and the time interval 7" are suitably chosen
[Amritkar & Gupte, 1993; Stojanovski et al., 1996]. In particular, this kind of sporadic
coupling leads also to a correct interpolation of the continuous time evolution during
the intervals between the coupling times ¢,. In those cases where the coupling signal
or variable is chosen such that the corresponding continuous coupling would lead to
synchronization in the sense of Pecora and Carroll [1990] it was shown by Stojanovski et
al. [1996] that a threshold value 7}, exists with synchronization for all T < Tj.

4. Synchronizing Arrays
We shall now consider one-dimensional arrays of diffusively coupled Chua oscillators
(4) with periodic boundary conditions. The equations for the array are given by:

Vs i i sl i— i i

—dfil = G(ch - VCl) - Q(Lcl) -+ Gc(ch ' — QVCI + VCT]

4V i i i
dtcz = G(Vg = Va) + 1} (4)
dj ; :
cit,L _ch - ROl’L

where the index ¢ denotes the i-th oscillator in the array. The coupling conductance G, is
given by G, = 1/R, with R, = 100kQ} and the other parameters equal mg = —0.403mS,
my = —-0.756mS, G = 1/R with R = 1740, B, = 1.08V, L = 18mH, R, = 200,
C, = 10nF, and C; = 100nF. A copy of this array may be synchronized by applying
the sporadic coupling described in the previous section sequentially to the individual
elements of both arrays. One can, for example, start with the first oscillator of the
response array and set the value of its Vigp-variable at time ¢, to the corresponding
value Vea(t,) of the first oscillator of the drive array. Then, at time t,4) = 2, + T the
second elements of both arrays are sporadically coupled and so on. Finally, when the
last two oscillators have been coupled we start with the first pair again. The results of
a numerical simulation based on this coupling scheme with T" = 0.001 is shown in Fig. 1
for an arrav consisting of 100 oscillators. Figure la gives the spatio-temporal evolution of

[
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Figure 1: Spatiotemporal evolution of coupled Chua oscillators (4).

the drive array in terms of gray-coded values of Viq(£) vs. time t and oscillator position
. Figure 1b shows the corresponding diagram for the respense system. As can be seen
both arrays are synchronized for £ > 65 and generate the same spatio-temporal pattern.
To visualize the synchronization transient the magnitude of the difference is plotted in
Fig. 1c vs. time ¢ and position ¢, where dark regions denote large differences. Figure 1d
gives the spatially averaged synchronization error ¢ as a function of time. As soon as
the last “synchronization defect” died out {compare Fig. 1¢) the error drops down to the
resolution of the numerical simulation. The dynamics of the drive array is hyperchaotic
with a Lyapunov dimension of Dy > 200 and thus provides a rather complex encoding
when used in a communication system.

5. Parameter Identification

A potential application of synchronization consists in parameter estimations from
time series. Assume that a (chaotic) experimental time series has been measured and
the structure but not the parameter values of a model describing the underlying process
are known. The goal is to find these unknown parameters and perhaps also the time
evolution of the variables that have not been measured. This problem can be tackled
using synchronization. The basic strategy consists in finding the right parameter values
by minimizing the synchronization error of a numerical model driven by the given data.
More details about the algorithm and experimental results may be found in Parlitz et al
[1996b]. In those cases where a continuous coupling between the experiment a computer
model is possible, similar methods may be applied [Parlitz, 199G; Parlitz & IKocarev, 1996].

6. Phase Synchronization

The syuchronization of two systems in the sense that both state vectors converge to
the same value is not the only possibility. If, for example, a well defined phase variable
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can be identified in both systems, the phenomenon of phase synchronization may occur
|Rosenblum et al., 1996; Parlitz et al., 1996¢|. In this case the diflerence between both
phases 1s bounded and the average values of the resulting angular rotation frequencies
are equal after some synchronization transient, while the corresponding amplitudes
of both systems remain uncorrelated. This phenomenon may be used in technical or
experimental applications where a coherent superposition of several output channels is
desired.

7. Generalized Synchronization

Another concept of synchronization is the notion of generalized synchronization where
the existence of a functional relationship between the states of the coupled systems is
required (in the limit ¢ — co) [Afraimovich et al., 1986; Rulkov et al.,, 1995; Kocarev
& Parlitz, 199G]. This type of synchronization occurs for uni-directionally coupled
systems when the driven system is asymptotically stable [[Kocarev & Parlitz, 1996 and
is therefore very robust with respect to parameter mismatch.

This work was supported by the German-Macedonian project No. G.J1A.6.A.
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Theory of resonant transmission.
Wave propagation in a medium of conpled harmonic oscillators

V.1 Petrosyan, YoV, Gulyasv, VA Krysko
E.A. Zhitenyova, V.A. Yelkin, N.I. Stnitsin, .V, Krysko
Professor, Doctor of Technical Sciences,
Honoural Man of Science and BEngimesting of Russia,
The Head of the Highest Mgathematics chais
B. Sadovay str., 96a, flat 77, Saratov, 410054 Russia

A “paradoxical” phenomepom of resonant transmission of water medis, 1nvolving
biological objects, has been revealed for clectro magnetic radiation (EMR) with an extremely
high frequency (EHF of 30...300 GHz i the millimeter-wavelength band, 10...]1 mm) and is
described in RE, 1995, V. 40, No 1, p. 127.

To understand and mnodel the mechanism of EHF-wave propagation in water media
end that of active interaction between these waves and biological objects we consider the
molecular structure of identical coupled oscillaiors (Jibrators). The system cf these oscillators
may be treated as that of ome-dimensional cheins extended in the direction of wave
propsgation. According to the theory of oscillation in the field of an eleciromeagnetic wave
that propagates in these chain we have.

E(l,t) = Eyexpliwt - iy 1) o))
The oscillators undergo the action of peniodic force
F{L)= Joexpliot-iyl)= fexpliot-iyna), 2)

where ot and y are the frequency and the wave number, respectively; f,=¢gE,/m 1s the
amphtude of external force (per unit mass); £, 1s the amphtude of electric field strength; q and

m ars the oscullator’s charge and mass; t 1s the time; /=na 15 the depth of penetration 1nto the
medium; «1s the intermolecular spacing; and n is the number of oscillator in the chain. The
oscillators are shified as forced by their neighbours

S ={kim)ae,, 3

where k and p, arc the clasticity constant for inicrconnccuion between the oscillators and the
oscillator’s shift; and

APy = @i =@y = (@ = @)= Oy + Py — 200,

defines the resulting shift of the oscillator with respect to its nearest neighbours. The
differential equation wath no attenuation has the form
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E;".»"(I, r) + mgrp" (I, 1‘) = (k /m)i\.cpn(!,f) , (4)

L2 : . .
where @, =(k,/ m}~ " and 4, are the rescnant frequency of an autonomaus oscillater and its
elasticity counstant Its solution 1s as follows

o, (ht)= e expliot -izna), (5)

where @ is the shift amplitnde for the oscillator. Substituting (3) mto (4) yields the following
dispertion equation

@* :m§+4{k/m)sin(2)5cxi?;), ©)

As seen, J is real for the frequency band @, < @ < @" and imaginary for @ <@, and @ >a" .

Here
0" = w, +{4k /m)w Q)

and @" =@, with weak interation.
By this 1s meant that the EMR amplitude in the resenant band [mo,a)'] 1s maintained and the

wave propagates freely 10 the medium [see (3)]. Gutside this band the amphtude decreases
expenentially and the wave atienunates at the surface

o(l) = poexp(~2 1) = pyexp{-21/ 2) , &)

where A =2xe, f-\;f;;a) 15 the wavelength of the wave 1n the medivm; 4 and £ are the
permeability and the pereittivity of the mediam; and ¢, 15 the EMR propagation velocity in

vacuum.

The aforesaid can give an insight wto the mechanism of EMR penetration through the
medium and into the existence of physical resonant frequencies of interation between the EHF
radic waves and the bicbjests.

Limear escillation regime with attenoration (anharnanism)
In real media the forced oscillation of interacting oscillaters proceed with a certain

attenuation and for small amplitudes they are described wath the following hinear differential
equation

9’“) + 2}'0@5(1‘}+ m‘ggp(r) =[5 exp(fco r’) , )]

where 27, 1s the coefficient of linear dissipative loss per umit mass (viscosity, molecular
friction). Its solution are the functions
s ' ? vl . oY
(;D(r):@D[l—exp(—yor)Jexp[l(wr—B)] (10)



and
o(t)= poexp(-y t)expli(wt-6)] | (1)
where €= arcfg[Z;r'om /'(a}g ~ zuz)] 13 the phase difference betwees the external force and the

oscillator’s  shift.  There A functions were obtammed for Ttoundary conditions
i = (0,0) o(t) = [0,p,) ©{t)=(pe,0) which corresponds to the EMR soures on- and off-
switching. _

From the stationary sclution [ see (J0)]

o(t) = poexplimt) . (12)

By its substitution into (9) we find the oscillation intensity for the oscillators with the
frequency detuning (m—mo =0)and in the resonance with the natural frequencies of the

autonomous oscillator (@ - @, =0) :

.

~ 2 i e .7 2 1
b= (- ) +(2m0)2J, (13)
7= 13 140il{, - a) 473 for 020, (s
oh= £ 120wt ok =sEl|Cogt - | a9a
- 2
a, = {ma _2}’%) » @, =@, for y, <oy, (16),(167)
}’o:‘mo"mlrz' D=,/ 2y, an.an

where @, 15 the rescnant frequency of the oscillator with losses ( obtained from the extremum
condition a’(qu)fdr =0), ®o, @g, @, are the oscillation smplitudes of frequencies

@,0,,0, 0., is the frequency at the level @2 /2,0 1s the Q-faztor. The intersity of resonant

r?

oscllations of the oscillators is thus seen to substaniially exceed thai of mcident waves.

Nonligear sscillation regime with attenuation

As the miensity of forced pscillation of the oscillators is raised at resonant frequencies,
the energy dissipation also ncreases and wansmission decreases.

1t follows from the noustationary soluuon of (10) that, starting with the point of the
EMR source on-switching at the resonant frequency @ = @,, the oscillation amplitude is
greater with time according to the exporential law

Wo(r):@m[}_expf—?’f}] ) (19)

£ 10 ithis fact, the oscillateors pass 1o the nenlinear cscillation regime as their oscullation
amplitudes approach the maximum values. Nonlinesrity 1s induced by nonlinear loss in this
case which are related te a stronger intermolecular interacuien as the magmitude of the
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oscillationamplitude approaches the intermolecular spacing. This dependence must be
quadratic due to 2ts being even

y:yo{Ha(%/a)ﬂ , 20y

where » and @ are the shift and the amplitude of nonlinear dissipative loss and

proportionallity factor. The substitution of (20) inte (9) yiclds the nonlinear Van der Pole
equation with the difference that the quadratic term 15 not a variable, but the parameier:

"

o)+ 23’0\-1 +a(Py/a)’ | §t)+ ol B(t)= fexpliat), 1)

e

where @{t),@, are the shift and the amplitude of nonlinear oscillation.
This representation gives a possibility fo expleit the resulis of binear sotutions(13) - (16)
ith substitating y , by {20}

Pr=f%) Jrr(a)g‘ - mz)z +[Zm}f0(1+ o @ /o:z:]r}, } 22
Bl = 1212007, (1+ @ 9% aﬁ)]q, 3
0% = 18 rogys[1va oo/ @) - {2?'?[1* ooy 1y T} 22
Bl = wl —-2}/%(1—'-& Bas /az), P =ayog-3,) as B, =w;. (25

where @, 1s the resonant frequency of the nonlinear attenuation oscillstor. Sicee the resonant
frequency of the oscilator 1s lowered with the oscillation amplitude increase (see (24)),
@, = @,, the sysiem leaves 1he resonance and the transmission of energy from the external

source becomes weaker or ceases depending on the EMR intensity. As a result the resonance
curve 15 shifted

Q?OO(C‘JHQO):’&;OIQ[EHQO_) t‘?'é)

and the oscillation intensity of the oscillators and thus energy dissipation falls exponeutially in
accord 1o (11);

T P - [ Vapef iV (73 sV a
q’Ok‘} - ll}}Or\Aa)r‘JwO) - L.'DO:' ‘\C:JrS(JO)J \.){p\’ / r) ! {'n&rkmerO} {-7)
where the functions @,, (@,.@, . 8,, (0, - &) are defined by (15) and (24) and 1he difference
between them reflects the amplitude decrease. Within a pause 1n absorbing the EMR energy
the system of the oscillators rewurns to its initial rescnant state, @, = @,, and the cycle 15
automatically repeated. Self-o scillations of the mediumm transmission were observed for the
EMR. With futher ENMR power bucreasig its penetranion into the medinum becomes stochastic.
This is the mechanism of resonent interaction betwesn the EMR and molecular media.
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FORCED CHAOTIC AND JRREGULAR OSCILLATIONS -
COMPARISON OF FIRST APPROXIMATION AND NUMERICAL
SIMULATION

L. Past

Institute of Thermomechanics, Academy of Sciences, Dolejdkova 5, CZ-182 00 Prague 8, Czech Republic

Abstract: The behaviour of the two DOF non-linear mechanical system ex-
cited by the harmonic force is studied by the first approximation (averaging
and asymptotic) method and by the numerical simulation.

The response curves, instability domains, motion versus time dependencies
and phase plane portraits are ascertained. By means of the first approxima-
tion solution we receive three instability domains, connected with blfﬁrcation,
where jumps occur, or in which the beats and chaotic motions emerge.

The numerical simulation confirmed these properties, but showed that there
exist several bifurcation and new instability demains, in which the response on
the harmonic excitation is chaotic. These oscillations depend on the history,
i.e. on the way and speed of the frequency change with which the system has
got into the current state. The responses at increasing or decreasing frequen-
cies differ, the hysteresis loops exist.

1. Introduction

Mechanical svstems with the nonlinear springs show a variety ol complicated responses
on the deterministic harmonic forces. The important typical properties of the responses on
the nonlinear systems are the existence of the instabilities and bifurcations connected with
the occurence of jumps, beats, irregular quasiperiodic motions and chaotic oscillations.
Some of these properties can be explained by the application of the first approximation
methods as are equivalent linearization, averaging method, Poincare method of smali
parameter etc. But the detailed study of these irregular phenomena can be realised only
bv the more exact simulation method, i.e. by the numerical solution of the differential
Egs. of motion.

The main attention is given in this contribution to the behaviour of two degrees of
freedom (2DOF) nonlinear system containing the stiffening spring with the cubic charac-
teristic and to the comparison of the results gained by the aproximate and exact solutions.

2. Studied system

Mechanical system with 2DOF is excited by the harmonic force, acting on the lower
mass m; (Fig.1). The nonlinear spring connects masses m; and m,. For simplcity
we assume that the svstem is darnped only by linear viscous damping. The differential
equations of motion are

m].:'é]+blj'1+.[\'1331-—f2(1'2)—b21.?2 = FDCOSLUt

me{T) + 12) + folzg) + b2y = 0 (1)

[
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where z4 is the relative displacement between masses m, and m,. The nonlinear function
let us suppose in cubic form fo(z2) = kozo+kszy? (k2, k3 > 0). After some transformation
and introducing the dimensionless parameters and variables

x'”’T ™ w=wl, n=wym/fk, p=myfm
by L[J %ﬂx’) ,[ v; = k[ Fo, B = b/l i=12 (2)
Focosof

f(yz):"iyz-f'fcayza} g = kofky. fc3:k3F02/k13

| § we get
b L(l ks

e 2yl 4+ 0By, + v — Ky — Kaye® — nBayy = cose
A (Yl +yi) + kY2 + Kaye® + 1 Bay)
Fig. 1 )

Il
o

3. Method of solution in first approximation

At the study of the forced oscillation, we shall concerned on the first approximation
and therefore we use the averaging method combined with the equivalent linearization
method.

These methods are based on the application of the transformation of variables y; to
slowly varying variables C;, 5;

y; = Cjcoswt + S sinwt j=1,2 (4)
Introducing the auxiliary conditions
Cicoswt + Sisinwt =0 (5)

we receive (alter short calculation) four ordinary differential eqs. of the first order. These
eqs. exactly describe the behaviour of the system from Fig. 1 and are fully identical with
egs. (1). As their analytical solution is not possible, there it i1s advantageous to split the
right hand sides into the parts containing only members independent explicitly on the
time ¢ and the parts periodic in wt. In the first approximation we can neglect the periodic
members and receive the eqs. of motion in the averaged form:

Ci = #{-nBiCr+ (1 = 1%)8) + 1B2Cs — ke(a2) 5}

Si = 32{n* = 1)C1 = nB.S1 + k.(a2)Ca + nB2S2 + 1} (6
C; = gp{nBiCi— S = (14+1/w)1B2Co + ((1 +1/k)re(a2) = 07} 52} |
Sy = G+ 0BS5S — (1 + 1/ p)ke(az) = n*)Cr = (1 4+ 1/p)n B8y ~ 1}

where the equivalent linear stiffness x.(a,) was introduced instead of the nonlinear func-
tion f(y2) according to the relation

£(92) = weloalva = s + Jrsas )y @

The amplitude a, of the relative motion y; is given by

a, = VCo? + 55 (Ta)

Response curves of stationary forced oscillation with the period T = £ can be ascertained
from the algebraic eqs., received by setting C; = 57 = C; = §; = 0 into the eqs. (6):
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The coeflicients in these eqs. depend only on two variables a; and w. This property
enables easy construction of response curves a,;,n and a;,7. The examples of response
curves are given in Fig. 2.

The stationary states of the periodic forced vibration are not stabil in all points of
the response curves. The study of stability 1s based on the perturbation theorv. To the
equilibrium state at the fixed frequency % and constant values Cy, 51, C, 52 fulfilling the
equations of response curves, we add the small perturbations ¢y, s1, ¢z, $2 and receive the
perturbed motions:

Ci"=Ci+e, S =35i+s; =12 (8)

After substituting (8) into egs. (6), developing in the powers of small quantities ¢;,. .., s,
and neglecting the powers higher than one we receive the linear differential eqs. in
€1, 31,C2, S9.

From the coeflicients of these equations of per-
turbation we can construct the characteristic eq.
The stability of the periodic motion is determined
according to the real parts of the roots of the char-
acteristic equation written in the form

M+ AsXd 4+ AXE 4+ A) + A= 0. (9)

—
wn

—
[

[T N S WY G S SN TN S S SN T SN N

For the asvmptotic stability we use the Routh-Hur-
witz criteria. It can be proved that all coeflicients
Ao, Ay, As, Az depend only on two variables a;
and 7. Therefore also the roots A of the character-

h

(e

11—+ istic equation depend on these variables and it 1s
- : L5 @ /mik possible to draw the instability regions 1n the co-
Fig. 2 ordinates a,,n in which also the response curve is

drawn.

In our case the most important are the instability regions with the boundarnes given
by the equations

Ag = 0 (region 1) (10)
A1AgA, — A2~ AlAg = 0 (region 1) (11)

As an example of the response curves and instability regions are in the Iig. 2 the
results of calculation for the 2DOF system with the paramelers

kelan) = 0.2+ 0.00302, p =025, B, =002 B;=0.0l

The parts of the response curve a,,  going through the regions of mnstability 1 or 11 are
unstable (see dashed line}. Unstable parts of response curve a;,n have the boundaries at
the same n as the curve a;. 7.

The regions | ascertain the same types of unstable motions as in the nonlinear syvstem
with 1DOF. There are exponential increase of perturbations given by the law e®* | typical
for the beginning of the jumps to the other stable periodic states. The more interesting
1s the region 11 , where no jump can occur, as there exists only one periodic but unstable
solution. Therefore the motion must pass into another, nonperiodic motion. There are
complex roots A = v = 1 with the positive real part v > 0 and the motion has the form
of exponentially increasing beats with the period 27 /4.
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Let us show the motion in this region of instability. The course of the components of
amplitudes Cy, C;, 51, S; after small perturbation from the stationary state is in Fig. 3
for o = 0+ 200. The motion begins with the exponential increase of beats of amplitudes.
At certain distance from the stationary state the beats change over into the irregular-
quasichaotic motion. This phenomena is demonstrated also in the phase diagram (), 5,
and Cy, S; for the same time interval v = wt = 0 + 200 in Fig. 4.

C,.5,.C,8,

Fig. 3

The response curves out of the instability regions are smooth without any bifurcation
and any change of character of motion.

4. Numerical simulation

The method of first approximation based on the equivalent linearization takes into
account only first harmonic component with the frequency w. However the higher compo-
nents, which always exist in nonlinear systems, can significantly change not only the form
of oscillation but also the course of response curves (given by the maxima of displacement)
and their stability.

For the more exact study of this behaviour it is very convenient to use the numerical
simulation 1.e. the direct solution of differential equations (1).The programme package.
prepared by F.Peterka [1] for the 1DOF system with impacts, was extended for 2DOF
nonlinear svstems.

The behaviour of the svstem in the second resonance, where the node lies in the
nonlinear spring between the masses m; and my is very similar to the behaviour of 1DOF
system. The properties of the system in the zone near antiresonance 1.e. in the instability
region 11 are described in [Pust, 1993] and [Past & Szollés, 1996].

In this contribution we shall pay attention to the first resonance peak. The response
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curves were gained by the very slow change of frequency approx. 10% in 1000 periods so
that the response curves can be supposed to be stationary. The used software package
[1] indicates the maxima of chosen coordinate during the motion and plots them into the
diagram in dependence on the frequency. Such response curves are in Fig. 5. Besides of
two jumps (at 7 = 0.88 and 1.70) and one chaotic beats region (7 = 1.02 — 1.09), which
were ascertained also by the approximate solution, the irregular motion occurs at 7 = (.8.
The isolated branch of response curves means, that there is strong influence of higher
harmonics resulting in the occurrence of new maximum in the time history of motion.
The influence of the control of frequency variation from 5 = 0.79 to 0.87 up and down is
shown in Fig. 6 and 7 {k; = 0.0003, B, = 0.01, B, = 0.05).

_!‘ Y2 max

Fig. 6

The region of beat-chaotic motion is in all repeated cycles the same, but the peak itself
has diflerent forms according to the speed of frequency change and to the other random
influences. The first cycle (1) was done at very low increase of frequency. The jump to
higher displacement occurs at 7 = 0.852. After reaching the peak maximum (yimar = 98.)
the amplitudes jump down at n = 0.858. The vibrations at descending frequency follow
the lower branch. Repeating this cycle at 10 times higher increase of {requency. the
curves (2) differ from (1). Above the region of chaotic beats the curves bifurcate and the
oscillations {n = 0.823 — 0.852) follow lower branch in yimaz, 7 diagram. [0 yomaz, 7 there
are again two branches. The jump to postresonance solution occurs now at n = 0.852.

The third cycle (3) consists of the way identical with cvcle 1 up near to the peak and
then the frequency was running down, as can be seen in Fig. 6. In diagram yamez, 77, the
response curve was nearly identical with the case (1). (Fig. 7).

The time variation of the displacement y:1{t) and y,(f) together with the velocity
variation is demonstrated n the phase planes in Fig. 8, at 7 = 0.815. The motion was
recorded 1n the time interval of 10 periods. From the longer time record it was seen
that, the motion can be interpreted as transient chaotic process between two forms of
oscillations, seen in next fig. After increasing the exciting frequency to n = 0.83 this
chaotic motions pass over into two separate periodic trajectories shown in Fig. 9a, 9b.
These portraits correspond to the upper branches 1 and 2 in Fig. 6 and 7. The portrait
of vibration in the branch 3 is seen in Fig. 10. The oscillations y;(1) are very harmonic,
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the nonlinearity manifests itself in the motion y,(1).

Fig. 10

5. Conclusion

The study ol the forced vibrations of the nonlinear two-degrees-of-freedom system
showed that:

- the response curves obtained by the approximate and simulation methods are quali-
tative the same,

- the main regions of instability I {jumps) and II (beats) were ascertained by both
methods and have the similar properties. From the quantitative point of view there are
self-evidently important diflerences,

- the new region of chaotic beats, bifurcations and new jump phenomena were found
out near the first resonance peak.

Ackonwledgement. This research was supported by Grant Agency of Czech Republic
(No.101/94/0126).
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LIE-TROTTER FORMULA AND POISSON DYNAMICS

M TPuta

Seminarul e Geometrie-Topelogie, University of Timisoara.
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Abstract, We constrcet via the Lie=Trotter formula some explicit
Poisson intesrators Tor the Maxwell=-Bloch equations from laser-
matter dynamics. the Euler eqguatioss of the {ree vigid body aned

the equations ol the vigid budy with s spinniag rotor.

1. Introduction

Let (/7 {-.-}. A) be a Hamilton=Poisson mechauical system. Tts dynamics 13 described
by the following svstem of dilferential eqnations:

Of course, one of the most inleresting problems is Loty to coustruct for Lthis system
an explictt vumervical Tntegrator sueh Uhat to preserve as much as possible from its Pois-
soi geometryv. Such integrators have heen coustructed via the Lie-Trotter formula by
IWisdom & Holman, 1991] for the w-planel solar system, by [McLachlan, 1995] for the
2—cimensional Eoler equations ol an tncompressible flund and by [Hiaper el al.. 1995] for
the Toda lattice,

The goal of onr paper i= 1o complete the above list with the cases of Maxwell-Bloch
equations. the free vigid hody aol the rigid hoddy with a spinning rotor.

2, Lie—Trotter Formula and Polsson Geometry

The Lie=Trotter fornmla see Plrorter, 1930], applies when one can write the Hamil-
tonian H as

H=H+ H,

i osnch a way that eplf Ny ) and e pi? Ny ) can botli be explicitly compited. Then the
Lie=Trotter formula s 2iven by

Py € Byl )= cop(t Ay earpli Ny ) = erpi N y)r + (1), )
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Now we have:

Theorwex 2.1 The Lie=Trotter formda (1) satisfies the following properties:
(1) It preserves the Poisson strneture of the phase space (B, {-.-}).
(1) 1 preserves the svmplectic leaves ol Lthe Poisson confignration,

It s elear that the formads (1) s only fivst order. The order can be increased Lo .
by composing many sitel stages, nanyely:

e (b AN e plind N, Vo coep{iy i X gy Jeaplat Xy, ).
with coefficients chasen in sucli o waye that the ahove composition approximates exp(t.N )
with error Q1)

3. Applications

Exavrie 3.1 The Maxwell-Bloch equations from laser—-matter dynamics can be
written in Lhe [ollowing form:

l; = .r): {3 = g .i;i;3 = —.!'[.1'2. (.'.).)

They can he realized as o Hamilion-Fuisson mechanical system with tie phase space 72,
the Poisson hracket given by the malrix

0 —.ry Jd
Nyg = any it {)
—.dp ] U

and the Hamiltomian /1 given hy
H = l.r"') +
R
The symplectic feaves ol onr Poisson manilold (72 T g) are the pairs (Opowi). where
Op = {700 0g) € B Lol + 03 = 47)
and

(cogedry Ay — raddr g Ay

{

L= T

The Lie=Trotrer formmnla (1) gives vise tooan explicit Poisson integrator for the Eq.
(2). namelyv:

ey g

T = T

.l"g-H = :’, cos.ey (O)F + .'Is sinaq (O {4
Ao —.r{jsin s Y+ li; cos . ()1

219



Moreover, its restriction te cach condjoint orhil (Op. wy) gives rise to an expheit symplectic
intearator.
ExaMrLe 3.20 The Fuder's eqnations of the free rigid body can he written i the
followimg torm:
i| = adgl l_] = Uy iyl 13 = {34 (‘L)
They can be realized ss o Hamilton=Poisson mechanical svstem with the phase space £2

the Poisson strincture siven by the matrix

(1 —.0'3 )
Npn = | 1 0 -
—iy I O
and the Hamiltonian /1 civen by
I S S -
H=-|=14 =22
21 P

The symplectic leaves of onr Uoisson manifold (22, Tpg) are the pairs (O w).), where
Y B2 2 2
O = ooy €R |.i'1 s by = I

ancl |
u—';. = I(.r'zr/.u-l A ey — wgday Adry — apdas A diey).

The Lie=Trotter formula (1) gives rise to an exphoil Poisson integrator for the Eq.
{(4), namely:

ST Y TR Y GRS I B AT N N 2 T

[T T T = ABC . ey, b

where A, B, C are respectively the Hows of the Hamiltonian vector fields .\’J‘?/N]‘ Nozja-

Xazzap,. Moveoveroits restriction Lo the coadjoint orbits (O wi) gives rise Lo an explict

svinplectic imtegrator.
Let us Anish wirl the observation that similar results also hold for the rgid body

dyvnamies witly a spinning rotor,
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tlus Lopie.
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ATTRACTOR-BASIN SUDDEN BIFURCATION MECHANISMS
IN NONLINEAR STRUCTURAL DYNAMICS

G. Rega’ and A. Salvatori’
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Abstract: The nonlinear oscillations of an elastic suspended cable are analvzed
through different geometrical and computational tools. In particular, cell map-
ping, chaotic saddle analysis and invariant manifolds evolution allow to deeply
investigate bifurcations, crises and chaotic phenomena for a sdof model rep-

resenting the in-plane motion of the cable. A complete computational and

geometrical study is performed both in the ; and § subharmonic resonance

ranges, highlighting the main réle played by direct and inverse saddles in the
continuing evolution of the attractors and of their basins of attraction.

1. Inmtroduction

Nonlinear modelling in the dynamics of structural systems is strictly related to the
availability of techniques suitable to furnish understanding of the relevant complicated
behaviour. Though some mdof models have recently been developed to describe various
response aspects, the numerical and geometrical analysis of simple sdof models still allows
to gain deep insight into some main bifurcational and chaotic phenomena of the system,
not yet completely understood. Here the attention is focused on the understanding of
sudden change mechanisms [Park et al., 1992], which furnishes detailed information about
the global dynamics of the nonlinear system. The approach followed consists in a combined
bifurcational analysis of the attractor-basin-manifold-phase-portrait structure, and of the
whole chaotic saddle |Lai et al., 1992]. Reference is made to the sdof nonlinear equation:

§+ pq + g+ g’ + cag® = Peos(t) (1)
which describes the finite dynamics of an elastic suspended cable vibrating under har-
monic forcing with its first in-plane symmetric mode [Rega et al., 1995, and which ex-
hibits several nonlinear dynamic phenomena: primary, subharmonic and superharmonic
resonances, due to quadratic and cubic terms, various local and glébal bifurcations, multi-
ple coexisting regular and strange attractors, crises entailing sudden evolutions of chaotic
attractors, fractal basin boundaries involving the chaotic saddle, which also determines

the topology and evolution of chaotic attractors in state space |Rega & Salvatori, 1996

2. Attractor-Basin-Manifold-Phase-Portrait for Characterization of Global Dynamics.

Analysis of bifurcation and chaotic dynamics of Eq. (1) has been made in the
neighbourhood of the 7 and % subharmonic resonances [Rega et al., 1995|, |[Rega & Sal-
vatori, 1996]. Here some further interesting results are reported. Together with path

following curves, cell mapping and bifurcation diagrams give an overall picture of global
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attractor-basin structure, and a pictorial introduction to the crises phenomena. More-
over, the superimposition of basins of attraction and manifolds of saddie points gives the
construction of attractor-basin-manifold phase portraits (ABMPP) allowing a complete
topological interpretation of crisis phenomena in terms of intersection of stable and un-
stable manifolds of direct or inverse saddles, which involves homoclinic and heteroclinic

tangerncies.

When varying a control parameter, attention is focused on the merging and switch-
ing crises (interior crises of the first and second kind), occurrying in the ABMPP. These
crises deeply involve a local/global evolution of chaotic attractors with meaningful réle
played by various geometrical entities: the direct (inverse) saddles of some periodic solu-
tion, their relevant stable (unstable) manifolds Wj’(“)(Df), W;(”}(]i"), the chaotic saddle
and the chaotic attractors. All these geometric entities are obvicusly correlated to the
basins of attraction of the actual solution of the nonlinear system (1). Interior crises play
a relevant réle in the evolution in shape and size of chaotic attractors, in conjunction with
topology of chaotic saddle, which also determines the evolution of the complete ABMPP
{Park et al., 1992). That’s why main attention will be focused on some mechanisms which

determine the interior crises 1 and 2 in Eq. (1).

3. Merging Crisis: Multi-Band Chaotic Aftractors, Invariant Manifolds and Chaotic
Saddle.

Interior crises 1 involve the sudden enlargement in size of the n—band chaotic attrac-
tor together with its band-halving. In Eq. (1) behaviour of this kind can been easily seen
both in % and in % subharmonic ranges, (for example, at the values P = 0.04, t = 1.817,
and P = 0.40, @ = 4.03 respectively). In Fig. 1 (3-subharmonic range) mergings of the 4
bands of the C'* chaotic attractor to form a 2-bands C? chaotic attractor, which definitely
merge into a broad chaotic attractor C', are shown together with the relevant inverse sad-
dle (I*1%,]) stable and unstable manifolds responsibie for the heteroclinic tangles, and
with the chaotic saddies. It’s worth noticing that this crisis, which is local to the basin
of the chaotic attractor, is caused by heteroclinic tangle W;(]?/z) NWE(ID), (where n is
the number of band of C'™). The chaotic attractor which enlarges itself by this tangle,
really touches an infinite number of times the stable manifold Wj’(],-"/z), in this manner
tresspassing the inaccessibility topological boundary represented by this manifold in its
own domain of attraction; this implies that, in this case of interior crisis 1, W o C).

It can be properly conjectured that these manifolds belong

&

all together, to the chaotic
saddle, which 1s formed by the union of the infinitely existing unstable periodic orbits due
to classical evolution of secondary attractors (i.e., generation by saddle-node bifurcation,
period doubling to chaos, boundary crisis due to its own direct saddle generated by the

same SN, and coliection of all direct and inverse saddles, to form the chaotic saddle).
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Figure 1: Interior crisis 1, P = 0.04, Q = 1.827 (a-b), Q = 1.8267 {c-d)
Several chaotic saddles were calculated with PIM-triple procedure [Lai et al., 1992
for Eq. (1), always showing the mechanism of englobing of chaotic saddle trajectories into

the band-halving chaotic attractor, when crisis occurs.

4. Switching Crisis: Narrow-to-Large Chaotic Attractor, Invariant Manifolds and

Chaaotic Saddle.

| Differently from previous mechanism, the interior crisis 2 depends on only one saddle.
This crsis involves the chaotic attractor and the direct saddle of a secondary p-periodic
solution in the control parameter space; before the crisis, its relevant stable manifolds, sav
W;{D?), form a boundary which delimitates an inaccessible region inside the same domain
of attraction. At the crisis a homoclinic tangle between stable and unstable manifolds
(W;(DP)NW¥{D7)) occurs, and, because of W{DF) contains the narrow chaotic attractar,
the latter touches an infinite number of times W (D7), and then tresspass the inaccessible
boundary formed by it, notably enlarging itself until a new topoiogical boundary has been
reached. The chaotic attractor englobes portion of the chaotic saddle in its enlarging,
after the infinite numher of tangencies with the chaotic saddle itself deriving from the
homoclinic tangle mechanism evidenced before. Actually, it is also possible to identify
specific saddles responsible for the enlargement. As an example, in Fig. 2 a switching
crisis 15 shown at P = 0.04, = 1.749, where the enlargement is seen to be connected

with the tangency with the D? direct saddle and its relevant stable manifold W3:(D}),
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Figure 2: Interior crisis 2, P = 0.04, 0 = 1.749 {a), 0 = 1.75 (b)
(Fig. 2a); in Fig. 2 also the chaotic saddle is shown, evidencing the above mentioned
englobing phenomenon, when passing through the crisis. In the %-subharmonic range
[Rega & Salvatori, 1996] it has even been possible to identify two different enlargements
associated with two very high-periodic unstable orbits belonging to the chaotic saddle,

which occur in a extremely narrow range of the control parameter values.

5. Concluding Remarks.

The réle played by the sub-domains of attraction and by their boundaries and the
topology of some global bifurcation mechanisms has been highlighted. Complex and
time consuming computations, concerned both with the ABMPP structure, and with
the chaotic saddle, were needed to understand the complete bifurcational picture of the
system. Passing to more reliable mdof modeis of the considered mechanical system, a
question arises whether it’s still possible to obtain such a deep description of the system
topological and bifurcational behaviour with reasonably affordable calculations. A posi-
tive answer likely relies in using the powerfulness of parallel computing, which permits to
obtain complex mdof entities at lower effort.
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SELF-ORGANIZATION AND CHAOS IN ATMOSPHERE

Cz. Rymarz
Military University of Technology
01-489 Warsaw S.Kaliski str. 2 POLAND

Abstract. The coexisting phenomena of self-organization and deterinistic chaos can form some scquence.
which consists of three parts: Birth - Evolution - Death modelling living svstemns. Such kinds of systems are
universal in atmosphere (fronts and cvclones). In this lecrure the modern thermodynamics of processes minning
far from the equilibrium has been used for investigations of almospheric inslabilities of westerly, zonal flow.
These are instabilities of the npe of self-organization. To investigate these instabilities or unstable processes.
the method of Lapunov function has been applied. Following the procedure of non-equilibrium thermo-
dynamics. the necessary conditions for zonal barotropic and baroclinic instabilities of the setf-organizalion tvpe
have been formulated. The simple example of the sequence of phenomena from a heat conductivity to
deterministic chaos, induced by the gradient of temperture is presented.

1. Introduction
Self-organization and chaos phenomena neighbour each other forming some sequence.

They produce an order and disorder. They belong to different philosophical categories.
Disorder, according to the general conclusion of classical thermodynamics, 1s growing
permanently (entropy’s production), and the vseful energy is degradating. As a consequence
the Unmiverse should tend to the thermal death. The universal observations contradict this
pessimistic philosophy. It is a iving matter, which exists due to evolution and to a growing of
order or organization. The coexistence of these opposite phenomena creates the following
threefold sequence, which can be treated as an essence of the life
BIRTH = EVOLUTION — DEATH

Such a kind of sequences 1s very universal in the terrestrial atmosphere. Atmospheric fronts,
cyclones {cetnres of low pressure) and other organized strutures appear in some area, pass
serie of transformations, which being stable, allow them to survive some period, and after
that they desapear. Hence we can say, that the atmosphere is some kind of living structure,
and the weather can be predicted for the penod cof the ,life” of atmospheric structure.

The phenomena of self-organization and deterministic chaos have been investigated by
D.Benard (self-organizaticn) and EN. Lorenz separatelly, applying different theoretical
approaches. In the first case the theory of non-equilibnium thermodynamics for processes far
from equilibrium in vanational formulation has been applied. In the second case the procedure
of dynamics’ analysis of nonlinear system has been used. In both approaches systems of
nonhnear PDE or ODE are solved numencally If the self-organization 1s investigated, the
solutions’ of PDE, modeling the dynamic of atmosphere, are used for calculation of excess
entropy production. When this production in running process 15 negative, the self-organizing

phenomena in system may take place (necessary condition). For the case of deterministic chaos
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the solutions of ODE or trajectories in the phase space are analysed, for finding they
singularities and strange atractors. The both mehods are modern, promising and effective, ard
are able to follow runnig unstable processes, not only the threshold parameters of instsbilities
like in the classical approach.
The aims of this lecture is to present the following contmbutions in compact form:
- thermodynamic global approch to investigation of two kinds of main atmospheric instabili-
ties of a self-organization type,
- inearized method for analysing the sequence, which models the atmospheric ,ife”, it means
heat conductivity, convective instability and chaos.
More informations on the first subject can be find in [2],[3].
2. Barotropic and baroclinic instabilities of the type of self-organization.

I. Pngogine and P. Glansdorff formulated the modern thermodynamics of processes
runming far from an equibbrium [1] . It allows to investigate the phenomena of self-
organization , which can occur in such processes, The necessary conditions for the self-
organization to appear are:

-nonlinearity in the investigated process ,

- remaining it far from the thermodynamic equilibrum,

-existing of bifurcation points and enough great fluctuations in their vicinity.

Since fluctuations can be great, the linear approximation is invalide and global formulation of
the instability crterion should be proposed. The Lapunov function (functicnal) of the

following fomn is proposed

L=6%2Z)=6 [(p=)dv=]62(p2)dv (1)

I i

where & 3(p z) - second varation of the pz function, where p is mass density, and s entropy
-1.2
z=s~1"'v (2)

It can be proved that the above definition satisfies the requirements for Lapunov function,

when the following condition for local thermodynamic equilibrium 1s true
“
o (pz)<( (3)
This condition for the process to be negative definete 1s satisfied in majonty of the real

siuanions The main condition for thermodynamical stability 1s following:



2(6°8)>0 or A6 (pzdv>0 (4)
)

If this condition is satisfied, the non-equilibrium process 1s stable, what means that excess
entropy or disorder 1s growing. In the opposite case the production of excess entropy is
decreasing in time and the order or organization is growing. It can be interpreted that useful

potential or kinetic energies prevail over the dissipations. Hence to recognize that, the
organization i1s growing, one need to check as the relations (4) 1s  satisfied. It can be done for

real data of the actually going process.
The balance of the excess entropy has the following form:

&

-

[5 '(pz)]za[pz]—dD_,,J (5)
were o‘(p z) 1s the excess entropy production and P, the flux of the entropy. For closed sytem
P, =0 and the condition of stability is equivalent to the sign of integral for o. The function o

has the following form:

o(p z)=E_5Xi5Ji —[5(pe)5v}-+c5cruév,.+%(c‘3v)3pvj]T,“—

)
~[8T7'80;;— T~'ov;8(pv;lv; ;-
—~[6T7'8(pe), ,~6T,; 5(pe)lv, — (6
—Fépdvi+ 1 T (&) (pV)),,
where

F6X;8]; = - 8(T "o, ;)ov; + 8T, 16W, -5T '8 (pev, ;) (7)

The relation for ¢ contains 12 or 13 terms, which consist of fluctuations §T, &v,.._and non-

perturbated value T, V,...,which describe the basic state, which stability is investigated We

investigate two kinds of stabihities of zonal westerly atmospheric flow:

-barotropic, when the stationary westerly wind changes with the geographic latitude,

-barochnic, when the stationary westerly wind changes with the altitude and temperature
changes with the latitude.

In both cases the conditions for 12 or 13 terms to be negative have been established. Among

them only two are always positive. They model the groving of disorder or positive entropys’

production. Remaining can be positive or negative. The instability of zonal flows of

228



of the type of self-organization occurs and 1s developing, when

P(2)=]o(pzdv<0 (8)

;-
The necessary conditions for zonal flows to remain in the unstable state of self-organization
are following:

-for barotropic flow

1 for the flow- ,8v >0, 8w >0, 8udv>0 or dudv <0

2- for the deformations of the flow - dU
d

. (3u,, +ov,, 1< 0

3- for the zonal gradient of the temperature- 8T, > 0
-for baroclinic flow

l. for the flow - 8v>0, 6w>0, dudw>0,or dudw<0,
2- for the gradient of temperature - 8T, >0 |
3- for the deformation of the flow- & (éun,,+éw,,) <0,

4 - energetic condition - ((6\!),3, +ov-Vdv) <0 .
Applying this method some preliminary results for the barotropic flow have been obtamed.

They was performed at assumed atmosphenc fields stationary and perturbated being
comparable with the stationary ones, since the self-organization phenomena run at the great
fluctuations.

3. Example containing self- organization and chaos

It is for the generalized Benard poblem. Applying the known Lorenz approach the problem of
the Benard instability is reduced to the set of three nonhinear ODE. Following the known
precedure of linearization the eigen values and eigen vectors have been determined. Analyzing
the changes of eigen values in function of the gradient of temperature, we observe in layer of
the fluid heated from below, the transitions of the states from the thermal conductivity by the
convective Benards’ siracure to the chaotic instabilines. More informations on this subject wall
be given at the lecture.
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3-D CHAOS IN THE THIN ELASTIC ROD

E.L. Starostin
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences,
Miusskaya Sq. 4, 125047 Moscow, Russia

Abstract: Equilibrium shapes of a thin homogeneous elastic rod are considered.
It is assumed that the rod is straight and twisted in its relaxed state and it
is submitted to external forces at its ends only. The torsional stiffness and
two principal bending stiffnesses are assumed to be constant and all different.
The initial twisting rate is also taken to be constant along the rod. These
assurnptions turn out to be sufficient to produce chaotic 3-D shapes of the
rod. The phase space of the system under consideration is investigated by
reducing it to a mapping of two-dimensional Poincaré sections. The results
obtained are iilustrated graphically.

1. Introduction

Equilibrium shapes of a thin homogeneous elastic rod obey equations identical to
those governing the rotation of a gyrostat spinning about a fixed point in a constant
homogeneous gravitational field (the Kirchhoff analogy). The equations are integrable
when the rod has a circular cross section and its bending stiffness coefficients are equal.
This model has been widely used for investigation of shapes of a DNA molecule, e. g.,
see [Selepové & Kypr, 1985]. Equilibrium configurations of the axisymmetric rod closed
into a ring were studied in [Starostin, 1996].

On the other hand, the problems of spatial chaos were considered in [Davies &
Moon, 1993] for an infinitely long elastic rod for two cases: when one of bending
stiffness coefficients or initial curvatures changes periodically along the rod while all other
stifinesses and initial curvatures are constant.

In this paper, the torsional stiffness and two principal bending stiffnesses are assumed
to be constant and different. The initial twisting rate is also taken to be constant along
the rod. These assumptions turn out to be sufficient to produce chaotic 3-D shapes of
the rod. It should be noted that chaos is treated here in the limiting sense [El Naschie &
Iapitaniak, 1990].

The phase space of the system under consideration may be investigated by reducing
it to a mapping of two-dimensional Poincaré sections. The Poincaré maps were built
numerically for various values of parameters of the rod. Different choice of Poincaré
sections was tried in order to obtain thorough data on the whole phase space structure.
The maximum Lyapunov exponents were computed to identify chaotic trajectories and
to characterize the level of chaoticity, The results obtained are illustrated graphically.

2. Equations

We consider an initially curved and/or twisted thin elastic rod which is deformed by

the forces and moments at its ends only. Its equilibrium state is described by the following



Figure 1: The Euler angles %, ¢, and ¥ specify the attitude of the principal axes of
bending and twisting z;zxs with respect to the coordinate system £;£:¢3 fixed in space.
The axis z; 1s along the center line of the rod. The direction of the axis £, is coincident
with the direction of the end force.

systemn of differential equations [Ilyukhin, 1979]:

dw
b5 cunfios = ) — waln — of) = 0 )
d
=2y biwg(w) — w?) — cwy(wa — wy) — P sind cosp =0,
ds 2
d
c—d% — Bg(w; — w?) +‘32’-sin~& sing = 0,

where wy is the torsion of the cross section about the tangent to the center line of the
rod, wy; and wj are projections of the curvature of the center line onto the principal
axes of bending, s the arc coordinate along the center line, which extension is neglected,
w? an initial value of the torsion in the relaxed state, w3 and w? initial values of the
curvature projections in the relaxed state, b = Byy/Bao,¢ = Bas/B2( By # 0), By, the
torsional stiffness coefficient, By, and Bjs the principal bending stiffness coefficients, p =
—2P/Bqy, P the value of the end force.

The attitude of the principal axes of bending and twisting z1z,z3 with respect to the
fixed coordinate system 1263 is given by the three Euler angles ¢, ¢, v (Fig. 1). The
axis £ is aligned with the direction of the end force.

The vector & = {wy, ws,ws) specifies the angular velocity of rotation of the axes zy1.7;
with respect to the fixed coordinate system. An analog of the Euler kinematic equations
15 valid

dih Wy SIN (5 + 3 COS

ds sin o
d :
d—LP = w; — col ¥ wy sin ¢ + wy cos ),
s
dy .
— = Wy COS( — W3 SN,
ds

The svstem of Egs. (1),(2) allows for the invariants

blewy = <) cos? + (wy — w3 sind sin g + c(ws — wy)sind cos = 1, (3)
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Figure 2: Poincaré maps of (¥,ws) plane. (a) By1/ B2y = U 8, B3/ By = 1.0,p =31l =
1,e =20,y =0.2. A symmetric rod, an integrable case. (b) Byy/Bg = 0.8 ng/B 2 =
1‘2),‘0:3,!:1,8:20,0;10:02 ( )B“/Bzz—OS B33/B22—14p:3 l|: 6=
20wl = 0.2. (d) B11/B2=0.8,B33/Bya=11,p=5.,1=0,e=5,u9=02.
bu;f—i-w%—i-aug—i-pcosfi:e, (4)

3. The Poincaré Mapping

In what follows, we assume thal the rod is straicrht in the relaxed state. then «) =
w9 = 0. However. the rod may be twisted (generally, w? 3 0). This case corresponds to
the model of DNA [Selepova & Kypr, 1985], [Starostin, 1996]

The svstem (1), (2) is nol integrable in the general case. Note that the variable v does
not appear in the right sides of Eqs. (1), (2) and the first Eq. (2) may be solved after
the solution of the rest 5 equations. Since the variable ¢ appears in the right sides as an
argument of trigonometric funciions, we may study the system’s configurations only at
the time moments when v = 27k, k integer. The configuration is completely described by
the values of wy.wy, w3 and ¥, which satisfv (3) and (4). w; may be eliminated {rom (3)
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and (4) and we obtain one equation that constrains the vaiues of w;,w; and ¥:

: 2
b(w?—l-zb—cijsi;ﬁj —I—wg—l-aug-i-pcosz?:e. (3)

For a fixed ¥, Eq. (3) defines a second-order curve on the plane (ws,ws). It is easy
to show that this curve may be only an ellipse {real or imaginary) or a pair of imaginary
straight lines having a common real point. The second case always takes place when
ﬂ:%:wgzo,w;i:é.

We will consider such values of parameters when a real ellipse exist at least for some
interval(s) of 4. Then there is a surface in the space {wq,ws, ). We choose this surface
as a surface of section and we compute the Poincaré maps of it. Numerical integration is
applied to obtain the Poincaré maps.
4. Numerical Results

The Poincaré maps are presented as projections on {¥,ws) plane in Fig. 2. The maps
(a)-{c) are computed for the following values of the parameters: b = B)1/By =0.8,p =
3,0 =1.,e =20, and w] = 0.2. The parameter ¢ = Bs3/B was taken different: (a)
c=1.0, (b) ¢ =1.2, {¢) ¢ = 1.4, The graph (a) corresponds to the symmetric rod. This
case is integrable and one can see no chaotic trajectories on the map. To the contrary,
there are chaotic regions on maps (b) and (c). The more the rod differs from symmetric,
the more chaotic the map appears. Also, a complex structure of the phase space can be
observed in Fig. 2 {b). There exist all kinds of solutions: periodic, quasiperiodic and
chaotic.

The map {d) is presented for a lower energy level e = 3. and for different p = 5. and
! = 0. The rod 1s close to symmetrical: ¢ = 1.1. However, there is a strong chaoticity
of the map along with some islands of regular solutions. Further decrease in the energy
implies an increase of the chaotic region. There exist such values of the parameters when
no regular solutions were found.
5. Concluding Remarks

The results obtained may help in better understanding complexity of spatial confi-
gurations formed by long biopolymer molecules: DNAs, RNAs and proteins. ln nature
and technics, there are also many other long coiled structures which demonstrate similar
properties and whose essential features may be approximately described by the same
equations.
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THE ANALYSIS OF CHAQOTIC BEHAVIOUR USING
FRACTAL AND WAVELET THEORY

W.J. Staszewski and K. Worden
Department of Mechanical and Process Engineering
University of Sheffield
Mappin Street, Sheflield S1 3JD, UK

Abstract: The continuous and orthogonal wavelet transform 1s used to analyse
chaotic behaviour. The analysis involves signal decomposition into the scale
components. Statistical measures of similarity are applied to study chaotic
vibration. The Ueda oscillator is used as an example.

1. Introduction

Methods of diagnosing chaos can be divided in two major groups: non-parametric
techniques (power spectra, Lyapunov exponents, correlation dimensions, Poincare sec-
tions, etc.) and prediction-based techniques (based on prediction errors). Variance and
correfation analysis only provide statistical information about the system. This can be
dynamically inappropriate and further analysis of nonlinear dynamics is necessary.

Recent years have shown increased interest in wavelet-based fractal analysis {Wornell
1996]. Statistical analysis, when combined with wavelets, can provide useful information
about chaos. One of the forms of fractal geometry arises from statistical scaling behaviour
of physical systemns. This can be studied using the variances and correlations of wavelet

coeflicients.

2. Wavelet Theory

For the sake of completeness a brief description of the relevant wavelet theory is
given. More detailed analysis can be found in {Chui 1992]. Let L*(R) denote the space
of measurable square-integrable functions z(t¢) defined on = (—o0; +00) which represent
analog signals with finite energy. The wavelet transform is 2 linear transformation on
this space that decomposes a given function z(¢) into a superposition of the elementary

functions g, 4(t) derived from an analysing wavelet g(t) by scaling and translation i.e.,

) (1)
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where # denotes complex conjugation, b is a translation parameter indicating the local-
ity and a 1s a dilation or scale parameter. The continuous Grossman-Morlet wavelet

transform 1s defined as,

Wita, )= == [ stoy (0] @ (2)

For the function g(t) to qualify as an analysing wavelet, i must satisfy appropriate
admissibility conditions [Chui 1892]. In this paper, the Morlet wavelet function is used,
defined by,

glt) = el (3)

Using a binary dilation and a dyadic translation, the orthogonal wavelet transform
can be defined. A function g(¢) is called an orthogonal wavelet if the family gn x(t) =
Emng(th — k) forms an orthonormal basis of L*(R), that is < gm k, Gnyt >= mn - iy, for
all integer m,n, k, I, where < | > is the usual inner product and 4., is the Kronecker
symbol.

In the following, the wavelets of Daubechies [Chui 1992] are used in the orthogonal

wavelet decomposition,

z(t) = )27 gmk(t) (4)
m,k
where the 27" are the coefficients. The orthonormal basis is obtained using Mallat’s pyra-

mid algorithm [Meyer 1663,

3. Wavelels and Fractal Dynamics
In order to show the importance of wavelet-based fractal analysis, consider a Gaussian
noise process z(t). The log variance of the wavelet coeficients of Gaussian noise 1s of the

order of 2™ times a constant. In fact, [Wornell 1996]

var ! = ¢*2™" Z g(27™t —n)? (3)

where o is a common standard deviation, that of the noise. Eg. (3) shows that the
variances of the wavelet coefficients obey a geometric progression consistent with the

structure of statistically self-sirmnilar processes. In genera!,

var z.' = gy~ (RH+Lm (6)
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where H 1s the self-similarity parameter; # = —1/2 for Gaussian noise. [t can be shown
that there i1s strong relationship between the self-similarity parameter H and the fractal
dimension D of the signal z(¢) considered as a curve in R, In fact, if 0 < H < 1, then
D =2 — H [Wornell, 1996]. [t can further be shown that if the noise is a 1/{ process, ie.

has a spectrum of the form,

2

Se(w) = = (7)

K

that v = 2H + 1.

The normalised wavelet correlation can be defined as [Wornell, 1996],

™,
"mom E [271 T

T
i \/(vm e Y var z7-,)

(8)

and, for a given value of scale m, the normalised wavelet correlation is a function of lag
[ only. Wavelet coeflicients of Gaussian noise are uncorrelated and form an independent

family of Gaussian random variables.

Poincare Map
2.0 T ‘ T I T [ T T

1.0 -

0.0 -

Velocity

-1.0

-2.5 -1.5 -0.5 05 1.5
Displacement

Figure 1. Poincare map for Ueda systern.

4. Simulation Results

Irn order to show the usefulness of the wavelet transform for the study of chaotic

behaviour, the Ueda variant of the Duffing oscillator [Ueda 1985],

¥+ 0.1y + y° = 11.5sin(t) (9)

is analysed using the continuous and crthogonal wavelet transform. Fig. 1 shows the

Poincare map of simulated data from the Ueda oscillator; the chaotic nature of the system

236



can be clearly observed. Fig. 2 gives the phase of the continuous wavelet transform of the
data y(t). The random convergence points of the constant phase lines can be observed in
the transform from Gaussian white noise (Fig. 2a) The chaotic behaviour of the Ueda
oscillator produces a transform with a higher degree of order in the distribution of the

convergence points.

ta) {b)

0 20 40 60 80 100120140 0 20 40 &0 80 100 120140

Figure 2. Wavelet phase for (a) Gaussian noise (b} Ueda system. Vertical axis 1s log

scale, horizontal axis is time.

Fig. 3a shows the values of variance of the orthogonal wavelet transform of Gaussian
white noise and the Ueda oscillator plotted on a semi-logarithmicscale. The self-similarity
parameter H = —1/2 for the Gaussian white noise can be obtained from the slope of a
straight line fitted to the variances. The Ueda oscillator shows different behaviour, the
averaged {over [) values of the the wavelet correlation functions are presented in Fig. b3.
It can be seen that the wavelet coefficients are uncorrelated for the small scale parameters
in the case of the Gaussian white noise. The correlation among wavelet coefhicients in

the case of Ueda oscillater is small only for level 7n = 7 which corresponds to the driving

frequency.

5. Conclusions
The wavelet transforms, continuous and orthogonal, show promise as a means of
estimating the degree of self-similarity in chaotic time-series and thus providing a char-

acterisation The fractal dimension of the graph z(t) will follow directly 1f 0 < A < 1.
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Abstract: It is shown analytically and numerically that a single-mode bistable optical
svstem, under a modulated incident field, may undergo a chaotical behavior of Smale
horseshoe type. 'The threshold for the onset of chaos together with the bifurcating curves
for nonlinear rescnances are derived semi-analytically, by means of Melntkov method, and
numerically checked. We also demonstrate the existence of multistable attractors, namely,
two time-periodic states and a strange attractor are shown to coexist for a certain range

of parameters.

1 .Introduction

The response of nonlinear dynamical svstems to the external periodic forcing may exhibit
a large variety of complex behavior, including phase-locked phenomena, quasiperiodicity
and clhiaos. One of these problems is that of optical bistability (OB) which has become one
of the most active fields in nonlinear optics because of the potential applications of the op-
tical bistable devices. Although, in general, these complexe systems have high dimentional
phase space, their chaotic attractors are often low dimentional, and reduced dynamical
models. still provide a good theoretical description of experimental observations(1]. In this
paper, we show that optical bistable systems may exhibit Smale horseshoes chaos and de-
rive the analvtical expressions for the threshold of the onset of chaos, and bifurcating

curves for nonlinear resonances, by means of Melnikov method.



2 A Reduced Model System

In order to keep analvsis as simple as possible, we consider the good cavitv case where

the transmitted field is given by([2}

_dF 20 202
=y Pl ——————— i —————— ||
e Y T1- AT+ (PP l(‘g 1+A'—’+|FFN (1)

For the sake of simplicity, let us consider conditions of purely dispersive OB[?2] :
A1, A3 1 and 83 A

i
In that case it is convenient to rescal F, y, and ¢ by setting 7 = x6t, X = (z£-)*F, and

3Ch

¥ = (555)7¥. Thus. we write Eq.{1) as a first order system :
dIl 1 (Sg .
—-) = + l———| - — 2
ar -~ TR ( a~ _-XP) ‘ lr‘ (‘51 e |X|2j +Asmml .
dIQ 1 52
o - —E (e —2
dr o ( a+ |X|zj £ ( ' a+ |X|"’) (3)

where a = %ﬁ be = % , and &, = % The amplitude modulation was written in the

form y = yg+ £ AsinwT where ¢ is a small parameter and the field vaniable FF =z, + 1z5.
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;)/
54 ;/
x)
— 1 -
-1 5 ' = 34 \‘ |//
L] e
2] w
1 -
J 0- - . :
1.5 Q.0 Q2 0.« .6 cE 1.C V2 v
Fig. 1. The ph ‘ w
‘g 1. The phase space of whe unperturoed 17 = O) svstemi 13: wak o = 03, and Fig. 2. The mntual cunve for the onset of chaos  Diserews sunibuls ruresgond to
yr =11 Note the hetsrarhinie connecnion

uumencal thisbinlds of chars For companson and elams we have va) (he giher

PATSIIFIITS L0 @ =4 3 0yf = i = 003 yy = 01, for 2l Rgures

3 Temporal Chaos and Nonlinear Resonances

We return now to the svstem(2-3) and set ¢ = 0, the unperturbed Hamiltonian reads :

1 1
Hz), o) = 5(3:12 + 152) + zoyp — §1n(a +1,° + 12%) + cste (4),

and it consututes a one parameter family of level curves in the phase plan (z,,z,). Fig-

ure(1l) displavs the phase plan with the heteroclinic connection. via a saddle point, of
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the two homoclinic loops. To evaluate the threshold of chaos, we intruduce Melnikov
function M (tg) for the homoclinic loops Xy, = (214, 724) (setting h for both inner and

outer loops) :

+oo [ o 1 -2
;\.I(TD) = "‘[_m 01 ‘?‘m YoZan + 1- m I‘\hi- dr

+oo 1
A COS&J’T@/ 1 - m
—ta h

-|..

) Ty p SinwT dT,

where the homoclinic loops have their time dependence determined by Eq.(4). Figure(2)
shows the critical curve for the onset of chaos, which separates the parameter plan (4, w)
in two regions. Namely, the upper region where there exist, in the phase space, sets of
chaotic orbits of Smale horseshoe tvpe[3]. In the lower region no intersection can occur at
all and the whole svstem is not chaotic. We have not shown the critical curve for the outer
homoclinic loop which is similar to that of the inner one translated towards high values of
the amplitude field A. Numerical thresholds for different frequencies are also illustrated in
the figure, which are in a very goog agreement with the analytical predictions. We have
numerically integrated the system(2-3) and the only route to chaos we have observed is
the classical periode doubling route as displayved in the figure (3), for a tvpical value of

the external frequency.

Q.30 T x1 6-[
.20 - o /
1 '/.
.10 \ /
. =3 /
> | ./
0.00 { /
- - ; ! -
RV | LI
- . I \ -
-0110 e " . ' \ . 7
o . S
1 L . o - >
\\‘ N - L}
-0.2¢ T ‘.
.,
1
i
-0.30
A
—0.40 ~+—— - i : - L T
165 1.70 175 180 1.85 195 S L - N
o
Fig. 3 Biurcanun Jdazram of 1aa 1egl part rpfor - =03 Fig. 4. Cuwmparieon hriween thresholds for chaos and subharmons ochits to rust

texpaeiivel Melmkoy predicnion of chaos (selid hine) cocresponaing numencal
threntiolds tsquares B Melnikov threshelds for subharmonic orbites to
“ust icruases i and coresponding oumernical thresholds finangles it

Nhte (he corusience of Ume-periodic siates and chaos

241



0.0 A

-l - -0.2

-0.4 T T T T T T T T T
-05-04-03-02~0.100 Q1 02 03 04 05

-ZE -

Fig. 5. Cocxmstence of 4 stsange ai¢racior and two ame-penedic staces m Poiacaré

section. where points are macked gL phase 0 = Dand 4 = | §77 of lower um#-penodic siate. Black squares denote the basin of the vpper ane

and dow denote the basin of the surapge atiracior

We have observed that the Smale horseshoe chaos may be related to phase-locked
phenomena. Again we have evaluated Melnikov function for these resonant orbits and
the agreemant is satisfactory. However, an important feature is the coexistence between
the strange attractor and time-periodic states which may also be explained by Melnikov
analvsis. Indeed, figure(4) shows the critical value of the amplitude modulation necessary
for subharmonic orbits to exist virsus frequency. Note that, for low frequencies (left on the
figure) the existence of subharmonics coincides with the chaotical region. This is exactely
what we have observed. Figure(5) illustrates a typical situation where two different time-
periodic states coexist with a strange attractor. To get more insight about the coexistence
of these states, we have shown in figure(6) the complexity of the carresponding attracting

basins.
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SELF-ORGANIZATION AND NONLINEAR DYNAMICS OF
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Abstract: We proceed our research on the physical modeling of the conformational
transitions in the nucleic acid molecule during the water desorption-resorption cycle. The
nucleic acid-water system 1s considered as an open system and simulated with a trigger
model. The analysis of kinetic equations and the analysis based on the nonlinear mas-
ter equations show the non-trivial bifurcation behavior of the system which leads to the
multistability. Besides, autowave processes, such as travehng fronts of a new conforma-
tion (trigger waves), oscillations are possible in the corresponding distributed parameter
system, if the diffusion of the water molecules is taken into accounti. The problem of seli-
organization in the nucleic acid-water system is of great importance for revealing physical
mechanisms of the functioning of nucleic acids and for many specific practical fields.

1. Introduction

In macromolecular systems, such as nucleic acids {NA), self-organization and non-
hnear dynamic effects draw the attention of both the expenmeniators and theoresists,
(review of Volkov [1992]).

Conformational changes of NA are tightly connected to the rebuilding of its hydration
shell [Maleyev et. al, 1993]. Taking into account the hydration shell of the NA and
the possibility of the water content changing we are {orced to consider the water+NA
as an open system. In the present paper ;a. theoretical model taking into account the
interdependence of hydration and NA conformation transition processes is offered.

2. The Model

We consider a finite space, which contains the nucleic acid sample and 18 in contact
with a bath of water or water vapor with "concentration” of water molecules equals X,. A
biopolymer molecule is simulated by the sequence of N identical units with n binding sites
for water molecules. Every unit can reversibly transit between two conformational states

(e.g. A- and B-form). Both the water molecule sorptior and the transition of biopolymer
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units are assumed to be cooperative processes, The set of the pariial differential equations

describes the processes of sorption and unit transitions [Tolstorukov et. al]:

2 = kX, (1- (14 % exp(AF, - £8(r) - 71X () X) + DGF )
Y=k (1- (1 +exp(AF, +2u(1—8(r — a) ~ 0(r +a)) — fnX(r))) 6(r))

where 8- fraction of units in the B-form, X - occupied binding site fraction. Parameters
of the Set (1) depend on the nature of the biopolymer conmdered.

3.Autowave Processes and Critical Fluctuations in the System

The treatment of the spaiially independent model (with 4u<4, y>4, §>0) has been
done [Tolstorukov et. al., 1996]. The Set {1) has two steady, in respect to the small
fluctuations, (points 1, 3 in Fig. 1) and one unsteady {point 3 in Fig. 1) stationary
homogeneous solutions in some interval of the values of X,.. So, there will be the hysteresis
of the equiibrium values of 4 and X .

The separation of the variables on "fast” (X) and "slow” (#) can be used to describe
the inhomogeneous solutions of the Set (1). The inhomogeneous Osolutions appears to
be only in the multistable interval and are described, in the "fast” phase, by the two
steady traveling fronts switching the system from one steady branch of N-shaped isocline,
Fig. 1, to the other one. The velocity of these waves is determined as eigenvalue of the
corresponding boundary problem in the form V = V(8) [Tolstorukov ef. al].

If equilibnium value of 6.,:(f.43), Fig. 1, is greater (less) than 6. (V(6.) = 0) the
edges of the fluctuation, occurred in the initially homogeneous system, move in opposite
directions, Fig. 3b, and the system is being switched to the other homogeneous state.
If the value of ., (fe,s) is less (greater) than 6, the edges of the fluctuation move one
toward another, Fig. 3a, and fluctuation disappears for the finite time. However, very
large fluctvations can trigger the system before reaching the value of ., = 6.. In this case
fluctuation initially shrinks and then growing occupies whole volume of the system, Fig.
3a-3c, [Tolstorukov et. al.]. The size of these fluctuations can be estimated {from following
mequality: L > 6V(6,.,)7(X*, X;5) where r(X*, Xs) determines the time of variation of
the variable in the "slow” phase along steady branches of N-shaped null-1soclhine.

The trigger switching occurs only if the mze of initial fluctuation is greater than some
critical value [Prigogine et. aol, 1975]. The behavior of any small element of biopolymer

with N umts, coupled by diffusion of bound water molecules with other elements of
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biopolymer, 1s described by a set of non linear master equations with stationary solutions
(in the approximation P(X,t} = Px(X) - P;(9)) in the form [Tolstorukov ef. al, 1996]:
Px = Px(X,(X) ,(8),D); Po = Ps(8,(X),(0)), where D is the function of the fluctuation
size in the form D = f(T) - S5/V = F(N), here V and S are the volume and the surface
square of considered biopolymer element. The distribution Fp(#) has always a single
maximum, while the disiribution P.(X) has two maxima situated near the left and the
right branches of N-shaped null-isocline, Fig. 1. The ratio of the maxima heights is
in dependence on the value of parameter D and therefore on value of the considered
biopolymer element. So, one can estimate the value of cnitical fluctuation N, switching

the system {rom one steady state to the other one. It appears that N, is finite only if:

X 1—=z
dz
./Xl to -)%.‘:exp (AF, — B{8) — vz) >0 (2)

From Eq. (2) (X.). can be determined. Thus, the system has the metastable states,
i.e., when the fluctnation is greater than N, it switches the system from one steady state
to the other one.

The model suggested describes the real NA-water system. The tngger systems of type,
described in the paper are not studied enough, but they demonstrate complex behavior
and could be applied to many practical problems. It 15 not hard to think very interesting
biological applications of hysteresis and trigger waves in the DNA-water system.
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Abstract: Results concerning the fractal properties of isovalue sur-
faces of a passive, diffusive scalar field being advected by a three-
dimensional, steady flow exhibiting chaotic streamlines are pre-
sented. For all Péclet numbers and flow fields studied, the mixing
efficiency is shown to be related to the extent of the so-called advec-
tive zone for which the capacity D is optimal in the sense of mixing
(D = 3). For global chaos, the effective mixing time can be related to
the diffusive cut-ofl scale which bounds this zone. For partial chaos,
this cut-off corresponds to the size of the regular region which limits

asymptotically the mixing.

1 Introduction

In terms of fluid mechanics, chaotic advection which means passive scalar transport by
a flow exhibiting chaotic trajectories is found to provide an efficient process of mixing
[Aref. 1984, Ottino, 1989].

The aim of this stndy is to determine some fractal properties of isovalue surfaces of a
scalar field being advected by a three-dimensional, steady velocity field consisting of two
two-dimensional recirculating flows with perpendicular axes of rotation (Fig. 1). defined

bv
U = —U, sin(rwz)cos(7z )€, — 2 U, sin(my) cos(2rz)E,
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Figure 1: Sketch of the flow field.

+ [Uy cos(mz)sin(mz) + U, cos(my) sin(27 z)] €;, (1)
where the amplitudes U} and U; of each contribution are related by
o=
U+ 143 U3 =1, (2)

in order to perform comparisons for comparable energy costs. The main advantage of
this flow is that it allows all possible topologies of the streamlines depending on the
parameter U;. The capacity D of isoscalar surfaces (obtained by numerical simulations

of the advection-diffusion equation [Toussaint et al., 1995]), defined by

=% T(1/r) (3)

where N({r) is the number of cubic boxes of size r necessary to cover the surface. is
studied by a box-counting method for different amplitudes U/} of the flow and different

Péclet numbers.

2 Results

Figure 2 shows a typical result for the evolution of In{/N(r)} for global chaos: it appears
that for large scales (great values of r), N(r) behaves like r=7, which indicates a capacity
D equal to 3; the evolution changes progressively so as to behave like =2 for small r,
indicating a capacity of 2. Such a behaviour 1s due to the relative importance of the

mechanisms of advection and of diffusion at the considered scale. Thus, for great values
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Figure 2: Typical evolution of In(N(r)) versus In(1/r) for global chaos, here for the
amplitude 7, = 0.25 of the flow and the Péclet number Pe = 10°.

of r, in the so-called advective zone, the surface is advected along the streamlines, it
is highly stretched and folded by chaotic advection and thus has a tendency to fill Lhe
entire domain. In contrast, for small values of v, the value of D reflects the fact that the
surface has been smoothed by the diffusion. The main feature is that one finds a similar
behaviour of N(r) for all the globally chaotic flows and the Péclet numbers considered:
the difference between two configurations is due to the extent of the advective zone which
we characterise by a diffusive cut-off scale rp defined by the intersection of straight lines
of s]c-)pes 2 and 3.

For globally chaotic flows, the scale rp is found to decrease when the Péclet num-
ber increases, because of the fact that the mixing occurs at scales which are decreasing
when the Péclet number increases. In the same way, the value of rp decreases when the
amplitude Uy increases, reflecting the fact that the mixing is more efficient for a great
amplitude U/;. The value of rp gives thus quite a satisfactory estimate of the mixing time.

In the case of partial chaos the behaviour of In(N(r)) varies in time (Fig. 3). For times
greater than 120, the cut-off scale rp is approximately equal to 0.15 and the size of the
regular region can be estimated as 0.17: this allows us to conclude again that the mixing
is governed asymptotically by a diffusion mechanism at the scale of the regular region

[Toussaint et al., 1993]. For times smaller than 100, the cut-off does not make sense since
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the asymptotic form of the surface is not attained.
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Abstract

This paper proposes an observer based approach to synthesis of chaotically
synchronized systems. We consider a linear system with nonlinear feedback which
exhibits chaos. Using an observer for the linear system, we design chaotically
synchronized systems. Moreover, we introduce a new concept of synchronization
called (M, ¢)-synchronization. We also propose a synthesis method for {M, ¢)-
synchronized systems by modifying the observer based method.

1. Introduction

Chaotic synchronization has been observed in varicus fields. Fujisaka and Ya-
madall1983] showed criterion of chaotic synchronization using Lyapunov exponents.
Since Pecora and Carroll[1990) proposed a synthesis method for chaotically synchro-
nized systems, many methods have been proposed, and its applications in chaos com-
munication are very fascinating studies[Pecora, 1993].

Synchrenization systems are classified into mutual synchronization and master-siave
synchronization according to coupling configuration. The former is a system with bidi-
rectional coupling, and the latter is that with unidirectional coupling. In the Pecora-
Carrol’'s method, master-stave synchronization 1s achieved if the conditional Lyapunov
exponent is negative. But in general. the exponent can not be obtained in closed form
so that careful experiments are required for checking the achievement of synchroniza-
tion. Wu and Chua[l993] proposed a method for master-slave synchronization. Their
method is very simnple but the condition that a linear part of a synchronized system is
stable is needed. Wu and Chua[1994] extend it by using Lyapunov functions. Moreover,
Lai and Grebogi[1993] apply the OGY method to control of chaotic synchronization.

This paper proposes a synthesis method of chaotically synchronized systems apply-
ing observers which is commonly vsed in the control engineering field. We consider
a linear system with nonlinear feedback which exhibits chaos. We can construct an
observer for the linear system if it is detectable. It is shown that coupled systems
with mutual svnchronization and master-slave synchronization are synthesized by the
observer. So the convergence to synchronized steady states are tuned by selecting an
observer gain. Moreover, we introduce a new concept of svnchronization called (M, ¢)-
synchronization, and propose a synthesis method of {M, ¢)-svnchronized systems.

This paper deals with discrele-time systems. But the same discussion also holds for
continucus-time systems.
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2. Nonlinear Feedback Systems and Observers
We consider a linear system & with nonlinear {eedback described by

z(k+1) = Awx(k)+ Bu(k)
y(k) = Celk) 0
u(k) = flz(k))

where z(k) € R, y(k) € R® and u(k) € R™ are the state, the observed output and
the input of the system at time k € Z respectively, and f : R® — R™ is a nonlinear
function. We assurne that the nonlinear feedback systemn is chaotic. We apply observer
theory[Wonham, 1985] to the linear system S. Then a full-order observer for S is
described by

z(k+1)={(A+ HC)z(k)+ Bu(k) — Hy(k) (2)

where z(k) is the state of the observer, and H is an n x { matrix such that the absolute
values of all eigenvalues of A+ HC areless than one. Note that such a matrix H always
exists if and only if the pair (C, A) is detectable, that is, for any unstable eigenvalue A
of the matrix A,

(3)

rank[/\]-Aw =n

C

Moreover, all eigenvalues of A + HC can be assigned arbitrarily if and only if (O, A)
1s observable, that i1s, Eq. (3) holds for any eigenvalue A of A.

If A+ HC is stable, the state z(k) becomes an estimated value of the state x{k),
that is, for any input u(k)

klim | z(k)—=z(k) ||=0
Thus, the convergence condition is independent of the nonlinear feedback f at all.

3. Chaotic Synchronization

In this section, It is shown that, based on the observer, we can construct various
tvpes of chaotically synchronized systems such as master-slave svnchronization and
mutual synchronization, and we can specify any convergence rate to the synchronized
steady state by selection of H if (C, A) is observable. If we select H such that all
eigenvalues of A+ H C are 0, the states (%) and z(k) become equal in at mosi n times.
Such a observer is called a deadbeal observer.
3.1. Master-slave synchronization

We consider the case that all states are used for coupling. We have C = I and
y(k) = z(k). From Eqgs. (1) and (2), we can construct the following systems S; and S,
coupled in master-slave configuration.

Il

S, wlk+1) = Az(k)+ Bf(z(k))
Sy zlk+1) = (A+ H)z(k) + Bfle(k)) - Hz(k)

where z(k)'s and =(k)'s are the states of S, and S,, respectively. The system S; and
S, are the master and the slave system respectively, and (k) 1s also a coupling signal.

Moreover, in the case that the ahsolute values of all eigenvalues of A are less than
one, we can set A = { so that the svstem with H = 0 is equivalent to a chaotically



synchronized system obtained by the Wu and Chua’s method. So the proposed method
is its generalization.
We consider a chaotic output-feedback system described by

z(k +1) = Az(k) + Bf(y(k))

where f: Rf — R™. Then, based on the above system, we can construct the following
system:

) {a:(l;-}-l) = Az(k)+ Bf(y(k))
’ y(k) = Ce(k)

S¢  z(k+1) = (A+ HCO)z(k) + Bfy(k)) — Hy(k)

where y(k) is a coupling signal. Obviously, the systems S3 and &, are synchronized.
3.2. Mutual synchronization

Using w(k) and (k) as coupling signals, we can construct the following coupled
systems S; and Sg:

z(k+1) = Az(k)+ Bulk)
5s { y(k) = Ca(k)
< {Z(AH) = (A+ HC)z(k) + Bu(k) — HCy(k)
° u(k) = flz(k)

where z(k) and z(k) are the states of Sg and S, and y(k)(resp. u(k)) is a coupling
signal from Ss to Sg(resp. from Sg to Ss).

4. A Generalization of Chaotic Synchronization
Synchronization of periodic behaviors with different phases have been reported.
In chaotic synchronization, the concept of phase can not be delined because of its
aperiodicity. So we propose a new type of synchronization based on linear dependence.
We consider two systems whose states are denoted by v,{(k)(1 = 1,2). We say that they
are (M, c)-synchronized if
vy (k) = Muv(k) = ¢ (4)

where M 1s a square matrix and ¢ is a constant vector. If ¢ = 0, then, we say simplv
that they are A -synchronized. As a special case, let M =7 and ¢ = 0, and we have

vi(k) — v k) =0

and this phenomenon is called in-phase syvnchronization or simply synchronization.
When M = —J and ¢ = 0, it is called anti-phase svnchronization. So the concept
of (M, e)-synchronization is a generalization of synchronization and applied to chaotic
behaviors.

We propose a synthesis method for (44, c¢)-svnchronized svstems by miodifying the
observer based method. We assume that Af is nonsingular, and its inverse matrix M ™!
exists. We consider the following linear system:

wk+1)= M YA+ HCMw(k)+ M7 Blulk)+d) — M Hy(k) (3)



where d is a constant vector. Then we have
z(k+1)—- Mw(k+1)= (44 HC)(z(k) — Mw(k)) - Bd
By selecting H such that A 4+ HC is stable, we have
kl'z_n; ((k)— Mw(k))=~(I—-A-HC)'Bd (6)

Thus, we can construct (M, e¢)-svnchronized systems based on Eq. (1) and (3). For
example, we consider the following systern S;.

s { wlk+ 1) M=HA+ HOWMw(k) + M Blu(k) + d) - M Hy(k)
' u(k) = [lw(k))

Then the mutually coupled syvstems &; and S; are (A4, ¢)-synchronized where ¢ =
—(I — A— HC) 'Bd. If Ais stable, we can select H = 0, and the resulting system
becomes an (M, ¢)-synchronized system in the Wu and Chua’s configuration.

As an another example, we consider the following system Sg:

Se w(k+1)=M YA+ HC)Mw(k)+ M 'B(f(y(k))+d) — M~ Hy(k)

Then, the systems S; and Sg are coupled in master-slave configuration, and {A{, ¢)-
synchronized.

5. Conclusions

This paper proposed an observer based synthesis method for chaotically synchro-
nized systems, and introduced a concept of (M, ¢)-synchronization. It is noted that
the proposed idea is applicable for a class of nonlinear systems for which nonlinear
observers exists.

The (M, ¢)-synchronization can be applied to A{-ary chaotic phase shift keving.
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STUDY OF THE SENSITIVE DEPENDENCE ON INITIAL
CONDITIONS OF PERIODIC ORBITS OF THE FORCED
PENDULUM USING NONSMOOTH TRANSFORMATIONS

Valery N. Pilipchuk Alexapder F. Vakakds and M.AF. Azeez
Deparunent of Applied Mathemancs Department of Mechanical and Industrial Engineering
State Chemical and Techaological University University of Illinois

Gagarin Sur. 8, Dniepropetrovsk 320003, Ukraine 1206 W. Green Sweet, Urbana, IL 61801, USA

Abstract: We employ nonsmooth transformations to analytically construct [amilies of
strongly nonlinear periodic solutions of the harmonically forced nonlinear pendulum. Each
family is parametnzed by the peniod of oscillation, and the solutions are based on piecewise
constant generating sotutions. By examining the behavior of the constructled solutions [or
large periods, we [ind that the periodic orbits develop sensitive dependence on initial

conditions.

1. Introduction
We study strongly nonlinear periodic motions of the [orced, undamped pendulum:

X(t) + sinx = F coswt + G sinwt (1)
In [Wiggins, 1989].analytical methodologies for proving the existence of transverse heteroclinic
intersections in the weakly forced system (1) are discussed. The exislence of arbitrarily large
numbers of nonlinear subharmonic orbits in (1) has been analytcally proved {Veerman and
Holmes, 1985]. We use the method of nonsmooth temporal transformations (NSTTs) [Pilipchuk,
1985; Vakakis et al., 1996], to study the sensitive dependence on initial conditions of strongly
nonlinear subharmonic motions of (1). The analysis is carried out in neighborhoods of the
heteroclinic orbits of the unforced system f{or O(1) forcing amplitudes F and G.

2. Analysis
The variable 1 is replaced by the [ollowing two nonsmoath vanables (cf. Fig. 1):
() = (2/n) arcsinfsin(x/2)], e =t(1), e2(=1, tER (2)
A penodic response x=x(t) of (1) with normalized period T=4 can be expressed as:
x{()=x(te)=X(t)+e Y1) (3)



where X(1) = (V2)[x(T)+x(2-1}], Y (T) = (U2}[x(0)-x(2-1}}, x(t.e} = x(z(t),e(t)). The denvatives

x(t) and '>'((t) can be expressed as smooth functions of X(t) and Y (1),

X)) = Y'(1) + eX(1), X(O)=X"(1)+eY"(T) . (4)
provided that the following smoothness (boundary) conditions are imposed:
Y0esy =0 and  Xlems; =0 (5)
Any luncton {(x(t)) of the penodic Tunction x(1) can be similarly transformed as:
[(x)=(X+eY)=Rg+1Ire (6)

where Ry = (U/2)[{(X4+Y)+{(X-Y)] and I = (I/2){[(X+Y) - [(X-Y)] are termed the R- and I-
components of {(x), respectively.
Assuming that x=x(t) is a penodic solution of (1) of period T=4a, using (2-6), and setting the
R- and [-components of the resulting equation separately equal to zero, we obtain the following
two coupled nonlinear boundary value problems (NBVPs) governing X(t) and Y (1):
Y+ (a2/2) [sin(X4Y) - sin(X-Y)] = Fa2cos(QT) . Ylizai =0 7
X'+ (a2/2) [sin(X+Y) + sin(X-Y)] = Ga2sin(1) , K'hzsy =0 (8)
where -1 = © = +1 (cf. Fig. 1), and the resonance condition wa = 4 = (1+2K)(2), k =
0,1,2,...,1s1mposed to indicate an integral relation between the [requency of the excitation and the
frequency of the periodic response. Hence, the problem of computing the periodic responses of (1)
1s converted to the problem of solving the NBVPs (7-8) in the closed interval -1 < v < +1.
Analytic solutions of (7-8) in near-separatrix regimes of (1) are constructed as,
Y@ =Yo(t)+ Y (1) + Ya(r)+ Y3(1) +... , X(1) = Xg(v) + Xy(1) + Xo(T) + Xa(1) +... ()
and the quarler-period of the motion 1s expressed as,
a?=ag? (1-z;-z2- .00, 0@ >> Ozis1) ,1=12,... (10)
where ap 1s the penod of an ‘unperturbed' penodic orbit of (1). The O(1) terms in (9) are
compuled as:
Yo"=0=Yp(t)=+xr, Xp"'=0=Xp(t)=0, -l=t=<+l (11)
The [irst order soluticns are computed by solving the linear BVPs,
V(" a2 Yy = Fag? cos(Qq), Yileme1 = -7
X1* - ag? X1 = G ag? sin(S1) , X)'brea1 = 0 (12)
with solutions given by:
Y 1(t) = - wcosh{agT) / cosh{ag) - F cos(T) / (1+my2) . Xj(v) = - Gsin(Q ) / (1+my2) (13)
where mi? = @, 2/ap?. Next, we find Yo(t) = X2(t) = z; = 0, and the third crder BVPs:
Y3" - a9 Y3 = 7 [ag? Ay coshiagr) - % By cos(Sxm)] -
(ap2i6) [A| cosh(agt) + By cos(€1)] [ 3 €12 sin2(S1) + (A cosh(agT) + By cos(Qyt))? ] (14)
Ka" - ap? X3 = - 70 @2 Cy sin? () -
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(a02/6) C1 sin2(Sx1) [ C)2 sin?(T) + 3 (A} cosh(agt) + By cos(Qx))? ] (15)
with Y3lzeeq = 0 and X3'ly2s1 = 0, and A} = -wicosh(ap), By = -Fi(1+mi2), C1 = -G/(1+mi2).
The sclutions of the BVPs (14-15) were computed in [Pilipchuck and Vakakis, 1996). The
perlurbation analysis can be carried out to higher orders of approximation using symbolic algebra.

Summarizing, the periodic motions of the ferced pendulum are approximated as fcllows,

x(1) = X(1) + e Y(1) = [ X1(1) + X3(0) +.. ] + e [+ Y (1) + Y3(0) +...] (16)
and the quarter-period of the motion by a? = ag?[l - z; - ...]-1. The family of perodic solutions
(16)1s parametrized by the 'unperturbed’ pericd ag. The convergence properties of the senes (16)
are discussed in (Pilipchuck etal., 1996]. At v = =1, the solutions develop a singularity
(discontinuity in slope), which, however, is eliminated by adding higher order terms in the seres.
In Figure 2 we present the periodic with w=1, F=1, G=10, k=5, a=17.2788 and 2p=7.38509.

Setting G=0, keeping the amplitude and frequency of the forcing function ccnstant, and
increasing the period a = @ /w = (142K)n/(2w) by increasing k, the peried ap also assumes
arbitrarily large values. For ag>>1, my = Qu/ag — (t-1)12, where p=1 is the real sclution of (p-
D (p2-F2/4)-0?12=0, and,

X() ~ [ 7 - Feos[Qt(a)] / (1+my2) - & coshfagt(t/a)] / cosh(ag)] e(t/a) as ag—= = (17)

a?=apg?(l-72- .11, 22~F2/(4u?) as ag — (18)

The leading approximations dominate over higher-order ones for large perieds. Fer0 < t/a < 1,

X(1) ~7 - (F/p) coswt - 2m e @0 cosh(l-z0) 2t , O=t=a, as a,ag—® (19
and we note that as a, ag — ©, the response is composed of an oscillatory term (the ‘cuter
solution’), and an exponentially small noncscillatory one ('inner solution’). Hence, the sclutions
are composed of Jocalized periodic oscillations close to the unperturbed saddles (x,x) = (zm,0),
and of 'jJumps’ in the time-scale (¢/T) in the phase plane between the two neighborhoods of the
unperturbed saddles. Asag — o the projections of the periodic orbits in the plane (x,x) sensitive
dependence on initial conditions develops. In Figure 3 penodic orbits withw =1, F=1, G =0 are
shown. The three orbits possess exponentially close initial conditions but eventually become O(1)
apart. The orbits with k = 4 and 6 are nearly identical in the projection of the phase space, and the
orbit with k = 5 nearly coincides with the other two close to (+m,0) but is distinct in the region of
the 'Inner’ solutions.
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DYNAMICS OF MULTIBODY SYSTEMS WITH
UNILATERAL CONSTRAINTS

M. Wasle, F. Pleifler
Lehrstuhl B fir Mechanik, Technische Universitit Miinchen, 80290 Miinchen, GERMANY

Abstract: Mechanical systems containing couplings with dry friction are modelled as multi-
body systems with unilateral constraints. The description of the system dynamics is
structure-varying. In the following, the differential-algebraic equations are transformed
into a resolvable mathematical form and we use the homotopy method for the solution of

the three-dimensional contact problem.

1. Introduction

Unilateral constraints can have three different states: Separation, sticking and sliding. For
a mechanical system with n unilateral constraints, the number of possible combinations
of the states of constraints is 3". But only one of these combinations is compatible with

all kinematic and kinetic conditions of the system.

2. Contact Kinematics

A set of generalized coordinates ¢ € IR’ is used for the mathematical description of
the dvnamics of the unconstrained system with f degrees of freedom. In order to take
into account additional unilateral constraints., we have to derive some kinematic contact
condrtions. The possible motion of each body in a multibody system, which is compatible
to the kinematic conditions, 1s restricted by conditions for normal distances g, € IR™.

relative velocities gy € R™, g7 € R and relative accelerations [Glocker, 1995]
gy =Wihg+wy € R, gr = Wig+wr € R (1)

in the potential contact points. nx and ny are the numbers of the potentially active
normal aud tangential constraints. Wy € R/™ and W, € R/ are the constraint

matrices. The vectors Wy and W contain terms of relative kinematics.

3. Dynamics of Rigid Bodies with Superimposed Unilateral Constraints
Describing the motion of a structure-varving system, we start from the differential equa-
tions of motion of the unconstrained system [Glocker, 1995}, In a system with additional

unilateral constraints. the occurring contact forces Ay € R™ and Ar € IR®™7 are taken



into account in the equations of motion [Wosle & Pfeiffer, 1996]
Mg—h—(Wy+HzAy - WrAr =0 (2)
as Lagrange multipliers. By the constraint matrices they are expressed in the configuration
space. The mass matrix M is symmetric and positive definite. h € R/ contains the
gyroscopical accelerations together with the sum of all active forces and moments. By
means of the matrix Hp € R/™ of the sliding constraints, the sliding friction forces are
taken into account, which obey Coulomb’s friction law [Wosle & Pfeiffer, 1996]. In Sec.

4, the system of Egs. (1) and (2) will be completed by the missing contact laws.

4. Contact Laws
We consider rigid bodies under the assumption of impenetrability (g, > 0). The normal
contact problem with all closed contacts 7 (gn; = gni = 0) 1s unambiguously determined

by the ny complementary conditions [Glocker, 1995

Gy 20, AN >0, ghAv =0. (3)

For the tangential contact problem, we use a representation of Coulomb’s friction law
on the acceleration level [Wasle & Pfeiffer, 1996]. To get complementary conditions, we
introduce the friction saturation Are; = pgosAn; — |A7:l, as well as the direction angles g,
and the amounts of the relative accelerations x;. Thus the friction forces and relative

accelerations can be written in the form

c0s ; .
Api = |Ari| = GrilpoiAni — Aroi) . G = —Griki (4)
sin =2

with the coefficients of static friction pg;. By means of the quantities App; and x; Coulomb’s

friction law distinguishes between the both cases fori =1,....nr

sticking: Arg; >0 = K; =0
= e = k>0, Arg 20, K" Arp=10 (5)
shding:  Argi =0 = K; >0

and we obtain the ny nonlinear complementary conditions for the active tangential con-

straints.

5. Contact Problem in Mathematical Form
One possibility to solve the contact problem is to transform the complementary con-

ditions into equations. For that purpose, we apply the theorem of Mangasarian to the
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contact laws. For the complementary conditions {3} and (5) exist the equivalent equations
[Mangasarian, 1976)
i = Gnil' ~ A -G =0, 1=1....ny

| (6)
|Apoi — & = Al ~k3I=0, i=1... . ,np.
The Egs. (1), (2), (4) and (6) form the nonlinear system of equations F(z) = 0 with the

vector z7 =[Gy Aw K @ Ape Ar g) € R/ FPWHT This zero-finding problem can be
solved by the homotopy method [Watson, 1979] with the choice for the homotopy map
pla, A, z) = F(z)+ (1~ A)(z—-a)=0. (7)
First, we pick a starting point @ and get the known solution z = a of p{a, A = 0,z) =
z — a. Then we track the zero curve of p with the additional parameter A € [0,1[. For
pla, A =1,2) = F(z), we get the solution Z of our zero-finding problem. The numerical
integration of the generalized accelerations yields the velocities and coordinates, which
are needed to calcutate the indicators for state transitions. With themn we have the actual

state of our mechanical system and so we can determine the new constraint matrices.

6. Application to a Mechanical System

aft) = (%), y4t), 2z, Bit) v ()]

F )= mErEQ2 cos Q1

F. it = mEr,:-Q2 sinft

o
AN \\

View U

Contact 3
Conlact 1

4

b (V)

Figure 1: Mechanical Model

The theory is applied to an oscillator on an oblique plane containing one mass and three

contact points (Fig. 1}. The unconstrained body has six degrees of freedom z, v, z and «.
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B. . The angles o, § and -y describe the twistings around the three axes. A periodically
rotating unbalanced mass excites the rigid body. Because of the selected test conditions
no detachment occurs. The diagrams in Fig. 2 show the computed accelerations as a
function of their velocities. The unsteady changes in the accelerations are due to stick-

slip transitions.
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Figure 2: Phase Diagrams

7. Conclusions

Stick-slip phenomena in rigid multibody systems with many frictional contacts imply
some fundamental problems. The behaviour of one contact can influence the state of
all others. This situation leads to a compatibility problem with respect to constraint
dynamics. Only one combination of the states of constraints satisfies all kinematic and
kinetic conditions. For three-dimensional problems, the friction direction is unknown in
the first moment after the transition from sticking to sliding. This situation leads to

nonlinear complementary conditions.
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HIGHER-ORDER AVERAGING FOR PERIODICALLY
FORCED, WEAKLY NONLINEAR SYSTEMS

K. Yagesaki and T. Ichikawa

Department of Mechanical Engineering, Gifu University, Gilu, Gifu 501-11, Japan

Abstract: We perform a higher-order averaging analysis by the Lie trans-
forms for periodically forced, weakly nonlinear systems with the assis-
tance of the computer algebra system, Mathematica. We give an example
for a single-degree-of-freedom system to demonstrate our results.

1. Introduction

The averaging method is one of most useful perturbation techniques to study non-
linear systems (e.g, [Sanders and Verhulst, 1985]), and its higher-order approximation
results are also available (e.g., [Murdock, 1988]). In particular, the higher-order terms
can be computed by the Lie transform algorithm [Nayfeh, 1973], [Chow & Hale, 1982],
which is easy to be implemented on computers. Rand & Armbruster [1988] also presented
a computer algebra program for higher-order averaging but used a different, primitive
algorithm.

In this paper, we perform the higher-order averaging analysis for periodically forced,
weakly nonlinear systems. We describe an algorithm for computing the higher-order
averaging terrns by the Lie transforms, which is implemented on a developed package of
the computer algebra system, Mathematica [Wolfram, 1991]. We also give an example for
a single-degree-of-freedom system to demonstrate our results.

2. Higher-Order Averaging

Consider systems of the form

t=cf(z,6,¢), O=w, (7,0)eR" xR, 0<e<g]l, (1)
where f(z,8,¢) € R" is analytic and of period 2r in . We expand f(z,8,¢) in power
series of e

[@69= 5 pn=.0) o)
Let w(z, 8, ¢) be an analytic function%?the form
w(z, 8, ¢) = T;i;og!wmﬂ(m,g). (3)
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Define a near-identity transformation

=u(y,0,¢), yeR" (4)
such that u(y,8,€) is & solution of the equation
o
a—?: =wlu,b ), u(y80) =y (3)

Applying the general theory of the Lie transforms [Nayfeh, 1973|, [Chow & Hale, 1982},

we se¢ that under the transformation (z,8) = (u(y, §,¢),8), Eq. (1) becomes

y—éi”QAMm b= w, (6)
where g, (y.8), m=1,2,..., can be computed by the recursive relations
Jw.8) = fulv,6),
P06) = S0+ 3 ChLimf ) T3 0 6), ()
D0 = 0.8+ ZC* oSNy, 0) for 122,
and
G (,6) = 1™ (4,6) (8)
with
L19(0.6) = Dyg(0,)ws(1n8) = Dy, 0)9(0,6) and Ci= e (0)
Let m > 2 be fixed. Suppose that in the recurswe relations (7) we use
F2,0.6) = 1900,6) + 3 P L S5, (0,8) (10)

7=0
instead of the second equation for k& = m — 1 and denote by f™(y,8) the final output

J&m(3.6). Then Eq. (8) becomes

9n(y,8) = 1™(,6) ~ o (y,6) o)
Here f™{y,8) is independent of w,,{y,§). We also set f({y,8) = fi(y,8), so that Eq.
(11) still holds for m = 1.

Define
= [T 1™y, 00 (12)
2 Jo

Let
[y, 8) = [™ () + f™(y,8) (13)
be split into its mean part {7 (y) and oscillating part f™(y, 8). Choosing wm(y, ) such

that
25 4,0 = Fm(y,0) (14)

89 H il
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we obtain

gnly,8) = F™(y), (15)
so that Eq. (6) becomes
- o0 m .
y= —/"y), §=w (16)
m=1 .

We refer to Eq. (16) as the mg-th order averaged system when the summation is truncated
at m = my.
3. Applications to Weakly Nonlinear Systems
We next consider periodically forced, wealy nonlinear n-degree-of-freedom systems
i+ wling=eF(z, 3wt €), i=1,...,n, (17)
where £ = (z;,...,z,)7 (T denotes the transpose operation), and Fi(z,z,8,¢) € R is
analytic and 2w-periodic in 8. We assume that ultra-subharmonic resonances occur si-

multaneously such that w;/w = [;/k; with &; and L, relatively prime integers fori = 1,...n,

and set.
) 1202 — k2,2
EJQi = %) (18)
Then, using the van der Pol transformation
l; ko
ui cos }c—_wt _i_-u: sin Ewt : 10
vi | L k, L T; (19)
! —sin Ewt o cos Ewt !
in Eq. (17), we obtain
- k; sin —_'—f_ut.
b €™z + eFiz, &, wt, €)] ‘l"? , or=1,00n, (20)
W, Liw '41
' : cos Ewt

where z; and I; are expressed by u; and w; through Eci. (19). Lquation (20) can be
written as the form (1) and we can apply the averaging method to it.

The developed package of Mathematica contains two programs haverage and Vander-
Pol that implement the higher-order averaging procedure for Eq. {1) given in Sec. 2 and
the van der Pol transformation from Eq. (17) to Eq. (20).
4. An Example

As an exanple, we take the nonlinear oscillator with nonsymmetric restoring force,

i+ wit = —efz? + E(—ar® - 6z + yeoswt), o,8,v > 0. [21)

We first apply the van der Pol transformation with ky =/, =1 and 7 =2

Flij=e(-beta x[1]72) +e"2(-delta y[1l-alpha x[1] 3+gamma Coslphil);
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ng-0rder
ANErAEINE

2+ ceo-0sder Averaging

N Sth-Creer G 08 -
.ar \ Averaging 1
Swculation . ‘\‘
~ | >~ 007 \ Sirulalicn
Stn-fGrder
006 Averaging
0.5
6. 05k
’ . l ’ 6. 04
0.5 9. 85 1 1. 05 1 : '
K : P O3 106 185 .06 107 i, 08 1 08 1
0 w
Fiz. 1. Resonance curves by second- and Fig. 2. Bifurcation sets by second- and fifth-
fifth-order averaging and direct numerical order averaging and direct numerical inte-
integrations for Eq. (21) when ¢ = 0.2, grations for Eq. (21) when ¢ = 0.2, & = 2.5,
a=258=1,v=2,6=1andw, = 1. A=1,60=1andw, =1.

g=VanderPol [F,x,y,u,v,psi,omnega,e”2 Omega,1,1,1];

We carry out averaging up to fifth-order for the resulting equation:
Dolf[jl=j¢ Coefficient[g,e”jl/psi-—>theta,j,1,5];
haverage [f,barf,u[1) ,v[1],theta,omega,?2,5] ;

Figures 1 and 2 show comparisons among the second- and fifth-order averaging anal-
yses and direct numerical integrations for resonance curves and bifurcation sets. Here we
used the computer software, AUTO [Doedel & Kernévez, 1986], to obtain these results.
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Abstract

A nurnerical method is presented for calculating
transverse and non-transverse (or tangent) types of
homoclinic points of a two-dimensional noninvert-
ible map having an invariant set that reduces to
a one-dimensional noninvertible map. To illustrate
bifurcation diagrams of homoclinic points and tran-
sitions of chaotic states near the bifurcation param-
eter values, two systems including coupied chaotic
maps are studied.

1 Introduction

Recently there are many investigations on cou-
pled discrete maps(1, 2, 3}, which are considered
as models of coupled oscillators derived from phys-
ical systerns. Severzal phenomena observed in cou-
pled chaotic oscillators can be reproduced by a cou-
pling of one-dimensional noninvertible maps. Using
a model] described by discrete dynamical system,
we may clarify mechanisms of generation of chaos,
transition or bifurcation of chaos, chaotic synchro-
nization and so on.

The appearance of homoclinic structure in dy-
namical systems is a global phencmenon and im-
portant on the occurrence of chactic behavier. But
it is not possible to obtain homoclinic selutions for
a general noninvertible map. On the other hand,
there is a method to calculate homoclinic solu-
tions and their bifurcation sel for forced differen-
tial equations as well as invertible maps[4]. In this
paper, we propose a computational method to cal-
culate homoclini¢ solutions of a noninvertible map
for a special case.

We consider a discrete map as a function of a
real parameter vector A, defined by

Ty @ R* = R, (z,y) — (z/,v) (1)
where the system has an invariant set such that the
restriction to the line pz +qy = r {p? 4+ ¢* # 0) re-
duces to a one-dimensional noninvertible map. We

kawakami@ee.tokushima-u.acjp

also suppose that Eq. (1) has a saddle type of fixed
or periodic point, say D, on the line pz 4+ gy = r,
and a homoclinic point Qg exists as an intersec-
tion of @- and w-branches (or unstable and stable
manifolds, respectively) of the point Dy. Moreaver
we treat a special case where the w-branch is re-
stricted to the invariant set pz + gy = r, so the
point Qo 15 located on the line, although the w-
branch itself may be folded, Indeed, this situation
is typically observed in, e.g., a coupling of identi-
cal chaotic maps as shown in Sec. 3 and this phe-
nomenon is related to a transition of chaos with a
symmetric property, From the above assumption,
we can obtain the point Q¢ using a similar com-
putational method for invertible maps, because it
is not necessary to calculate the w-branch of the
noninvertible map.

2 Method

In this section, we show methads for calculating
transverse and non-transverse (or tangent) types
of homoclinic solutions. The two situations are
sketched in Fig. 1. Note that a periodic point with
period k can be studied by replacing T4 with 5,
k-th iterates of T4, in Eq. (1). Therefore in the
following we consider only homoclinic point of the
fixed point of T%. Similar argument can be applied
to the periodic point of Ty.

2.1 Transverse type of homoclinic

point

We first consider a method for obtaining a trans-
verse type of homoclinic point Q¢ using a local rep-
resentation of a-branch. Let the point Dy be 2
saddle type of fixed point:
Ta(Do) = Do = 0 (2)
We take an e-neighborheed U(e, Dg) as shown in
Fig. 1(a), then there exists a positive integer M
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such that

TM(Q-M)=Qo, Q-m€U{e, Do) (3)

Because {Jp is on the line pz + gy = r, the point
Q _pr satisfies

(» T (Qem)—7=0 (4)

Hence the problem for obtaining the point Qg re-
duces to a problem to find the point Q_jr (€ a-
branch) that satisfies Eq. (4} and is included in the
region Ule, Dg).

wbranch

Ule 3)
Ule )

r-branch

o-branch

Figure 1: Schematic diagrams for (2) transverse
and {b) non-transverse (or tangent) types of ho-
moclini¢c points.

Now, we use the first order approximation or
eigenvector as the local representation of a-branch
in the e-neighborheod. The condition such that the
point G_as is included in the e-branch is written
as

WiQ_m—Dg)=20 (5)

where the row vector W7 1s

Wo=(1 0){pal— DIy, or
(0 1)(uol — DT3) (©)

In the equation, DT, indicates the derivative of T}
with respect to the fixed point Dy, and |us| > 1
denotes the characteristic multiplier.

If the @-branch intersects the w-branch or the
line pz + gy = r at the point Qp, then Eq. (5) is in-
dependent of Eg. (4). Therefore we can determine
variables @_ 3 € R? for the set of Eqgs. (4) and (5),

using, e.g., Newton’s method.

2.2 Non-transverse or tangent type
of homoclinic point

Then we consider a homoclinie point such that the
a-branch is tangent to the w-branch (or the line

pT +4gy = r} at the point Q¢. This is a problem for
obtaining a bifurcation of homoclinic motion.

The calculation is done by solving homoclinic
point and an element of the parameter vector A, say
A1, simultaneously, for equations of 2nd order tan-
gent homoclinicity. Figure 1{b) shows a schematic
diagram for the situation. Let

¢ : R=—R*; s ¢{s) (7)

be a representation of the e-branch in Ule, Dy),
where ¢(0) = Dg and ¢(s.) = Q.

We now consider the derivative of ¢ with respect
to s, that is,

2 (5} = Wigls)) ()

then we have a tangent vector of the a-branch at
the point Qy

d(Tiw a o) _ M d¢
SR = Dl lea)
= DT {Q_um)Wa (9)

where W{¢(s,)) = Wy, for simplicity. Hence we
have a condition for coincidence of the directions
W, and the line pz + gy = r:

det (DT{‘(Q_M)WRE ( —4 )) =0 (10

r

where W, is a vector transposed to W;, that Is,
o . 0 1
W, =W_ ( 1 0 ) (ll)

where indicates the transpose. Hence
the problem is reduced to determine wvariables

(Do, Q-m,21) € R® for the set of Eqs. (2), (4),
(5) and (10).

3 Examples

We illustrate some numerical results of ealculating
homoclinic bifurcations showing several interesting
phenomena related to a transition of chaos. In bi-
furcation diagram, we use notations: H™ for homo-
clinic tangency, G for tangent bifurcation, D™ for
D-type of branching, I for period-deubling bifur-
cation and N/™ for the Neimark-Sacker bifurcaticn,
where m and ! respectively denote the order of pe-
riod and the number to distinguish several same
sets of ()™, if they exist. If m = 1, it will be
omitted.
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3.1 A coupled system of chaotic neu-

rons

The system of our first example is a coupling of two
identical chaotic neurons|3):

!

{(7)=(

(12)
where A{u) = 1/(1+exp(—1/0.03)) and A = (a,w).
Note that the restriction to £ = y reduces to a one-
dimensional system.

We obtain parameter sets of local and global bi-
furcations as shown in Fig. 2. In the region shaded
by [, there exists a stable fixed point satisfying
z = y. By passing through the curve I; from this
region, we have ;J-type of fixed point which exists
in the region [T The point I has an w-branch
on the line z = y, and, if only the saddle exists, the
a- and w-branches intersect each other and form a
transverse type of homoclinic structure at every pa-
rameter point in the region shown in Fig. 2. The
curve H in Fig. 2 denotes the parameter set on
which a non-transverse type of homoclinic point of
the fixed point I appears. Phase portraits of at-
tractors and a-branchs of the fixed point observed
at the parameter points a—c in Fig, 2{b} are shown
in Fig. 3, where the coordinate system is trans-
formed by u = (z + y)/vZ and v = (z — y)/v2
to see the detail near the line z = yor v =0. In
each phase portrait, the o-branch is drawn up to
a first transverse with the w-branch, and another
a-branch that is symmetric with respect to the line
v =0 is omitted.

0.8z + a — h{z) + whiy)
0.8y + a — h(y) + whiz) )

e,
7

Figure 2: Bifurcation diagrams for Eq. (12). Note
that, in the figure (), several bifurcation curves,
e.g., the curve ¥? observed in the figure (b), are
omitted for the simplicity.

We have an attractive invariant closed curve of
the iterations of Eq. (12) with parameter values
indicated by the point a, see Fig. 3(a). This in-
variant closed curve is generated by the Neimark-
Sacker bifurcation, denoted by the curve N? in

Fig. 2(b), of a stable 2-periodic point with prop-
erty Ta(z,y) = {y,¢), which exists in the region
with shading ZZ4. By increasing the value of the
parameter a for fixed w = 0.3, at the point b or
on the curve H in Fig. 2(b), we observe a non-
transverse type of homoclinic point as shown in
Fig. 3(b). The homoclinic point is indicated by
the point Qg in Fig. 3(¢) showing an enlargement
of Fig. 3(b). When the homoclinic point becomes
to a transverse type, due to more increase of the
parameter a, we see that the invariant closed curve
changes to a chaotic attractor near the a-branch
which forms the transverse homoclinic structure as
shown in Fig. 3(d), occurring at the point ¢ in
Fig. 2(b). Therefore the curve H shows a bifur-
cation set for the transition betwesn the invariant
closed curve and the chaotic attractor. The param-
eter region in which the chaotic attractor exists is
indicated by the shading in Fig. 2{b}. Note
that the attractor shown in Fig. 3(d) is a charac-
teristic chaos observed in the neuron meodel{3]. It
is an advantage of our method to be able to obtain
bifurcation parameters at which the chacs gener-
ates,

[ :] [3H

D O

Dy

v

-0E i

Y

-01% bt
-0y =012 -Ix
U ——

{(2)a = 0.005 w=05
(0,000, -0.196)

> —
(b)Y a = 0.006418, w =05
{0.156,-1.73)

-

-0

517 .t o

u—— u
(C) ¢ = 0,006418, w =05
(0.145,-1.586)

Figure 3: Phase portraits for Eq. (12) in the trans-
formed coordinate system. The point with symbo)
Dy and the curve denote the fixed point and its
a-branch, respectively. Parameter values are de-
noted by the points (a) a, (b) b, and (d) ¢. The
figure (¢) is for an enlargement of (b). The values
of the Lyapunov exponents appear in parentheses.
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3.2 A two-dimensional version of
Myrberg’s map

As the second example, we treat the system taken
from Ref. [5]:

z’ z? —y?  —a ez
TA{( v ) - ( 2y — 2.5ey ) (13)
where A = (@, e). Note that the restrictiontoy =0
reduces to the Myrberg map.

Figure 4 is for showing schematic bifurcations
of first homoclinic tangencies, denoted by symbols
H and H™, of fixed and m-periodic points, where
m = 2,4,8. The fixed and periodic points are ob-
served on the line y = 0 and tbere is 2 doubling pro-
cess of their period-doubling bifurcations indicated
by the curves I and /™, m = 2,4,8. We see that
there exist successive occurrences of the homoclinic
bifurcations together with the period-doubling bi-
furcations. The occurrence of the infinite doubling
processes is conjectured. At the points ¢ and d,
we have chaotic states restricted to the set y = 0.
In Fig. 5, phase portraits of attractors with and
without homoclinic structures, which can be called
as connected ((a) and (c)) and disconnected {(b)
and (d)) chaotic attractors, respectively, are shown.
Note that, for each figure on the right {(b) and (d)),
another attractor that is symmetric with respect to
the line y = 0 is omitted. The transition between
the twec types of chaotic attractors occurs on the
curves of the first homoclinic tangencies.

Figure 4: Schematic bifurcation diagram in pa-
rameter plane A = (¢, o} and locations of pericdic
points on the line y = 0 are schematically shown.
The pericdic points on the line y = 0, which exist
in regions separated by the period-doubling bifur-
cations are also illustrated in the diagram.

] 2 _ﬁ_}
I I |
- N
o~ Q=
B =
H 1 ® 1

(p)o=0,c=—-0.72
(0.259,-0.132)
2 x

(byax=10,e=-0.71
(0.228,-0.191)

-2 — ' —
I —

(d) oa=-0.7 = -0.87

(0.338, 0.184)

r—
(c) a=-07 = -058
(0.368,0.228)

Figure 5: Phase portraits for attractors observed
in Eq. {13) with parameter values dencted by the
point (a) a, (b) b, (¢} ¢ and (d) & in Fig. 4.

4 Conclusion

Using the method for obtaining homeoclinic tangen-
cies, the following results were obtained: (1) We
obtained bifurcation parameter set that causes the
generation of a chaoctic attractor, which is a charac-
teristic chaos observed in a coupling of two identical
chaotic neurons. (2) A doubling process of homo-
clinic structures together with pericd-doubling bi-
furcations was found in a two-dimensional version
of Myrberg's map.

Finally we should ncte that although we only
consider, in this paper, the case where the restric-
ticn to w-branch is the line pz+qy = r, it is possibie
tc apply to more general case such as h(z,y) = 0,
where ks a known C* function.
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Bifurcation and Chaos of Nonlinear Vibration
Systems with Parametric Excitation

Chen Yushu
(Department of Mechanics, Tianjin University, Tianjig, China, 360072)

Abstract This paper introduces the local and global bifurcations and chaos of
nonlinear vibration systems with parametric excitation obtained by us since 1986.
The vibration equation of such systems is as follows

d’x [dx ( dx ]} f( dx )
ol | o fadid ke
i +9| +h 7 O+ (1 + wx + X

+ Zscosm[x + g(x,i—f,pz)} ={ (1)
here x—vibration displacement, é~damping coelTecient, e-amplitude of parametric

o . . . dx
excitation, py—tuning parameter, [, g, h—nornlinear functions of X’E}-’ and [ and g—even

functions of'd—x, h—odd lunction oféi.
dt dt

In the local bilureation part, deflining periodic functon spaces, and using subgroup
property of (1), and Liapunov—~Schmidt reduction, we got the analytical expression of local
bifurcation equation and the [irst order approximate bifurcation equation. Then 6 persist-
ent and 6 noopersistent (transition) bilurcation diagrams ([requency—response curves) are
obtained by using singularity theory. The experimental resulis at the mechanieal model are
coincident with above theoretical ones. From bere we get vibration utilization theory: vi-
bration dampiag and vibration utilization in resonant mechanical machines. The second

order approximate bifurcation equalion is obtained by geperalized Green’s function.

(F+dA° +2cd +efd + (¢ + e +2bd—2uf)d’ +2(bc—ae)d’
+(’ + b —g") A= Alr(uw) + e, +26,u) (2)

Defining a modal parameter

(3)

r
va

2 r |Ir
vy #a we=0aw=0

We have Moduli Bracelet (see Figure 1), bere r is a [upction of u and system

m =

paramelers a, b, ¢, d, e, [, and g It i1s roain part of second order approximate bilurcation

equation and called a germ.
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For non—degenerate cases, that is, system
parameters at the interval between modal points,
m& m, my , m; M, , of T3, m, ,the first order
approximate bifurcation equation can describe
the complete dynamical behavior of the original
systems. There are 6 persistent bifurcation dia-
grams ¢ For degenerate cases, that is, at the
modal points m, , mg and part of points m, ,

m, ,m, ,;i, may use only the second order ap-
proximate bifurcation equation. It is possible for Fig.1 Moduli Bracelet
the systern to have 14 persistent bifurcation diagrams > . For cd+el=0 ol m, may use the
third order approximate bifurcation equation. But for cd+ef =0 of m, it needs the higher
order approximate bifurcation equation than third order. There are more 14 bifurcation di-
agrams 7 .

The procedure of solving the bifurcation equation is called by the bifurcation theory
method in nonlinear vibration. The modern mathematical method introduced by Chen can
reveal the bifurcations and rich dynamical behavior ol nonlinear vibration systems. The re-
sults obtained by modern mathematical method basically interpret the contradictory results
obtained by Bogoliubov 2 and Nayfeh ®’ . The modern mathematicaj method carries the
nonlinear vibration & new step [orward [rom the classical theory. Especially, from here one
can get vibration utilization theory: vibration damping (such as the system parameters in
regions @ and (2) of Fig.4 in [4]) and vibration utilization in resonant vibration machines (
such as the system parameters in regions @ and (3) of Fig.4 in [4]). The results of Moduli
Bracelet give us part answer about the questions what order approximate solution should
be taken for complete revealing the dynamical behaviors of original nonlinear vibration sys-
temms. For nondegenerate cases asm € {m, m, }, m € {m, m, }, m € {m, m, } in Fig.1,
onc can take the f{lrst order approximate bifurcation equation in order to universal un-
folding. For degenerate case cd+ef=0 of m; —the third order approximate bifurcation
equation, and cd+ef =0 of m,; ~the higher order approximate than third. For other degen-
erate cases except above \wo, the second order approximate bifurcation equation is enough,

Chen, Wang and Ye studied the global bifurcation and chaos of 8 beam under

1 The dynamical model of a beam under the longitudinal

longitudinal excitauon
excitation has been developed, and the averaging equation by the method of multiple scales
is obtained. The theory of normal form and universal unfolding as well as the Melnikov's
method are used to determine the parametric domain in which the global bifurcation and
chaos can occur. The analytic result indicates that the dynamical response is abundant near
degcnerate points. Io the corrsponding mechanical device the experiment about periodic,
quasi—periodic and chaotic motion bas been found. Mcanwhile, the numerical simulation

verifies tbe results of analysis and experiment by tbem,. The global bifurcations and chaos

272



are investigated also by Chen etc {18,19] for a van der pol—Duffing—Mathieu systern with g
single—well potential energy and a three—well potential energy by means of semi—analytical
and semi—numerical method. Semi—gnalyticai and semi—numerical means that the auton-
omous systern, cailed van der Pol-Duffing system, is analytically studicd to draw global
bifurcation diagrams in parameter space. These diagrams are called basic bifurcation dia-
grams, Then fixing parameter in every space and taking parametrically excited amplitude as
a bifurcation parameter, we can observe how to evolve from a basic bifurcation diagram to
chaotic pattern by numerical methods. They observe also nature of basins of artraction not-
ing the appearance of [tactal basin boundaries which herald the onset of a loss of structural
integrity in order to consider how to control the extent and the rate of the erosion.

This paper is joint with Professor W. F, Langford, Doctors K., J. Zhan, I. Xu, M. Ye,
and L. T. Mei, W.Y. Zhang.
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CHAOS AND TRANSFORMATIONS OF STOCHASTIC PROCESSES
IN NONLINEAR SYSTEMS
WITH INTENSITY DEPENDENT PHASE ROTATIONS

V.V.Zverey,
Physics-Technical Department, Ural State Technical University,
620002 Ekaterinburg, Russia

Abstract; The statistical behavior of mappings with nonlinearities caused by rotations is
studied. To describe dynamics under the external noise perturbation we use the
Kolmogorov-Chapman equations for the multi-time probability distributions, We obtain
the stationary (asymptotic) sotutions in the long-time limit as the expansion in a power
series with respect to the dewiation from the state with complete angle randomization
("phase mixing").

1. Introduction.

In this work we focus on the important class of multidimensional mappings with
nonlinearities originated by usual or generalized rotations. Typically a mapping under
consideration consist in the successive fulfillment of the transformations stated below:
(1) a transformation belonging to the rotation (orthogonal, unitary) group (the angles of
rotation are functions of the original vector), (ii) a space contraction associated with
dissipation, (11i) a constant shift. A well-known example of the mapping under discussion
arise from the analysis of a circuit with nonlinear element and delayed feedback (lkeda
model [JTkeda,1979] of the optical ring cavity, nonlinear electric circuits, etc.). Other
mappings belonging to the above-mentioneéd class often arise from reduction of the
differential equations of motion to the difference equations (for example, [Zverev,1993] -
for a nuclear magnetization, [Safonov & Zverev,1994] - for parametrically driven spin
waves in ferromagnets).

2. A Basic Model: Nonlinear Circuit With Delay.

Here we restrict our consideration to the 2D (complex) model of the circuit with delay
proposed by Ikeda [1979]
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X(t) = £(t) + F(X(t - Tq)) = €(t) +1+x exp{ilX(t - Td)|2 + i¢0}, (1)

where x is the dissipation parameter (x<1), T, is the delay time, £(t) 1s the noise
component of the external signal (<E_,(t)> =0). In fact, Eq.(1) 15 equivalent to the 2D
mappings family: X, = Xy, for X, EX(tD +NT,), 0<t, <T,. Using the short

notation for the multi-time distribution functions
P ((Xs),E) = P(Xo[NTg +10].... X [NTq + 1, E[NT4 ]}, (2)
we may write the corresponding generalized Kolmogorov-Chapman equation as

Pr1((Xe) Enar) = [ dYdldmPy (Y;).80)

(3)
n 2
x[ 1,2 3 )(Xk —&x — Mk —F(Yk)) p(nk) o{Exe1.E k[ Tk —TkD,
k=0
where dA=dA,..dA_ , O0=1,<.<1,,=T, and 8% is 2D delta-function. Above,
we assume that the external noise consist of two components: first, Gaussian noise with
1., <<T, (the Fourier transformation of its probability distribution function p(n) is

cor

+1

A(U) = exp(—§Q|U‘2) ), and second, Gaussian or Kubo-Andersen Markowian random

process with arbitrary t_ and the transition densities m(&,n[‘r]).

r

3. Limiting Case of Intense Phase Mixing.

We analyze the stationary solution of equation
Yo = (R+e8R) W, —=25 RY, (4)

where ‘¥, is the Fourier-image of P, and € is a formal "small parameter" (in reality

¢8R ~A™ as A — o). The zero-order approximate (asymptotic) solution corresponding
to the conditions N N+1— ST | A — o, takes the form

PO = imRYW,n , W = RYY (5)

N



(the problem of convergence of iterative process in (5) was considered in [Zverev &
Rubinstein, 1991]). Note that

RYE((U, ), @) —=22 £((0),0)- lim R (6)

N—oa

and L]I-’nm((o),o) is the normalization constant, This circumstance reflects the fact of

"memory loss" in the system under consideration.

4. Iterative Series Representation of the Exact Solution.

Let us seek the solution of Eq.(4) in the form
Wor =Wt + 8% =2 L Wy )

Taking into account the normalization condition 8%, ((O),O) =0 and Eq.{(6), one can

obtan

Vo= W+ 7 [0 RR[ Wl , ®)
The expression (8) may be treated as the "stationary point" of the certain operator:
Vo= AWy |, AW=Wae[37 R*[eRY ©)

Using the norm

H‘}’“ = sup z{ﬁN(Uk)|\P((US)’ Q)ﬂ (10)

(Us).)ecn”
with N(U) = A™*(U) , we find
|, - Aw| < o, -], (n

where the estimation for o is given by

(1_};)‘1{[%“)”” _1] . (12)

o
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Therefore, if QA 1s enough large and A <1, eastence of ¥, follows from the
contraction mapping principle.

S. Conclusions and Acknowledgment.

We report the significant result consisting in the rigorous proof of the convergence of
asymptotic expansions (8) for the certain models of noise. This expansions can be useful
in Investigations of the chaotic dynamics with intense mixing. In addition it is shown that
noise transformation process in the systems under investigation may be described in
terms of two sorts of the fractal domain integrals. The conditions of convergence of this
integrals are analyzed in [Zverev, 1996].
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